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Abstract 

This paper addresses an integrated multi-echelon location-allocation-inventory problem in a stochastic 

supply chain. In a bid to be more realistic, the demand and lead time are considered to be hemmed in 

by uncertainty. To tackle the proposed supply chain network design problem, a two-phase approach 

based on queuing and optimization models is devised. The queuing approach is first deployed, which 

is able to cope with inherent uncertainty of parameters. Afterwards, the proposed supply chain network 

design problem is formulated using a mixed-integer nonlinear model. Likewise, the convexity of the 

model is proved and the optimal inventory policy as closed-form is acquired. Inasmuch as the concerned 

problem belongs to NP-hard problems, two meta-heuristic algorithms are employed, which are capable 

of circumventing the complexity burden of the model. The numerical examples evince the efficient and 

effective performance of the solving algorithms. Lastly, sensitivity analyses are conducted through 

which interesting insights are gained. 
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1. Introduction 

A supply chain (SC) is a system comprising activities, people, organizations, resources, and 

information which is involved services or moving a product from manufacturers to customers 

(Nagurney, 2006). The competitive conditions of today’s world eventuate in the companies 

focus on improving their SC performance in order to reduce costs and increase the customer 

satisfaction (Diabat and Theodorou, 2015). One of the most prominent issues in logistics and 

SC is designing the integrated multi-echelon distribution systems. That is, considering 

strategic, tactical and operational decisions in an incorporated manner can ameliorate the 

management across the SC and yield a full-optimized network (Miranda and Garrido, 2009; 

Sadjadi et al., 2016). Facility location and inventory management problems are the two most 

outstanding problems in SC optimization that have salient impacts on efficient design of SC 

networks (Gunasekaran et al., 2001; Stevens, 1989). 
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Facility location problems, as strategic decisions, encompass determining the optimal number 

of open plants and their locations. On the other side, inventory management problems identify 

the responsiveness of systems in terms of stock availability as tactical decisions. Now, in view 

of pervious speaking, considering the integrated model of both decisions can lead to better 

solutions (Diabat, Battaïa, et al., 2015; Ramezani and Naderi, 2018).  

In this research, we have presented a joint location-inventory problem in a three-level SC, 

including a single manufacturer, multiple potential distribution centers (DCs) and retailers. The 

aim is to identify a set of open DCs to meet the demands coming from retailers. The objective 

of the presented model is to minimize the total costs which is composed of the fixed cost of 

locating DCs, transportation cost from DCs to retailers and inventory costs. To make the 

problem more similar to real-life problems, the demand and lead-time are assumed to be 

hemmed in by uncertainty. Additionally, there is facility capacitation restriction. Accordingly, 

our model is an extension of capacitated facility location model, known as a NP-hard problem 

(Mirchandani and Francis, 1990). To circumvent the complexity burden of the model, two 

meta-heuristic algorithms, i.e. simulated algorithm (SA) and genetic algorithm (GA), have been 

devised to solve the problem, especially for large instances to reach near optimal solutions in 

a logical CPU time. In accordance with the best of our knowledge and the literature review, the 

main contributions of this research can be considered as follows. 1) This research is one the 

first studies in the field of location-inventory problems that cope with uncertainty with regard 

to queuing approach. 2) We have obtained a closed-form for optimal inventory policy of DCs 

by proving the convexity of objective function. Optimal control policies for stochastic 

inventories are the contribution of some researches such as Federgruen and Zheng (1993), Chao 

et al. (2012) and Chen and Feng (2006) in the field of inventory control. 

Each open DC holds inventory and replenishes its inventory by ordering to the manufacturer 

under (S-1, S) policy. In current policy, the peak level of stock is S (i.e., base stock level) and 

an order will be placed, whenever the stock level (the summation of on hand and on order 

quantities) decreases to S-1. Speaking intuitively, an order will be placed, whenever a demand 

is received and satisfied (Hill, 1999). Some applications of (S-1, S) inventory policy are as 

follows; 1) military, airlines and computer industries, 2) the case of unit size and recoverable-

item inventory systems, 3) the products with expensive stock level controlling, low demand 

and high holding cost (Kalpakam and Shanthi, 2001), and 4) for spare parts system, when a 

failed part is exchanged by a new one. Likewise, if the failure rate is low, this inventory policy 

will be more desirable (Schultz, 1990). 

The organization of this paper is as follows. The literature of location-inventory models 

considering queuing theory approaches are presented in Section 2. Section 3 elaborates the 

model description and mathematical formulation of the concerned problem. In Section 4, 

solution approach to solve the proposed problem is surveyed. In Section 5, the computational 

results and sensitivity analysis are carried out. Lastly, some concluding remarks are presented 

in Section 6. 

2. Literature Review 

Here, the literature review has been categorized into two sub-sections comprising location-

inventory problems and inventory control models with queuing theory approaches.  

2.1. Location-inventory problem 

Baumol and Wolfe (1958) are the first authors who considered integrated inventory with 

location costs. They have studied a procedure to locate the variable number of warehouses. 

Two-level facility location where the second level has limited capacity has been considered by 
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Tragantalerngsak et al. (2000). Daskin et al. (2002) have proposed a location-inventory 

problem considering deterministic lead-time. They also have implemented a number of 

heuristics to finding near optimal solutions. A routing-inventory network design problem 

considering risk-pooling has been considered by Shu et al. (2005). This research is the 

developed model of Shen et al. (2003), where two different algorithms to solve the general 

model have been proposed. Chew et al. (2007) have studied a stochastic integrated location-

inventory model aimed to minimize the total costs including the transportation, inventory and 

ordering costs in multiple capacitated distribution centers. They have used GA to solve their 

problem. A capacitated integrated location-inventory model with risk pooling has been 

investigated by Ozsen et al. (2009). They have used normal distribution function to 

approximate Poisson demand process. Park et al. (2010) have presented a stochastic network 

design problem with regard to economic order quantity (EOQ) to approximate the optimal 

solution of the (r, Q) inventory policy. Ahmadi-Javid and Seddighi (2012) have formulated a 

stochastic distribution network design problem in a SC as a mixed integer convex programming 

model, which minimizes the total costs of location, inventory and delivery delay. They have 

developed a heuristic solution approach based on SA and Tuba search to solve large-sized 

problems. An integrated location-inventory model has been studied by Berman et al. (2012). 

They have assumed each open DC has a periodic-review and they have modeled their problem 

as a nonlinear integer-programming problem and used an approximate procedure for 

determining inventory policy. Diabat, Abdallah, et al. (2015) have provided a closed-loop 

location-inventory model as a mixed integer nonlinear programming, where the lead-time is 

deterministic. Shahabi et al. (2014) have developed a stochastic SC considering the correlated 

demands across the retailers. They have developed a solution approach based on an outer 

approximation strategy and they have illustrated that their solution procedure performs 

effective and efficient. Jindal, and Solanki (2016) have presented a two single-vendor single-

buyer integrated SC inventory model with inflation and time value of money. Rabbani et al. 

(2016) have considered a basic mixed-integer non-linear programming model to lease new 

products. A three-level SC network has been introduced by Sadjadi et al. (2016), where the 

location, allocation and inventory replenishment decisions are simultaneously optimized. They 

have analyzed the inventory systems by a Markov process and then the location-inventory 

problem has been formulated based on obtained results. AmalNick and Qorbanian (2017) have 

assumed dynamic pricing strategy based on demand value. They have combined neural 

network and evolutionary algorithms to optimize pricing policies. Applying a queuing 

approach, Rabbani et al. (2017) have considered a reliable location – inventory problem for a 

supply chain system. Last but not least,َ a mixed-integer linear programming model for an 

integrated SC has been proposed by Alshamsi and Diabat (2018). Díaz-Mateus et al. (2018) 

have used the constrained multinomial logit for discrete choices to estimate demand levels for 

a non-linear optimization model. To solve the presented model, they have implemented a 

metaheuristic approach based on particle swarm optimization. 

2.2. Inventory control models considering queuing theory approaches 

In this subsection due to the use of queuing approach in our research, the literature of inventory 

control models considering queuing theory has been reviewed. One of the earliest researches 

in this field has been proposed by Sigman and Simchi-Levi (1992). They have proposed a light 

traffic heuristic for the M/G/1 queue system. Berman and Kim (2001) have addressed an 

optimal inventory control, in which the demand and lead-time are uncertain with Poisson and 

exponential distributions, respectively. They have applied a Markov decision problem to 

determine the replenishment policy and then they have proposed a numerical study to evaluate 

the optimal performance. An integrated queuing-inventory model has been investigated by 

Schwarz and Daduna (2006), where lead time is exponentially distributed. They have derived 
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explicit performance measures for M/M/1 systems considering inventory under continuous 

review and backordering. Appling a queuing approach, Krishnamoorthy et al. (2013) have 

investigated (s,Q) and (s, S) inventory policies and they have analyzed numerically the per unit 

time expected cost for these systems. Baek and Moon (2014) have extended a queuing system 

incorporated with a production-inventory system and they have assumed the arrival of 

customers with a Poisson processes. Table 1 shows the specifications of the related literature 

reviews in the field of location-inventory.  

In this research, we have proposed a joint stochastic location-inventory problem in a three-

level SC. A queuing approach has been implemented to cope with inherent uncertainty and to 

study the characteristics of the inventory policy. With respect to traditional inventory models, 

there are enormous advantages when inventory systems are described as a Markov process 

(see, Frizelle and Jaber (2009) and Saffari et al. (2013)). Owing to NP-hardness of the proposed 

problem, commercial solvers such as BARON are not able to solve the model efficiently. 

Accordingly, two meta-heuristic algorithms have been proposed to solve the model. Also, we 

could achieve the optimal inventory policy for open DCs as a closed-form with regard to the 

convexity of the objective function.  

In accordance with the literature review and Table 1, our main contributions for this research 

can be considered as follows. 1) Modeling queuing approach in location-inventory problems 

with stochastic demands and lead time. 2) Introducing a closed-form optimal inventory control 

for a stochastic supply chain network design problem. In this manner, the number of reorder, 

the mean of inventory level, backlogged demands and the base stock level are obtained. It is 

worthy to note that this procedure in addition to determining the optimal inventory of DCs, it 

can enhance the performance of the proposed algorithms in both terms of solutions’ quality 

and CPU Time.
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Table 1. Specification of the researches in the field of location-inventory 

Reference 
Type of 

modeling 

Objective 

function 

Demand 

distribution 

Lead-time 

distribution 

Inventory 

Policy 

Identifying 

inventory policy 

Type of 

shortage 

Solution 

procedure 

Daskin et al. 

(2002) 
MINLP Single NO Det. (R,Q) AP BA LA 

Shu et al. 

(2005) 
MINLP Single NO Det. (R,Q) AP BA LA 

Ozsen et al. 

(2008) 
MINLP Single NO Det. (R,Q) AP BA LA 

Ahmadi 

Javid and 

Azad (2010) 

MINLP Single NO Det. (R,Q) AP BA ME 

Berman et al. 

(2012) 
MINLP Single NO Det. (R,T) AP BA LA 

Nekooghadirl

i et al. 

(2014a) 

MINLP Multi NO Det. (R,Q) AP BA ME 

Sadjadi et al. 

(2016) 
MINLP Single PO Det. (S-1,S) - BA CO 

Taki et al. 

(2016) 
MINLP Multi NO NO (R,Q) AP LO ME 

Rabbani et al. 

(2016) 
MINLP Single NO Det. (R,Q) AP BA ME 

Jindal and 

Solanki 

(2016) 

MINLP Single NO NO (R,Q) AP BA LA 

AmalNick, 

and 

Qorbanian 

(2017) 

MINLP Single NO Det. (R,Q) AP BA ME 

Díaz-Mateus 

et al. (2018) 
MINLP Single NO Det. (R,Q) AP BA ME 

This study MINLP Single PO EX (S-1,S) OPT BA ME 

 

3. Model Development 

3.1. Problem and notations definition 

A multi-echelon SC distribution system including one manufacturer, multiple DCs and 

multiple retailers is considered. Figure 1 shows the configuration of the proposed supply chain. 

The demand of retailers is stochastic with Poisson probability distribution function with regard 

to be independent of retailers’ demand from each other. The (S-1, S) inventory policy is taken 

into account for DCs. Unsatisfied demand will be considered as backordered. The input 

demand rate is equal to λ that is summation of Poisson rates of allocated retailers. To response 

the delivered demands those ones that received earlier have priority rather the older ones. An 

exponentially probability distribution function with the parameter μ has been considered for 

lead-time of manufacturers. It is assumed to continue serving the demands λ ≤ 𝜇. 

In this paper, a set of integrated strategic and tactical decisions are determined in order to 

minimize the total costs of the supply chain network design as follows.
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 Determining the number of open DCs. 

 Identifying the location of open DCs from a predefined set of potential locations. 

 Allocating the retailers to open DCs by considering single-sourcing concept. 

 Specifying the inventory policy of each open DC. 

Retailer

Open DC

Close DC

Manufacturer
  

Figure 1. The configuration of the proposed supply chain 

In the following, the notations of our proposed model are introduced. 

Sets 

K: Index for the set of potential DCs 

I: Index for the set of retailers 

Parameters 

Ck: Per unit purchase cost for each product from the manufacturer (∀ k ∈ K) 

πk: Per unit shortage cost of each product for DC k (∀ k ∈ K) 

Fk: Fixed cost of opening DC k 

Tki : Unit transportation cost from DC k to retailer i (∀ k ∈ K) and (∀ i ∈ I) 

Ak: Unit order cost for DC k (∀ k ∈ K) 

hk: Unit holding cost for DC k (∀ k ∈ K) 

𝜆𝑖
′:  Mean of annual demand for retailer i (∀ i ∈ I) 

μ: The stochastic lead-time for the manufacturer 

Decision variables 

zk: 1 if DC k is open, 0 otherwise (∀ k ∈ K) 

yki: 1 if retailer i is assigned to DC k, 0 otherwise (∀ k ∈ K) ( ∀ i ∈ I) 

Sk: Base stock level at DC k (∀ k ∈ K) 

𝜆𝑘:  Mean of annual demand at DC k (∀ k ∈ K)
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𝑂𝑅𝑘: The expected value of reorders at DC k (∀ k ∈ K) 

𝑀𝐼𝑘: The expected inventory level at DC k (∀ k ∈ K) 

𝑆𝐻𝐾: The expected value of backlogged demands at DC k (∀ k ∈ K) 

Using queuing approach in the proposed location-inventory model, the inventory policy has 

been characterized in sub-section 3.2. 
 

3.2. Inventory policy for each open DC 

To determine the inventory policy for each open DC, the number of reorders, the mean of 

inventory level and backlogged demands are obtained as follows. 

Let assume 𝑋𝑘(𝑡) denotes the level of inventory at time 𝑡 ≥ 0 for DC k. The process 
{𝑋𝑘(𝑡); 𝑡 ≥ 0} is a Markov process on the state space 𝛷𝑘 = {𝑆𝑘, 𝑆𝑘 −
1,… ,1,0, −1, −2,−3,… . }. Thus, the infinitesimal generator matrix is as Eq. (3.1). 

 

𝑄 =

[
 
 
 

𝜆𝑘 −𝜇

−𝜆𝑘 𝜆𝑘 + 𝜇 −𝜇

−𝜆𝑘 𝜆𝑘 + 𝜇 −𝜇 ⋯

⋮ ⋱ ]
 
 
 
 (3.1) 

 

Also, let to consider that 𝜋 = (𝜋𝑠𝑘
, 𝜋𝑠𝑘−1

, 𝜋𝑠𝑘−2
, … 𝜋𝑗𝑘

, …) denotes the stationary probability 

vector for the state space components. Then, Eq. (3.2) must be satisfied by the stationary 

probability vector 𝜋. 

𝜋𝑄 = 0 (3.2) 

Meanwhile, regarding to that  ∑ 𝜋𝑗𝑘𝑗𝑘∈ 𝛷𝑘
= 1, the stationary probabilities can be computed by 

Eqs. (3.3) and (3.4). 

π𝑗𝑘
= (1 −

𝜆𝑘

𝜇
) (

𝜆𝑘

𝜇
)

𝑆𝑘−𝑗𝑘

                                         𝑗 ≤ 𝑆𝑘 − 1 (3.3) 

𝜋𝑆𝑘
= 1 −

𝜆𝑘

𝜇
 (3.4) 

Given the (S-1, S) inventory policy and the shortage of demands are backlogged, the number 

of reorders can be obtained by Eq. (3.5). 

𝑂𝑅𝑘 = 𝜆𝑘 (3.5) 

The steady state of expected inventory level is determined by Eqs. (3.6) and (3.7). 

𝑀𝐼𝑘= ∑𝑗 × 𝜋𝑗𝑘

𝑆𝑘

𝑗=0

, (3.6) 



Queuing approach and optimal inventory decisions in a stochastic supply chain network design 

 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol.6, No.2  Page 172 

𝑀𝐼𝑘 =
(𝜆𝑘

𝑆𝑘+1 − 𝜆𝑘𝜇
𝑆𝑘 − 𝜆𝑘𝑆𝑘𝜇

𝑆𝑘 + 𝑆𝑘𝜇
𝑆𝑘+1)𝜇 (

𝜆𝑘

𝜇 )
𝑠𝑘

(−1 +
𝜆𝑘

𝜇 )

𝜆𝐾
𝑆𝑘(𝜆𝑘 − 𝜇)2

  (3.7) 

Besides, the retailers may confront shortage when the level of inventory is zero or smaller. 

Thereupon, the value of expected backlogged demands in each open DC is given by Eq. (3.8). 

𝑆𝐻𝐾 = 𝜆𝑘 ∑ 𝜋𝑗𝑘

𝑗𝑘≤0

= 𝜆𝑘 (
𝜆𝑘

𝜇
)

𝑆𝑘

 
(3.8)    

3.3. Mathematical formulation 

According to the defined notations, our proposed location-inventory problem can be 

formulated as follows. 

𝑀𝑖𝑛 = ∑ 𝐹𝑘𝑧𝑘

𝑘∈K 

+ ∑ ∑𝑇𝑘𝑖

i ∈ Ik ∈ K

𝑦𝑘𝑖𝜆𝑖
′ 

 

+∑ℎ𝑘𝑧𝑘

[
 
 
 𝜇 (

𝜆𝑘

𝜇 )
𝑆𝑘

(−1 +
𝜆𝑘

𝜇 ) (𝜆𝐾
𝑆𝑘+1 − 𝜆𝐾𝜇𝑆𝑘 − 𝜆𝑘𝑆𝑘𝜇

𝑆𝑘 + 𝑆𝑘𝜇
𝑆𝑘+1)

𝜆𝑘
𝑆𝑘(𝜆𝑘 − 𝜇)2

]
 
 
 

𝑘

 

 

+𝜋𝑘𝑧𝑘 [𝜆𝑘 (
𝜆𝑘

𝜇
)

𝑆𝑘

] + (𝐴𝑘 + 𝐶𝑘)𝑧𝑘𝜆𝑘 

(3.9) 

∑𝑦𝑘𝑖 = 1

𝑘

 ∀𝑖 ∈ 𝐼 (3.10) 

𝑦𝑘𝑖 ≤ 𝑧𝑘 ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾 (3.11) 

∑𝜆𝑖
′𝑦𝑘𝑖 =

𝑖

𝜆𝑘  ∀𝑘 ∈ 𝐾 (3.12) 

𝜆𝑘  ≤ 𝜇 ∀𝑘 ∈ 𝐾 (3.13) 
𝑦𝑘𝑖, 𝑧𝑘  ∈ {0,1} ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾 (3.14) 
𝑆𝑘  ∈ {0,1, … } ∀𝑘 ∈ 𝐾 (3.15) 

The Eq. (3.9) as the objective function minimizes the costs. The first term computes the fixed 

cost of opening DCs. The second term shows the transportation cost from DCs to the retailers 

and the last term illustrates the expected inventory costs including holding, shortage, ordering 

and purchase costs.  

Eq. (3.10) shows single-sourcing for retailers. Eq. (3.11) demonstrates the assignment 

constraint for DCs and retailers and provides the opening condition for DCs. Eq. (3.12) shows 

the demand rate of each DC which is obtained by the summation of demand rate of assigned 

retailers. Eq. (3.13) guarantees the stability of the inventory system to avoid the shortage. Eqs. 

(3.14) and (3.15) are binary and integer variables, respectively. 

4. Solution Approach 

Our proposed model is defined as well-known capacitated facility location problems which are 

known as NP-hard problems (Mirchandani and Francis, 1990). Therefore, exact solution 
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methods are mainly inefficient to solve the proposed problem. Thus, to solve our model, two 

meta-heuristic algorithms which have been successfully used to tackle complex models in the 

literature of integrated location-inventory problems are implemented (e.g., Ahmadi Javid and 

Azad (2010) and Nekooghadirli et al. (2014)). Here, the convexity of the objective function is 

proved in Proposition 1 and then the optimal value of the base stock level is calculated as a 

closed-form expression in Proposition 2. 

Proposition 1. The objective function of our proposed model is strictly convex considering the 

base stock level variables are continues. 

Proof. The linear parts of the objective function are convex. Therefore, only the convexity of 

nonlinear parts of the objective function needs to be proved. The nonlinear parts are presented 

by Eq. (4.1). 

𝑔(𝑆1, 𝑆2, … , 𝑆𝑛)

= ∑ℎ𝑘𝑧𝑘

[
 
 
 𝜇 (

𝜆𝑘

𝜇 )
𝑆𝑘

(−1 +
𝜆𝑘

𝜇 ) (𝜆𝑘
𝑆𝑘+1 − 𝜆𝑘𝜇

𝑆𝑘 − 𝜆𝑘𝑆𝑘𝜇
𝑆𝑘 + 𝑆𝑘𝜇

𝑆𝑘+1)

𝜆𝑘
𝑆𝑘(𝜆𝑘 − 𝜇)2

]
 
 
 

𝑘

 

        +𝜋𝑘𝑧𝑘 [𝜆𝐾 (
𝜆𝑘

𝜇
)

𝑆𝑘

] 

(4.1) 

 

Eq. (4.2) shows the second derivative of g. 

d2𝑔(𝑆1, 𝑆2, … , 𝑆𝑛)

𝑑𝑆𝑘
2  

 

(4.2) 

𝛼𝑘 = 𝜆𝑘 ∗ (
𝜆𝑘

𝜇
)

𝑆𝑘

∗ 𝜋𝑘 ∗ 𝑧𝑘 ∗ log2 (
𝜆𝑘

𝜇
) +

ℎ𝑘 ∗ 𝑧𝑘 ∗ (
𝜆𝑘

𝜇 )
𝑆𝑘+1

∗ log2 (
𝜆𝑘

𝜇 )

1 − (
𝜆𝑘

𝜇 )
 

 

Since 
𝜆𝑘

𝜇
 < 1 and the input parameters (i.e., 𝜋𝑘 , ℎ𝑘) are non-negative, 𝛼𝑘 𝑘 = 1,2,3… , 𝑛  are 

greater than zero. In addition the Hessian matrix can be obtained as Eq. (4.3):  

𝐻 =

1
2
⋮
𝑘
⋮
𝑛 [

 
 
 
 
 
𝛼1 0 0 0 0 0
0 𝛼2 ⋯ 0 0 ⋮
0 ⋮ ⋱ 0 0 0
0 0 0 𝛼𝑘 ⋯ 0
0 0 0 ⋮ ⋱ 0
0 0 0 0 0 𝛼𝑛]

 
 
 
 
 

 (4.3) 

 

Regarding to 𝛼𝑘 k=1,2,3…,n are greater than zero, the aforementioned matrix is positive-

definite matrix. Accordingly, the objective function is strictly convex.  

Proposition 2. For an open DC, the optimal value of the base stock level is equal to [𝑆𝑘
∗
] 

or [𝑆𝑘
∗
] + 1, where, [∎] operator rounds a real number down to the previous integer. The 

closed-form for 𝑆𝑘
∗ is obtained from Eq. (4.4).

https://en.wikipedia.org/wiki/Rounding
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𝑆𝑘
∗ =

log 

(

 
 
 
 
 

−ℎ𝑘

𝜆𝑘 ∗ 𝜋𝑘 ∗ 𝑙𝑜𝑔 (
𝜆𝑘

𝜇 ) −
ℎ𝑗 ∗ (

𝜆𝑘

𝜇 ) ∗ 𝑙𝑜𝑔 (
𝜆𝑘

𝜇 )

(
𝜆𝑘

𝜇
) − 1 )

 
 
 
 
 

log (
𝜆𝑘

𝜇 )
 

(4.4) 

Proof. Suppose that 𝑆𝑘 is a continuous variable. Due to the convexity of the objective function 

(please refer to Proposition 1) the optimal value for the base stock level will be calculated by 

Eq. (4.5). 

D 𝑜𝑏𝑗(𝑆1, 𝑆2, … , 𝑆𝑛)

𝑑𝑆𝑘
= 0     (4.5) 

 By replacing 𝑧𝑘 with 1 for open DCs, Eq. (4.4) will be derived. Since the strictly convexity of 

the objective function (Proposition 1) and being integer the values of the base stock levels for 

open DCs (see Eq. (3.15)), the best value for the base stock levels can be equal to [𝑆𝑘
∗
] or [𝑆𝑘

∗
] +

1.   

4.1. The encoding schema and evaluation procedures 

As representation of the solution method for genotype space, the solutions of algorithms are 

encoded by arrays with the length of n, which n represents the number of retailers. Each cell of 

the array represents the corresponding DC that supplies the demands of related retailer. Figure 

2 illustrates the encoding schema for the solving procedure. As it can be seen, DC 3 supplies 

the retailers 1 and 3 and DC 2 supplies the retailer 2. 

DCs 3 2 3 … 1 2 

Retailers 1 2 3 … n-1 n 

Figure 2. The encoding schema 

Noteworthy, by determining this array, the location-allocation decisions (i.e., opened DCs and 

assignments of retailers) are specified. Therefore, we can obtain the pertaining fixed cost of 

locating DCs and the transportation cost from DCs to the retailers. Nonetheless, in order to 

obtain total costs for evaluating the solution in the proposed algorithms, it is required that 

inventory decisions of opened DCs are specified too. According to Proposition 2, the optimal 

inventory policy can be determine for open DCs and consequently we able to obtain the total 

costs in order to assess the corresponding solution in the proposed algorithms.  

4.2. Simulated annealing 

Simulated annealing is one of the most famous meta-heuristic techniques that its original idea 

has been inspired from the annealing process of solids and it has been designed to reach a good 

solution, not necessarily optimum solution within a reasonable computational time. SA has 

been introduced by Kirkpatrick et al. (1983) as a stochastic algorithm that escapes from local 

optima by accepting worse solutions with an acceptance probability with regard to freezing 

rule. The procedure of the algorithm can be implemented by the following steps. 

1. Generate an initial solution and then determine the configuration of neighborhood 

generation.
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2. Compare the values of the fitness functions of current solution E(c) and new 

neighborhood solution E(n). New neighborhood solution E(n) will be accepted with 

better fitness function value or if E(n) is worse than E(c), the neighbor solution will be 

accepted due to the Boltzmann probability distribution 𝑒
−∆𝐸

𝑇 , where T is the temperature 

of the current iteration. 

3. Decrease the temperature T when the equilibrium process is met.  

4. Terminate the algorithm when stopping criteria are satisfied.  

In this paper, we have used two neighborhood structures. In the first structure, algorithm 

randomly selects one retailer and one DC (not necessarily to be open in current solution) and 

then it assigns them to each other. The second structure, the algorithm randomly selects two 

retailers and then it exchanges their DCs. 

The algorithm stops due to different termination criteria such as reaching the minimum 

temperature, time limitation, no improvement during specific iterations, running algorithm for 

constant iteration and a set of above conditions. To solve the proposed model, we have 

considered a set of two conditions including no improvement during specific iterations and 

reaching the minimum temperature. 

The parameters used in SA are defined as following. 

𝑁𝐼𝑆𝐴−𝑠𝑢𝑏 Maximum number of solutions with no improvement in the sub-loop 

𝑁𝐼𝑆𝐴−𝑚𝑎𝑖𝑛 Maximum number of solutions with no improvement in the main loop 

𝑁𝐼𝑠𝑢𝑏 The counter for solutions with no improvement in the sub- loop 

𝑁𝐼𝑚𝑎𝑖𝑛 The counter for solutions with no improvement in the main loop 

𝑆𝐿0 Initial solution 

𝑆𝐿 Current solution 

𝑆𝐿´ Solution selected in the neighborhood of 𝑆𝐿 

𝑆𝐿𝑏𝑒𝑠𝑡 Best solution 

𝑂𝑏𝑗(𝑆𝐿) The objective function of solution 𝑆𝐿 

𝐶𝑅 Cooling rate 

𝑇𝑀0 Initial temperature 

𝑇𝑀𝑓 Final temperature 

𝑇𝑀 Current temperature 

  

The pseudo-code of SA algorithm has been demonstrated in Figure 3.  
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Input: 𝑇𝑀0, 𝑇𝑀𝑓 , 𝑁𝐼𝑆𝐴−𝑠𝑢𝑏 , 𝑁𝐼𝑆𝐴−𝑚𝑎𝑖𝑛 , 𝐶𝑅. 
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑆𝐿0 randomly 
𝑆𝐿𝑏𝑒𝑠𝑡 = 𝑆𝐿0, 𝑆𝐿 = 𝑆𝐿0, 𝑇𝑀 = 𝑇𝑀𝑓 , 𝑁𝐼𝑚𝑎𝑖𝑛 = 0 

  𝑾𝒉𝒊𝒍𝒆  (𝑁𝐼𝑚𝑎𝑖𝑛 ≤ 𝑁𝐼𝑆𝐴−𝑚𝑎𝑖𝑛  𝑎𝑛𝑑 𝑇𝑀 ≥ 𝑇𝑀𝑓) 𝒅𝒐 

       𝑁𝐼𝑠𝑢𝑏 = 0 
       𝐵𝐿 = 𝐹𝑎𝑙𝑠𝑒 
              𝑾𝒉𝒊𝒍𝒆 (𝑁𝐼𝑠𝑢𝑏 ≤ 𝑁𝐼𝑆𝐴−𝑠𝑢𝑏 ) 𝒅𝒐 
                   𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑆𝐿′ 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑜𝑓 𝑆𝐿 
                   ∆𝐸 = 𝑂𝑏𝑗(𝑆𝐿′) − 𝑂𝑏𝑗(𝑆𝐿); 
                       𝑰𝒇∆𝐸 ≤  0 𝑻𝒉𝒆𝒏 
                            𝑆𝐿 = 𝑆𝐿′ ,  
                                𝑰𝒇  𝑂𝑏𝑗(𝑆𝐿) < 𝑂𝑏𝑗(𝑆𝐿𝑏𝑒𝑠𝑡)𝑻𝒉𝒆𝒏 
                                     𝑆𝐿𝑏𝑒𝑠𝑡 =  𝑆𝐿  
                                     𝑁𝐼𝑠𝑢𝑏 = 0 

                                     𝐵𝐿 = 𝑇𝑟𝑢𝑒 

                                 𝑬𝒍𝒔𝒆 
                                      𝑁𝐼𝑠𝑢𝑏 = 𝑁𝐼𝑠𝑢𝑏 + 1 

                               𝑬𝒏𝒅 𝒊𝒇 
                        𝑬𝒍𝒔𝒆  
                           𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑟𝑎 → 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 (0,1) 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 

                             𝑰𝒇 𝑟𝑎 < 𝑒
−∆𝐸
𝑇 𝑻𝒉𝒆𝒏  

                                  𝑆𝐿 = 𝑆𝐿′  
                            𝑬𝒏𝒅 𝒊𝒇 
                     𝑬𝒏𝒅 𝒊𝒇 
             𝑬𝒏𝒅  𝑾𝒉𝒊𝒍𝒆 
      𝑇𝑀 = 𝐶𝑅 ∗ 𝑇𝑀 
           𝑰𝒇 𝐵𝐿 = 𝑇𝑟𝑢𝑒  𝒕𝒉𝒆𝒏 
                 𝑁𝐼𝑚𝑎𝑖𝑛 = 0 
          𝑬𝒍𝒔𝒆 
               𝑁𝐼𝑚𝑎𝑖𝑛 =  𝑁𝐼 + 1 
        𝑬𝒏𝒅 𝑰𝒇 

𝑬𝒏𝒅  𝑾𝒉𝒊𝒍𝒆 
Figure 3. The pseudocode of SA algorithm 

4.3. Genetic Algorithm 

Similar to SA, GA is a stochastic global search method so that the emergence of this algorithm 

was investigated in 1960s by Holland (1975). GA works based on the biological evolution 

behavior and reaches approximate optimal solutions after its main steps including parent 

selection, recombination, mutation and survivor selection. To select the individuals for next 

generation two methods can be taken into account. The first method is to eliminate all 

individuals in older generation and then, to exchange them with new individuals. The second 

one is to preserve some individuals in old generation with higher values of fitness function and 

then, to choose other individuals from the new generation. 

In our problem, we have generated initial population randomly. DCs and retailers selected 

randomly will be linked to each other. To select the parents, roulette wheel selection rule (see, 

Eiben and Smith (2003)) is used. Parents with better values of fitness function are selected to 

generate offspring.  

In order to develop new individuals from existing ones, crossover and mutation operators have 

been implemented. The crossover operator is used to create new pairs of offspring by combining 

a pair of parents. In our problem, the tournament selection method and one point crossover is 

used (see, Eiben and Smith (2003)). Mutation of each individual will be occurred due to the 

mutation probability Pm, and it will change the DC linked to a certain retailer. The probability 

of the mutation is calculated by Eq. (4.5).
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Pm = 1 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑡𝑎𝑖𝑙𝑒𝑟𝑠⁄  (4.5) 

Survivor selection or replacement procedure will be performed by Elitism method (see, Eiben 

and Smith (2003)). Finally, the algorithm will be terminated when no improvement in certain 

iterations occurs. 

The following parameters are used for GA algorithm. 
𝑁𝑀𝑜𝑟 The number of members in the origin population 
𝑁𝑀𝑐ℎ The number of members in the children population 
𝑁𝑀𝑚𝑢 The number of members in the mutation population 
𝑆𝑇 Maximum number of solutions with no improvement  

𝑁𝐼 The counter for solutions with no improvement 

𝑆𝐿𝑏𝑒𝑠𝑡 Best solution  

𝑆𝐿𝑖𝑏𝑒 Best solution in each iteration 

𝑂𝑏𝑗(𝑆𝐿) The objective function of the solution 𝑆𝐿 
𝑃𝑟𝐶𝑟 The probability of crossover 
𝑃𝑟𝑀𝑢 The probability of mutation 

 In this paper, three populations including origin, children and mutation are considered, where 

the numbers of their members are 𝑁𝑝𝑜𝑝,𝑁𝑐ℎ and 𝑁𝑚𝑢, respectively. Parameters 𝑁𝑐ℎ and 𝑁𝑚𝑢 

are equal to 2 × [
𝑁𝑝𝑜𝑝×𝑃𝑟𝐶𝑟

2
] and [𝑁𝑝𝑜𝑝 × 𝑃𝑟𝑀𝑢]respectively, where [•] rounds a real number 

down to the previous integer. 

The pseudo-code of GA algorithm is illustrated in Figure 4. 

Input: 𝑁𝑀𝑜𝑟, 𝑃𝑟𝐶𝑟 , 𝑃𝑟𝑀𝑢 , 𝑆𝑇.  
Generate 𝑁𝑀𝑜𝑟 solutions randomly to build the origin population. 

Evaluate candidate solutions of the origin population. 

Find the best solution in the origin population. Name it 𝑆𝐿𝑏𝑒𝑠𝑡 . 

𝑁𝐼 = 0 

    𝑾𝒉𝒊𝒍𝒆 (𝑁𝐼 ≤  𝑆𝑇) 𝒅𝒐 

       𝐼 = 1 

           𝑾𝒉𝒊𝒍𝒆 (𝐼 ≤  
𝑁𝑀𝑐ℎ

2
)  𝒅𝒐 

      Select a pair of parents from the origin population and recombine them  

      recombine the selected parents and create offsprings 

       Insert the created offsprings in the children population 

                𝐼 = 𝐼 + 1 

                𝑬𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

    𝐼 = 1 

          𝑾𝒉𝒊𝒍𝒆 (𝐼 ≤  𝑁𝑀𝑚𝑢) 𝒅𝒐 

              Select a parent from the origin population   
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               Modify the selected parent  

            Insert the modified parent in the mutation population 

            𝐼 = 𝐼 + 1 

           𝑬𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

  Merge the origin, children and mutation populations and generate a new population. 

  Evaluate  solutions of the generated population. 
  Find the best solution in the generated population. Name it SLibe 

            𝑰𝒇  𝑂𝑏𝑗(𝑆𝐿𝑖𝑏𝑒) < 𝑂𝑏𝑗(𝑆𝐿𝐵𝑒𝑠𝑡) 𝑻𝒉𝒆𝒏 

               𝑆𝐿𝐵𝑒𝑠𝑡 = 𝑆𝐿𝑖𝑏𝑒  

              𝑁𝐼 = 0 

          𝑬𝒍𝒔𝒆 

             𝑁𝐼 = 𝑁𝐼 + 1 

          𝑬𝒏𝒅 𝒊𝒇 

    𝑬𝒏𝒅 𝑾𝒉𝒊𝒍𝒆 

Figure 4. The Pseudocode of GA algorithm 

4.4. Parameter setting 

Parameter setting has significant impacts on the performance of the meta-heuristic algorithms. 

Therefore, we implement Taguchi method in order to tune the parameters of the proposed 

algorithms. Taguchi is a powerful method for robust parameter design which is based on 

reducing the effect of causes of variation and improving the quality of solutions. This method 

provides analysis of different parameters with no need of high amount of experiments. Taguchi 

takes advantages from two significant tools, the signal-to-noise ratio (S/NR) and orthogonal 

array (OA). S/NR is a measure that intends to mix information about the variance and the mean. 

Variety of response, i.e. the nominal or target value, is measured by S/NR under different noise 

conditions. By using S/NR, control factors that diminish variability are determined and then 

those control factors that move the mean to target with small or no effect on the S/NR will be 

specified. In Taguchi method, OA is implemented in order to evaluate the impact of many 

parameters on the performance of the algorithm in a compressed set of experiments. The 

suitable OA can be chosen by determining the number of parameters and the number of levels. 

Accordingly, first the concerning parameters are specified and then their levels of varying will 

be determined. The levels of a parameter usually consisting of the minimum, maximum, and 

current values can be determined by an in-depth knowing of the process. For each parameter, 

when the difference between the maximum and minimum is large, more levels need to test and 

as the range of a parameter is small, fewer values can be tested. For more detailed insights, 

interested readers can refer to Taguchi et al. (2000). 

In this research, four factors including 𝑇𝑀0, 𝐶𝑅, 𝑁𝐼𝑆𝐴−𝑠𝑢𝑏 and 𝑁𝐼𝑆𝐴−𝑚𝑎𝑖𝑛 are taken into 

account for SA and each factor are studied in three levels. Table 2 shows the levels for SA 

factors. Additionally, three factors including 𝑁𝑀𝑜𝑟, 𝑃𝑟𝐶𝑟 and 𝑆𝑇 are considered for GA that 

the concerning levels are given in Table 3. Using MINITAB 16, we have first created Taguchi 

designs for the solving algorithms and then the experiments are run based on the created 

designs.  For both algorithms, 𝐿9 OA have been chosen. Design factors for SA and GA are 

displayed in Tables 4 and 5, respectively. After analyzing the performed experiments by 

Taguchi method, the appropriate level of each factor can be obtained. 
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Here, that level that increases the S/NR measure is selected. Figures 5 and 6 show the average 

S/NR for considered factors of algorithms. It can be observed that the best values for SA 

factors, i.e.  𝑇𝑀0, 𝐶𝑅, 𝑁𝐼𝑆𝐴−𝑠𝑢𝑏 and 𝑁𝐼𝑆𝐴−𝑚𝑎𝑖𝑛,  are 950, 0.95, 150 and 300, respectively. 

Besides, for GA the best values of 𝑁𝑀𝑜𝑟, 𝑃𝑟𝐶𝑟 and 𝑆𝑇 are 140, 0.8 and 1000, respectively.  

Table 2. Levels of SA factors 

Levels 𝑇𝑀0 𝐶𝑅 𝑁𝐼𝑆𝐴−𝑠𝑢𝑏 𝑁𝐼𝑆𝐴−𝑚𝑎𝑖𝑛 

Level 1 (low) 850 0.9 50 100 

Level 2 (medium) 950 0.95 100 200 

Level 3 (large) 1050 0.99 150 300 

 
Table 3. Levels of GA factors 

Levels 𝑁𝑀𝑜𝑟 𝑃𝑟𝐶𝑟  𝑆𝑇 

Level 1 (low) 100 0.6 300 

Level 2 (medium) 120 0.7 750 

Level 3 (large) 140 0.8 1000 

 
Table 4. Taguchi designs for SA 

Design 𝑇𝑀0 𝐶𝑅 𝑁𝐼𝑆𝐴−𝑠𝑢𝑏 𝑁𝐼𝑆𝐴−𝑚𝑎𝑖𝑛 

1 850 0.9 50 100 

2 850 0.95 100 200 

3 850 0.99 150 300 

4 950 0.9 100 300 

5 950 0.95 150 100 

6 950 0.99 50 200 

7 1050 0.9 150 200 

8 1050 0.95 50 300 

9 1050 0.99 100 100 

  
Table 5. Taguchi designs for GA 

Design 𝑁𝑀𝑜𝑟 𝑃𝑟𝐶𝑟  𝑆𝑇 

1 100 0.6 800 

2 100 0.7 900 

3 100 0.8 1000 

4 120 0.6 900 

5 120 0.7 1000 

6 120 0.8 800 

7 140 0.6 1000 

8 140 0.7 800 

9 140 0.8 900 
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Figure 5. S/NR ratio plot for SA factors 
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Figure 6. S/NR ratio plot for GA factors 
 

5. Computational Results 

In this section, the performance of proposed model and meta-heuristic algorithms are evaluated 

in terms of the quality of the solutions and computation time for the numerical experiments. 

Therefore, both solving algorithms are coded in Java programming language and they are run 

on an Intel(R) (TM) 2.50Hz CPU with 4G memory. The parameters of the model have been 

generated randomly and they are illustrated in Table 6. We generated three sizes test problems 

consisting of small, medium and large sizes. In small instances, the performance of the solving 

algorithms has been compared with General Algebraic Modeling System (GAMS) – version 

24.1 - where the BARON solver has been implemented. The obtained results such as objective 

function, CPU Time and gaps between the algorithms and GAMS are reported in Table 7. The 

gap is calculated using Eq. (5.1). 

𝐺𝑎𝑝(%) =
𝑜𝑏𝑗𝐺𝑆 − 𝑜𝑏𝑗𝑃𝐴

𝑜𝑏𝑗𝐺𝑆
⤬ 100 

(5.1) 

Where, 𝑜𝑏𝑗𝐺𝑆 and 𝑜𝑏𝑗𝑃𝐴 are the value of objective functions obtained by GAMS and the related 

meta-heuristic algorithm, respectively. In other words, Gap1 and Gap2 are the representatives 

of GA and SA, respectively. For instances 1 and 2, we have observed that SA and GA are able 

to obtain same solutions with those obtained by GAMS within a reasonable time. Likewise, 

our algorithms find the better solutions for instances 4 and 5 with considerably less time than 

the BARON’s run time. Thus, it can be concluded that the solving algorithms perform better 

than GAMS solver. The algorithms have been run for medium and large instances and the 

results including the values of objective function, CPU time and the gap are shown in Table 8. 

The gap of solving algorithms is calculated according to Eq. (5.2).  

𝐺𝑎𝑝(%) =
𝑜𝑏𝑗𝐺𝐴 − 𝑜𝑏𝑗𝑆𝐴

𝑜𝑏𝑗𝐺𝐴
⤬ 100 

(5.2) 

Where, 𝑜𝑏𝑗𝐺𝐴 and 𝑜𝑏𝑗𝑆𝐴 are the value of objective functions for GA and SA, respectively. As 

the numerical example shows, the quality of solutions of GA is better than those ones obtained 

by SA, where the maximum gap is 0.853%. On the other hand, in term of elapsed times, SA 

performs better. Furthermore, elapsed times for both proposed algorithms are increased by 

increasing the sizes of instances, as expected.
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Table 6. The values of the parameters. 

Parameter 𝑐𝑘 𝐴𝑘 ℎ𝑘 𝜋𝑘 𝐹𝑘 𝜆𝑖 𝑇𝑘𝑖  

Range 𝑈[35,60] 𝑈[5,15] 𝑈[25,40] 𝑈[65,90] 𝑈[4500,6500] 𝑈[550,700] [15 25] 

 

Table 7. Computational results for small instances. 

 NO. 

# # GAMS GA SA   

Retailer 
Potential 
DCs 

Cost ($) 
CPU Time 
(Sec) 

Cost($) CPU Time(Sec) Cost($) 
CPU 
Time(Sec) 

Gap1 

(%) 
Gap2 

(%) 

S
m

al
l 

1 4 2 182644 1041 182644 0.037 182644 0.023 0 0 

2 10 4 476768 3461 476768 0.094 476768 0.039 0 0 

3 15 6 672898 8751 672652 0.152 672659 0.039 0.036 0.035 

4 20 8 859999 11432 858623 0.179 858651 0.065 0.160 0.156 

 

Table 8. Computational results for medium and large instances. 

 GA 
 

SA  

 NO. 
# 

Retailer 

# 

Potential 
DCs 

Cost($) 
CPU 

Time(Sec) 

Gap GA- 

GAMS (%) Cost($) 

CPU 

Time 
(Sec) 

Gap SA- 

GAMS 
(%) 

Gap GA- 

SA (%) 
 

M
e
d

iu
m

 

5 25 10 1069945 1.176 0.345 1069945 2.34 0.345 0.0 

6 35 12 1529056 1.323 0.384 1530294 2.868 0.303 -0.081 

7 45 15 1910099 1.528 0.551 1912923 4.99 0.404 -0.148 

8 55 17 2246673 2.562 0.592 2249941 6.15 0.447 -0.145 

9 70 19 2932897 3.443 0.660 2949496 12.59 0.098 -0.566 

L
a
r
g
e 

10 80 21 3194120 13.37 1.224 3197255 12.26 1.127 -0.098 

11 95 28 3671902 21.96 1.551 3684850 16.09 1.204 -0.353 

12 100 35 4067175 25.99 1.990 4073398 25.34 1.840 -0.153 

13 110 40 4255463 36.625 2.045 4258169 27.543 1.983 -0.063 

14 140 45 5548268 51.12 2.511 5586842 30.215 1.833 -0.695 

15 150 50 5833398 85.43 3.192 5852301 35.01 2.878 -0.324 

 

5.1. Sensitivity analysis  

In this section, the impact of parameters on the number of open DCs, the objective function 

and the base stock level is investigated. 

5.1.1. The number of open DCs 

The effects of the value changing of µ on the number of open DCs and the objective function 

for two data sets, 10×25 and 21×80 (n×m means that the test problems include n potential DCs 

and m retailers), are investigated and the results are reported in Table 9. It can be inferred from 

Table 9 that the more the value of µ increases, the more the number of open DCs decreases. 

Because by increasing the value of µ, the expected lead-time decreases and consequently the 

manufacturers can provide the ordered products for open DCs in a shorter time. Thus, the 

shortages of each open DC decreases and more demands can be met. Therefore, the SC tends 

to reduce the number of open DCs in order to decrease the annual fixed cost of locating DCs. 

Also, it can be observed that the more the value of µ increases, the more the objective function 

decreases. This fact is consistent to the findings of Sadjadi et al. (2016). Table 10 shows the 

impacts of the demand rates on the number of open DCs and the value of the objective function. 
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It can be concluded from Table 10 that the more the demand rates of retailers increases, the 

more open DCs to meet the demands needs in order to decrease the shortage cost. Furthermore, 

increasing the values of demand rates enlarges the total costs of SC including the fixed cost of 

locating DCs, the transportation cost from DCs to retailers and the annual inventory costs. 

Table 9. The effects of the value changing of µ on the number of open DCs and the objective function. 

 
Test problems with 10 potential DCs and 25 

retailers 

Test problems with 21 potential DCs and 

80 retailers 

The value of µ # open DCs Cost($) # open DCs Cost($) 

2000 9 1135738 21 3678297 

3000 7 1089615 18 3470915 

4000 6 1079730 16 3322724 

5000 6 1069991 16 3196149 

6000 6 1065491 16 3084758 

 
Table 10. The effects of demand rates on the number of open DCs and the objective function. 

 
Test problem with 10 potential DCs 

and 25 retailers 

Test problem with 21 potential DCs 

and 80 retailers 

The mean of annual 

demand 
# open DCs Cost($) # open DCs Cost($) 

2000 4 701792.8 5 1214401 

3000 6 1049009 9 2474990 

4000 6 1396694 13 3777726 

5000 7 1748224 15 5101892 

6000 8 2107352 21 6480549 

 

5.1.2. Base stock 

In his research, we have obtained the optimal quantity of base stock level. Here, we have 

surveyed the impacts of service rate and demand rate on the base stock level. For this sake, we 

have assumed h=30, 𝜋 =75, 𝜆 =445 and µ=610. The relationship between the demand rate and 

base stock level is pictured by Figure 8. It can be concluded from Figure 8 that the more the 

demand rates of retailers increase, the more the base stock level enlarges. Its reason is due to 

increasing the probability of shortage and the value of demand rate and consequently the base 

stock level will enlarge in order to reduce the impact of confronting with shortages.  

 
Figure 8. Sensitivity analysis of the base stock level with respect to changes of demand rate

0

2

4

6

8

10

12

14

16

4
4
5

4
5
5

4
6
5

4
7
5

4
8
5

4
9
5

5
0
5

5
1
5

5
2
5

5
3
5

5
4
5

5
5
5

5
6
5

5
7
5

5
8
5

5
9
5

6
0
5

6
1
5

6
2
5

6
3
5

6
4
5

6
5
5

6
6
5

6
7
5

6
8
5

6
9
5

B
as

e 
st

o
ck

 l
ev

el

µ



Queuing approach and optimal inventory decisions in a stochastic supply chain network design 

 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol.6, No.2  Page 184 

6. Conclusion and Future Research 

In this paper, a multi-echelon stochastic SC network design problem in order to minimize the 

total expected location, inventory and transportation costs was investigated. To bring more 

reality to the proposed model, the demand and lead-time were assumed to be hemmed in by 

uncertainty. In an attempt to tackle the proposed supply chain network design problem, a two-

phase approach based on queuing and optimization models was devised. Exploiting the 

queuing approach, the first phase captured the inherent uncertainty of parameters. In the second 

phase, a mixed-integer nonlinear model was employed to formulate the proposed supply chain 

network design problem. As such, in the light of the concerned problem was NP-hard, two 

meta-heuristic algorithms were devised to solve the instances in small, medium and large sizes 

within a reasonable time. Results endorsed high efficiency and effectiveness of the solving 

algorithms in comparison with GAMS solver. Meanwhile, we proved the convexity of the 

objective function and achieved the optimal value for the base stock level as a closed-form.  

Various experiments were conducted through which appealing insights were reached. For 

example, we showed the solving algorithms can solve the proposed problem in efficient ways. 

An another interesting result was that as the value of µ increases, the expected lead-time 

decreases and consequently the manufacturers can provide the ordered products for open DCs 

in a shorter time. As such, with increasing the demand rate of retailers, more open DCs are 

needed in order to decrease the shortage costs. 

For future research, different areas to develop can be accounted as follows. 1) Developing the 

problem as a multi-product and multi-period model. 2) Utilizing the exact methods to solve the 

problem. 3) Taking into account multiple inventory policies in DCs and 4) Bringing the 

concepts of reliability into the model.  
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