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Abstract 
The Cellular Manufacturing System (CMS) is one of the most efficient systems for production environments with high volume 
and product variety which takes advantage of group technology. In the cellular production system, similar parts called part 
families are assigned to a production cell having similar production methods, and the needed machines are dedicated to cells. 
Determining part families and allocating the necessary machines to the production cell is known as the Cell Formation Problem 
(CFP) which is known as an NP-Hard problem. Safaei and Tavakkoli-Moghaddam (2009a) proposed a model that is widely used 
in literature which suffers some killer weaknesses highly affecting subsequent researches. In this paper, the mentioned model is 
modified and revised to fix these major issues.  Besides, due to the NP-Hard nature of the problem, a meta-heuristic algorithm 
based on Gray Wolf Optimization (GWO) approach is also developed for solving the revised model on the sample examples and 
the results are compared. Simulation results indicated that the proposed method can reduce the total cost of the manufacturing 
system by 3% in comparison with the base model. Furthermore, simulation results of five sample problems indicate the better 
performance of the proposed method comparing with Lingo and PSO. 
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1. Introduction 

Production planning is regarded as one of the significant operations in each production unit that may be carried 
out formally or informally. The purpose of production planning is the optimal use of factory resources. In recent 
years, due to intense competitions on providing new products and the wide and diverse tastes and demands of 
consumers, producers are turning to production systems that are more efficient, more economical, and less time-
consuming; in this way, they can meet the demands of the consumers and the market. The cellular production 
system is considered to be one of the production systems. This system provides an opportunity for the organiza-
tions so that they can be transformed from the traditional and operation-oriented mode to a product-oriented 
mode. In this system, products are sorted and categorized according to the similarities they may have in their 
production process or in their external form. Machinery and system resources are located in separate sections based 
on the needs and the roles they play in production operations. Each group or classification is referred to as a part 
family and production shops are known as cells. The success of such a production system depends on the follow-
ing: proper division of cells and the machines inside them, part family, and the precise planning of their tasks. A 
planning and control system should maintain complete coordination among cells, production sections, material 
transportation, and production volume.  
Traditional production systems are categorized into the following two groups in terms of equipment arrangement 
and the nature of planning and control tasks: flow systems and workshop systems. Flow systems are apt for the 
mass-production of a limited number of products and the workshop system is appropriate for producing diverse 
and various productions in small numbers. The cellular production system is a relatively new system for filling 
the gap and the working space between traditional flow systems and workshop systems, i.e., where the variation 
and demand for products are average.  
In this paper, the cell formation problem is considered and the base mathematical model proposed by Safaei and 
Tavakkoli-Moghaddam (2009a) is deeply studied. The investigation of the model shows the lack of some critical 
constraints and reporting incorrect results which none of the previous researches has noticed before. It means that 
the gap in the literature was wrongly covered and treatment for filling the gap is required.  So, this paper aims to 
refine the model and prevent the propagation of the mistake. At the first phase of this research, the base model is 
revised, modified, and completed, and at the second phase, a meta-heuristic algorithm based on the GWO ap-
proach is developed for solving the model and it is simulated in Matlab over the same test cases using a PC with 
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4.2 GHz processor and running Microsoft Windows 10. The simulation results indicate that the objective function 
is reduced by %3, and better cell formation is achieved. The proposed model is also solved by Lingo and imple-
mented using Particle Swarm Optimization (PSO) approach. The simulation results revealed the superiority of the 
proposed GWO obtaining a better objective function value. 
The rest of the paper is organized as follows: the literature review and related work are discussed in section 2; the 
mathematical model is described in section 3; the proposed GWO algorithm is stated in section 4; findings and 
simulation results are revealed in section 5, and the conclusions are stated in section 6. 

2. Literature review and related work 

Several research studies have been conducted on cellular production and its relevant issues and problems. Design-
ing cellular production systems encompasses a wide research domain. The majority of conducted studies in this 
area deal with cell formation procedures and issues. Effective factors and parameters on cell formation such as 
production planning of static and dynamic environments have led to the application of various methods for this 
stage of cell formation. Hence, several studies have been done on this issue. Identifying parts and allocating the 
required machinery to the production cell is considered as an NP-Hard problem (Ballakur and Steudel, 1987), 
hence, researchers have used various meta-heuristic methods for achieving optimal solutions. Some of these meth-
ods are discussed below.  
Ahi et al. (2009) considered and investigated the concept of multi-criteria decision-making; also, they proposed a 
two-stage method for the arrangement of cells, intra-cell layout of machines, and setting of cells as three funda-
mental specifications in designing CMS. Kioon et al. (2009) formulated a hybrid method in designing CMS as a 
mixed non-linear integer model along with production planning and system reconfiguration decisions which are 
based on alternative process routing, operation sequence, number of machines, machine capacity, and inter-cell 
movement of parts. Bajestani et al. (2009) proposed a mixed non-linear integer programming for the problem of 
dynamic cell arrangement based on machine flexibility, alternative operation scheme, and machine movement. 
The multi-objective purposes of the model were to reduce the total workload of the cells, reduce the costs of the 
machine investment, reduce inter-cell material movements and reduce machinery movement at the same time. By 
capitalizing on the similarities among production parts, Noktehdan et al. (2009) grouped parts into part families 
and allocated machines within cells. By doing so, they intended to minimize intracellular movements that were 
inspired by Genetic Algorithm grouping. 
Safaei and Tavakkoli-Moghaddam (2009b) proposed a multi-period cellular arrangement and production planning 
in a dynamic cellular production system. They aimed to reduce the cost of the machinery, reduce inter-cellular and 
intra-cellular movements, and reduce reconfiguration and subcontracting, and inventory maintenance. They in-
vestigated the impacts of production costs and outsourcing costs on cell reconfiguration. Kioon et al. (2009) carried 
out a study on the comprehensive designing of a cellular production system in a dynamic manner. By capitalizing 
on an integrated planning horizon, they focused on issues such as system rearrangement under dynamic condi-
tions, alternative routes, and production planning. Their objective function was to minimize intra-cellular and in-
ter-cellular transportation costs, material maintenance, internal production, re-arrangement, and variable and 
overhead costs of machines. They proposed a mixed integer programming model to achieve these objectives. Del-
joo et al. (2010) optimized the shortcomings of the previously proposed models. Then, they demonstrated that 
Lingo software cannot solve large-sized problems within a logical and acceptable time. However, the Genetic Al-
gorithm is capable of solving large-scale problems within an acceptable time in comparison with Lingo. 
Mahdavi et al. (2010) proposed an integer mathematical planning model for designing cellular production systems 
considering the following factors: multi-period production planning, dynamic system configuration, machine ca-
pacity, available time, and the allocation of workers. The rationale behind this model was to reduce the costs of 
cellular production systems. For solving the proposed model regarding large-sized problems, a heuristic approach 
was proposed. Aghajani et al. (2010) proposed one of the most exhaustive models with an integrated approach 
with respect to a content system for designing CMS. This model considers the following factors: dynamic cellular 
structure, alternative process route, part capability, the sequence of operations, machine capacity, operation costs, 
setup costs, cell size, and production planning. This model was designed in such a way that it selects the best route 
instead of the predetermined routes by the user.  
Rafiee et al. (2011) developed a comprehensive mathematical model for cell formation issues. This model was 
aimed at reducing cell formation costs such as production-related costs under dynamic conditions, costs of ma-
chinery capacity limitation by considering operation sequence, cell size limitation, and machinery breakdown. 
Next, the PSO algorithm was used for solving the proposed model and the obtained results were discussed. Rafiee 
and Godsi (2012) proposed a comprehensive mathematical model concerning cell formation issues under dynamic 
conditions. In this model, the first objective function was concerned with reducing the costs of machine investment, 
locating, variable machinery costs, intra/inter-cellular movement costs, overtime costs, and the cost of labor force 
movement between cells. On the other hand, the second objective function was concerned with enhancing labor 
productivity and efficiency. Then, the ACO meta-heuristic algorithm was proposed for solving the developed 
model.  
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Solimanpur et al. (2010) developed a meta-heuristic algorithm based on Ant Colony Optimization (ACO) method 
for solving the CFP to minimize inter-cellular movements and voids. Kia et al. (2012) proposed a mixed-integer 
non-linear programming model for designing the Dynamic Cellular Manufacturing System (DCMS). The purpose 
was to minimize intracellular and extra-cellular costs and the costs of buying machinery. Kiaa et al. (2016) devel-
oped a comprehensive mathematical model for dynamic cell formation where inter-cellular movement costs and 
the costs of moving in different factory floors were taken into consideration and solved the model using a Genetic 
Algorithm. Saeedi et al. (2010) used ACO, GA, and Simulated Annealing (SA) methods for solving the CFP and 
reported that the GA-based algorithm is more efficient in solving the proposed model. A comprehensive multi-
objective mathematical model for solving the CFP is developed by Saeedi et al. (2014). The proposed model con-
sidered machine redundancy, operation sequence, and alternative process routes. The objective function included 
four different objectives that were aggregated using the fuzzy goal programming approach. The authors developed 
a GA-based meta-heuristic algorithm for solving the model and compared the results with the NSGA-II approach 
(Saeedi et al., 2014). 
Hafezalkotob et al. (2015) proposed a hybrid meta-heuristic named DPSO-SA for solving the CFP. Doulabi et al. 
(2009) developed a two-phase algorithm for solving the CFM based on heuristic methods. The machine cells are 
created in the first phase, and the part-families are assigned in the second phase. Kheirkhah and Ghajari (2018) 
proposed a nonlinear mathematical programming model for solving the CFP and developed a three-phase algo-
rithm. Hamza and Jahed (2019) used the hamming distance concept for solving the CFP. Rajesh et al. (2018) pro-
posed a new approach for solving this problem considering the voids of the cells based on the rank order clustering 
method. 
Karim and Biswas (2015) performed a literature review on cellular manufacturing methods and categorized exist-
ing approaches into four different groups.  Dmytryshyn et al. (2018) proposed a novel approach based on progres-
sive modeling for solving the CFP and solved a benchmark problem and demonstrated the efficiency of their 
method. Zhu and Li (2018) developed an algorithm for solving the CFP using similarity coefficients assessment.  
Almonacid (2019) used a global search method for analyzing the solutions in a three-cell dataset. Ayough and 
Khorshidvand (2019) proposed a new model for solving the CFP. The authors consider a dynamic situation and 
demand uncertainty. They concluded that the PSO was more successful in obtaining the final solution than the 
Simulated Annealing (SA) approach.  Dehnavi et al. (2020) proposed a bi-objective mixed-integer programming 
model for solving the cell formation problem considering the transferring of the semi-manufactured parts between 
the machines by automated vehicles.   
Nagaraj et al. (2020) developed meta-heuristic algorithms based on butterfly and firefly approaches for enhancing 
cell formation. Golmohammadi et al. (2020) proposed a bi-objective mathematical model under fuzzy conditions 
for solving the cell formation problem. 
The review of the literature and considering the previous work referenced by authors, it can be concluded that 
none of the previous researches has distinguished the missing constraints and weak points of the based model 
widely referenced in most papers. Besides, the GWO approach has not been used for solving the cell formation 
problem before. 

3. The mathematical model 

The most significant features of the problems of dynamic cellular production systems are as follows: variable de-
mands, multiple paths, machine costs, tool consumption costs, material transportation costs, machine iteration, 
production planning costs, and the costs of controlling the degree of outsourcing parts. Here, by expanding the 
developed model by Safaei and Tavakkoli-Moghaddam (2009a), we proposed a non-linear integer model for the 
problem of integrating the production planning and dynamic cell formation. In this model, cost function consists 
of machinery-related costs (variable and fixed), transportation costs (intracellular and intercellular costs), pro-
duction planning costs (inventory maintenance, the cost of part shortage, and part outsourcing), and re-deploy-
ment costs (machinery setup).   

3.1. Model assumptions 

In this study, besides the common hypotheses of classic cellular production models, the following assumptions 
were investigated and examined:  
 

1. The demand for each part in each period is variable and known.  
2. Each part requires several operations for being processes on different machines.  
3. The fixed costs of a machine include overhead maintenance costs and rental costs.  
4. Variable costs of a machine depend on the workload allocated to that machine.  
5. Each machine can perform one or more operations without additional costs (machine flexibility).  
6. Fixed construction and cell formation costs (for setting up cells) are known at the beginning of each period 

for each cell.  
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7. The costs of inventory maintenance, shortage, and outsourcing are known at the beginning of periods for 
all parts regarding different cells.  

8. Operation times regarding all operations of different parts on different machines are known.  

3.2. The Objective functions  

The purpose of the model is to reduce different costs which are listed below:  
1. Machine investment costs: it refers to the costs of purchasing a new machine in each period.  
2. Operational costs: operation cost denotes the cost required for producing parts which depends on the 

machine type and the processing time needed for each operation.  
3. Inter-cellular and intra-cellular movement cost: this cost is applied when all the operations of a part on a 

machine are not completed the part is transmitted on another machine in the current cell or in another 
cell.  

4. Production planning cost: consists of the inventory maintenance cost, shortage costs, and the cost of out-
sourcing parts. 

5. The cost of moving machines: it refers to the cost of changing the location of a machine from one cell to 
another cell. During different periods, machines may have to be moved and replaced 

3.3. Indexes  

        p: the index of parts (p=1,2, …, P) 
j: the index for the operation (j=1, 2, …, OP) 
m: the index of the machines (m=1,2, …, M)  
c: the index of the cells (c=1,2, …, C)  
h: the index of the periods (h=1, 2, …, H)  

3.4. Parameters 

P: total number of different parts.  
C: the maximum number of cells.  
M: total number of different machines.  
H: total number of periods.  
Dph: the demand for the part p at the h period. 
Bintra: the size of the intra-cellular production batch for part p.  
Binter: the size of the inter-cellular production batch for part p.  
γintra: intra-cellular movement cost for each production batch.  
γinter: inter-cellular movement cost for each production batch.  
αm: fixed cost of machine type m in each period.  
βm: variable cost of machine type m for each time unit.  
Tm: time capacity of the machine type m in each period in terms of the hour.  
ajpm: if the j operation of the part p can be performed on machine type m, it will be equal to one; otherwise, it 
is zero.  
Tjpm: process time for the j operation of part p on machine type m.  
λp: the unit cost of outsourcing of part p.  
ηp: inventory maintenance unit cost of part p in each period.  
ρp: the unit cost of tardy orders of part p in each period.  
Hm: the cost of installing the machine type m in a cell.  
Rm: the cost of taking or removing the machine type m from a cell.  
Uc: the upper bound of the cell.  
M: A big positive number.  

3.5. Decision variables 

Nmch: the number of m-type machines allocated to cell c at the period h.  
K+mch: the number of m-type machines added to the cell c at the period h.  
K-mch: the number of m-type machines deducted from cell c at the period h.  
Qph: the demands for the p part regarding internal production in period h.  
Sph: the demands for the p part for outsourcing in period h.  
Iph: net inventory level (I+ph the remaining inventory for part p at the end of period h; I-ph the shortage of 
part p)  
Xjpmch: if the operation j regarding the part p is carried out on m machine in the cell c at the period h, it will 
be equal to one; otherwise, it will be equal to zero.  
Yph: if Qph≥0, it will be equal to one; otherwise, it will be equal to zero.  
Y'ph: if I+ph≥0, it will be equal to one; if Iph->0, it will be zero.  
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3.6. The mathematical model 

MIN Z = ���αm

C

c=1

M

m=1
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xjpmch, Yph, Yph 
′ ϵ {0,1}, 

Nmch, Kmch
+ , Kmch

− , Qph, Iph+ , Iph− , Sph ≥ 0 , Integer 
(16) 

In this model, the objective function minimizes the sum of different cost clauses. The expressions (1) and (2) of the 
equation denote the total of fixed and variable machine costs. The fixed cost enforces the model to maximize the 
utilization of the machines. The variable cost includes the total of the workload allocated to each machine in each 
cell and also balances the workload. Expression (3) is related to the cost of inter-cellular movements; it indicates 
that if two consecutive operations are done for a part in two separate cells, the intercellular movement is required. 
Expression (4) indicates that two consecutive operations will need inter-cellular movements if both operations are 
done within a cell but on different machines. It should be noted that since each part movement transmission unit 
is done twice, a 1.2 coefficient is applied. Expression (5) is related to the total production planning costs which 
include inventory maintenance costs, shortage costs, and part outsourcing costs. Expression (6) refers to redeploy-
ment cost which is obtained from the total machine installation costs added to one period and the cost of removing 
deducted machines from a period. 

3.7. The constraints  

Equations (7) and (9) ensure that if a fraction of a demand for a part is to be produced at a specific period, each 
operation is allocated to one machine and one cell. Expression (8) guarantees that the demand is supplied and 
machine capacity is not exceeded. Expression (10) indicates the upper limit of cell size. Limitation (11) denotes the 
number of machines in all periods. Expression (12) refers to inventory balance during the period; it indicates that 
the inventory level (additional inventory or inventory shortage) of each part at the end of each period is equal to 
the inventory level of the part at the end of the previous period as well as the number of outsourced parts in the 
previous period minus part demand rate at the current period. 
Expression (13) indicates that the net inventory level at the final period should be zero and the demand for all parts 
should be supplied and fulfilled throughout the planning horizon. According to expression (14), the value of var-
iable Sph is declared and the upper and the lower outsourcing limits are defined as demand coefficients. Constraint 
(14) is a complement of equation (7) which indicates that if the required operation for manufacturing parts is per-
formable in equation (8), a fraction of its demand can be internally produced at a specific period. Equation (15) 
reveals that inventory maintenance and inventory shortage cannot occur simultaneously. That is, they are two 
dependent variables. Finally, expressions in (16) determine the type and range of decision variables. 

3.8 The major problems and weaknesses of the base model 

The base model proposed by Safaei and Tavakkoli-Moghaddam (2009a) is studied and some examples are imple-
mented both in Lingo and GAMS software, but the obtained execution results were completely unexpected. A 
precise assessment of the values obtained for decision variables is also performed in Excel and confirmed the 
Lingo and GAMS output. The investigation and deep analysis of the model revealed two major problems of the 
base model proposed in the mentioned reference which are distinguished and fixed in this paper as follows: 

1) There is no guarantee to perform all necessary operations for manufacturing a specific part in every 
period. That is, some operations of producing a part do NOT take place in production planning and 
the base model suffers the lack of such a constraint. So, the following constraint should be added to 
this model to ensure that none of the part production operations will be ignored. 

(17) ��� xjpmch = OPp            ∀ p, h
M

m=1

OP

j=1

C

c=1

 

Where OPp is the number of operations that should be performed on the part p.  

2) In all of the sample test cases, the model prefers to produce most of the parts by outsourcing method; 
rather than internal producing, which leads to increasing the idle time of the machines, the number 
of voids, and extra machine investment costs. To solve this issue, the following constraints as the 
lower and upper bound of outsourcing amount are also added to the base model to avoid excessive 
and unnecessary outsourcing of the parts: 

 
Sph ≥ Lo ∗ Dph            ∀ p, h (18) 

Sph ≤ Uo ∗ Dph           ∀ p, h (19) 
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Where L0 and U0 are the lower and upper bound coefficients of outsourcing which are considered 
equal to 0.5 and 2 in the proposed model consequently. In a real environment, these values along 
with other parameters are set according to the managerial insight. 

In this way, the weak points and disadvantages of the base model are covered and fixed in this paper. In the next 
section, the proposed GWO-based algorithm for solving the revised model is described in detail. 

4. The GWO algorithm 

The GWO algorithm was first introduced by Mirjalili and Mirjalili (2014) is a population-based algorithm inspired 
by the social behavior of gray wolves. Gray wolves live in groups of populations 5 through 12 and are divided into 
four types: α, β, δ, and ω wolves hierarchically. The α wolf is the single leader of the group and responsible for the 
decision about hunting, resting place, etc. At the second level of the hierarchy, the β wolves, are the followers of α 
wolf and help him in decision making. The δ wolves are at the lowest level of the hierarchy and should obey other 
dominant wolves. The rest of the group are ω wolves. 
In designing GWO, in line with mathematical modeling of the social hierarchy of the wolves, the most suitable 
solution (the least objective function value) is regarded as α. Hence, given the best solutions, the second best and 
the third-best solutions are labeled as β  and δ wolves. The remaining candidate solutions are labeled as ω. In GWO, 
the hunting (optimization) process is led by α, β, δ  wolves. The ω wolves follow these three groups as follows 
(Mirjalili and Mirjalili, 2014):                        

D��⃗ = �C�⃗ X��⃗ p(t) − X��⃗ � 

X��⃗ (t+1) = X��⃗ P(t)− A��⃗    
(20) 

(21) 

In equations (20) and (21), t refers to the current iteration number; D��⃗  is the distance vector of the wolves from the 
hunt;  A��⃗  and C�⃗  denote coefficient vectors; X��⃗ P indicates hunt position vector and X��⃗  refers to the position vector of a 
grey wolf. Vectors A��⃗  and C�⃗  are computed in the following way:  

In equations (22) and (23), a�⃗    is linearly reduced from 2 to 0. r⃗1 and r⃗2 indicate random vectors within the [0,1] 
interval. The α, β, and δ wolves change their position randomly within the space which includes the bait by using 
equations (24), (25), and (26) consequently. The same concept can be generalized to the n-dimension search space. 
For a mathematical simulation of the hunting behavior of grey wolves, it was assumed that alpha (the best available 
solution), beta, and delta have better awareness about the potential location of the bait. Thus, three of the best-
obtained solutions are saved and other search factors (omega wolves) are forced to update their positions concern-
ing the best search factors. Equations (27), (28), (29), and (30) are presented in this regard. 

D��⃗ α = �C�⃗ 1X��⃗ α − X��⃗ � (24) 

D��⃗ β = �C�⃗ 2X��⃗ β − X��⃗ � (25) 

 D���⃗ δ = �C�⃗ 3X��⃗ δ − X��⃗ �         (26) 

X��⃗ 1 = X��⃗ α − A��⃗ 1�D��⃗ α�       (27) 

X��⃗ 2 = X��⃗ β − A��⃗ 2�D��⃗ β� (28) 

 X���⃗ 3 = X��⃗ δ − A��⃗ 3�D��⃗ δ�    (29) 

X��⃗ (t+1) =
X��⃗ 1 + X��⃗ 2 + X��⃗ 3

3
 (30) 

When the hunt stops moving, grey wolves start attacking it and terminate the hunting operation. For mathematical 
modeling of the wolves’ approaching to the bait, we reduce the value of a�⃗ . It should be noted that the fluctuation 
range A��⃗  is also reduced by a�⃗ . In other words, A��⃗  is a random value within the interval [-2a, 2a]. However, during the 
iteration, its value is reduced from 2 to 0. When the random values of A��⃗  are within the interval [-1, 1], the next 

A��⃗ = 2a�⃗ r⃗1 − a�⃗   (22) 

C�⃗ = 2 r⃗2       (23) 
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position of a search agent can be at any position between its current position and the bait position (Mirjalili and 
Mirjalili, 2014).  

4.1. The proposed GWO for solving the CMS model  

Some fundamental tools are needed for designing GWO and this algorithm should be designed about the nature 
of the problem. The pseudo-code of the algorithm can be summarized in the following way: 

Figure 1. The pseudo-code of the WGO algorithm 

In theory, the hunt is the best (optimal or near-to-optimal) solution which the model is supposed to find. In each 
iteration, the wolves are trying to decrease their distance from the hunt; this issue in the solution space is equal to 
decreasing the difference between the objective function value and the optimal value. Unfortunately, in an abstract 
search space, there no idea about the position of the bait (the value of the optimal solution is not known), and since 
the objective function is in minimization form, the optimal value can be assumed equal to zero, or a positive lower 
bound should be calculated. Since the value of the objective function will never be equal to zero; in this paper, the 
lower bound is considered as the sum of the fixed costs of the machines. The stopping condition is considered as 
no improvement of the objective function value during the last 15 iterations which is tuned up using the try-and-
error method.  
The main limitation of the meta-heuristic approaches (as well as GWO) is that there is no guarantee to obtain the 
optimal solution. Besides, they usually use many parameters that require tuning and the performance of the algo-
rithm highly depends on the fine-tuning process. The WGO approach uses some random vectors and numbers 
during the iterations and the convergence speed depends on the performance of the uniform random number 
generator. 

4.2. Demonstration of alpha, beta, and gamma wolves 
The demonstration manner of alpha wolves refers to the demonstration of a feasible solution that corresponds 
with the CMS model and its components should meet the following issues:  

1. Each operation related to one part should be allocated to only one machine in one cell. Hence, one 
feasible solution should demonstrate both operation allocation to the machine, and operation alloca-
tion to the cell at the same time. That is, one specific operation may be processed by several machines 
but it should be assigned to only one of the machines.  

2. In each period, the number of the available m-type machines in the cell, Nmch, should be known. 
Also, the number of machines that have been added to the cell c (K+mch) or have been deducted from 
this cell (K-mch) in this period should be determined.     

3. In each period, the value of the optimal internal production of the part p, Qph, and also, the number 
of outsourcings of the part p, Sph, should be estimated. Then, by capitalizing on these values, the 
amount of the inventory and the shortage of the part p (Iph) should be estimated. 

4. The structure of a single wolf (Figure 2) consists of many fields which represent a feasible solution for 
the problem. It contains information about the allocation of machines, operations, cells, internal and 
outsourcing production volume, etc.   Hence, in each solution, the following four matrices and three 
vectors should be involved and valued:  

 
• The matrix X for allocating operation to the machines.  
• The matrix Y for allocating operation to the cells.  
• The matrix N for determining the number of available m-type machines in cell c.  
• The matrix K determines the number of m-type machines that have been added to/deducted 

from cell c.  
• The vector Q estimates the amount of internal production of the part p.  
• The vector S estimates the amount of outsourcing of part p.  

1. Begin 
2. Randomly generate the initial population of the wolves (random initial solutions). 
3. Calculate the finesses of the solutions using objective function equation, and select three 

superior solutions as alpha, beta, and delta wolves. 
4. In each iteration, three superior solutions are capable of estimating the position of the hunt; 

calculate the distance of the wolves form the hunt using equations (24), (25) and (26). 
5. Update vector a�⃗  (and consequently vector A��⃗ ) and vector C�⃗ . 
6. Repeat from step 3 until the termination condition is met. 
7. At the end of the iterations, the position of alpha wolf is introduced as the optimal point. 
8. End 
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• The vector I estimates and measures the amount of inventory or the shortage of the part p.  

Given the constraints (11) and (12) of the model, matrix K is updated according to matrix N of the current period 
and matrix N of the previous period. Also, vector I is updated according to vector Q of the current period and 
vector S of the previous period, and vector I of the previous period. Hence, in each solution, a block structure 
including four matrices and three vectors are required for each period which indicates the structure of the grey 
wolves in the GWO algorithm. The matrix and vector components of the grey wolves are as follows: 
 X: is a P×r matrix in which: 

 
Where OPi refers to the number of operations of the ith part and Xij denotes the number of the machine to which 
the jth operation of the ith part is assigned.   
Y: is a P×r matrix in which Yij indicates the number of the cell to which the jth operation of part i is assigned.  
N: is a M×c matrix whose members indicate the number of machine types that have been added to or deducted 
from cell c.  
Q: is a vector of length P where Qp indicates the estimated amount of the internal production of the part p in the 
current period.  
S: is a vector of length P in which Sp denotes the amount of outsourcing of the part p in the current period.  
I: is also a vector of length P in which Ip indicates the amount of inventory or the shortage of the part p in the 
current period. If Ip>0 in the current period, it represents the current inventory; and if Ip<0, it demonstrates the 
shortage.   
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Figure. 2 The structure of a wolf (solution) in the proposed GWO algorithm 

5. Examining the numerical example  

In this section, example (1) given in Safaei and Tavakkoli-Moghaddam (2009a) is investigated for evaluating and 
validating the performance of the proposed model and the capability of GWO in solving the optimization of the 
proposed model. This example includes 5 parts, 2 operations, 5 machines, 3 cells, and 3 periods. The data of this 
example is identical to the one given in the reference.  
In GWO, the search operation begins by creating a random population of grey wolves for the candidate solution. 
Throughout the iteration, alpha, beta, and delta wolves estimate the probable position of the hunt. Each candidate 
solution updates its distance from the bait. The parameter a is reduced from the value 2 to 0 to support the identi-
fication and attack process to the bait. When |A| > 1, the candidate solutions diverge from each other. In contrast, 
when |A| < 1, they converge to the bait. GWO algorithm was coded in the MATLAB software and was executed 
50 times on the proposed model. The cellular structure proposed obtained in Safaei and Tavakkoli-Moghaddam 
(2009a) and by the proposed method is according to tables 1 and 2 consequently. The cells are demonstrated in 
shaded rectangles. The integer value in the left column of each machine denotes the number of the needed machine 
should be assigned to the cell. The bolded values out of the cell blocks show the inter-cellular movements which 
are considerably less in the proposed method. Safaei and Tavakkoli-Moghaddam (2009a) also propose an optimal 
cell configuration for a typical test problem that suffers another mistake. In the third period, operations 2 and 3 of 
part P1 are performed both by machines M3 and M5, which is not applicable; besides, according to the problem 
parameters and specifications, the machine M5 is NOT capable of performing these operations. 

 

Table 1. The cell structure proposed by Safaei and Tavakkoli-Moghaddam (2009a) for a typical test problem 

Period 1 Period 2 Period 3 
               
   C1 C2    C1 C2    C1 C2 
   P2 P1 P3 P4    P1 P2 P4 P3    P1 P5 P3 P4 

C1 4 M1 1,2,3    C1 3 M1  1,2,3   C1 3 M5 1 1  2,3 
 1 M2  2 3 1  1 M5 1  2,3   1 M2 2  3  

C2 1 M3  1 2 3  1 M2    3 C2 2 M3  3 2 1 
 1 M4  3 1 2 C2 2 M3 2,3   2  1 M4 3 2 1  
        1 M4    1        
                     

(31) r = maxi=1
p {opi} 
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Table 2. The cell structure obtained by the proposed method for the same typical test problem 

The details of the solution obtained by the proposed GWO method are given in table 3. 
Table 3. The optimal production plan obtained by the proposed GWO algorithm 

* The corresponding value reported in the reference is 1112; but the correct value should be 1111 

Table 4. The comparison of the cost result for the sample example 

* Planning cost = Inventory carrying cost + Backorder incurring cost + Subcontracting cost. 
** The sum of the costs is equal to 144609; not 144612. This is another mistake in the values reported in the reference. 

Comparing the results given in table (4) indicates that the value of the objective function in this research is about 
3% less than obtained in the reference. Whereas the cost of planning production and the fixed (constant) and vari-
able costs of the machine have been reduced, inter-cellular and intra-cellular movement costs and reconfiguration 
costs have been increased. In this study, considering the advantage of adding the constraint for controlling the 
subcontracting and outsourcing parts and the reduction of the inventory carrying and shortage costs, the cost of 
planning production has been reduced in comparison with the base model proposed by Safaei and Tavakkoli-
Moghaddam (2009a). Since an attempt was made to use fewer machines for reducing costs, the fixed machine cost 
decreased; however, the inter-cellular movement had to be used for better and more exploitation of the machine 
capacity. Consequently, the inter-cellular movement increased in this solution. Also, in selecting machinery for 
performing operational stages, the processing time of the operations was selected as a significant factor for reduc-
ing costs. Accordingly, machines with shorter processing times were used for manufacturing the parts. In this way, 
the variable cost of the machinery was reduced.  
Figure 3 indicates that the values of the solutions in the GWO were notably reduced during 30 iterations. Hence, 
in a descending trend with a relatively steady slope, the responses reached the near-optimal value.  
For evaluating the performance of the proposed GWO algorithm, 5 problems adopted from references Safaei and 
Tavakkoli-Moghaddam (2009a) and Ardakani et al. (2012) with different dimensions are also solved. The specifi-
cations of the problems are given in table 5. Since LINGO 8.0 is not able to solve problems with large dimensions, 
the sample problems were considered in a small size so that they can be comparable with the proposed model. 
Figure 4 depicts the comparative illustration of the final solutions (local or near to optimal) for all three methods. 
As given in table 5, the results of the comparisons indicate that GWO outperformed the other method for solving 
all these 5 problems.  

Period 1 Period 2 Period 3 
                       
   C1 C2    C1 C2    C1 C2 
   P2 P1 P3 P4 P5    P2 P1 P3 P4 P5    P1 P3 P4 P2 
C1 3 M1 1,2,3   1  C1 1 M1 1,2,3  2   C1 1 M2 2 3 3  
 1 M2  2 3    1 M3  2,3  1 3  1 M3 1,3 2 1  
C2 1 M4  3 1  2 C2 1 M4   1  2 C2 1 M4  1   
 2 M5  1 2 2,3 1,3  1 M5  1 3 2,3 1  1 M1   2 1,2,3 
                       

 
h = 1  h = 2  h = 3 

 
P1 P2 P3 P4 P5  P1 P2 P3 P4 P5  P1 P2 P3 P4 P5 

Qph 363 830* 521 39 150  139 6 52 195 62  37 33 182 108 0 
Sph 198 567 390 0 387  366 114 205 808 0  0 0 0 0 0 
Iph 63 -20 321 39 -100  0 -147 62 34 350  0 0 0 0 0 
Dph 300 850 200 0 250  400 700 700 200 0  400 0 450 950 350 

Reference 
Objective 
function 

value 

Machine 
constant 

cost 

Machine 
variable 

cost 

Inter-cell move-
ments cost 

Intra-cell move-
ments cost 

Planning 
cost* 

Reconfiguration 
cost 

Safaei and Tavak-
koli-Moghaddam 

(2009) 
144612** 26100 46114 521 645 63854 7375 

The proposed GWO 140145 24600 31532 1735 570 60458 21250 
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Figure 3. The convergence diagram of the proposed GWO algorithm  

 

 
Table 5. The specifications and simulation results of other sample test cases 

 
 
 
 
 
 
 
 
 

 
Figure 4. The histogram of the objective function values of table 5 

To evaluate the efficiency and stability of the proposed GWO algorithm, two sensitivity analyses are also per-
formed on problem #5. The first analysis tests the impact of the number of the initial wolf population on conver-
gence speed (in terms of the number of iterations needed to reach the final best value).  The simulation results 
show that the convergence speed increases as the number of wolves increase from 10 up to 60, but no more mean-
ingful improvement happens by increasing the number of wolves to higher values. Figure 5 demonstrates the test 
result. 

 
Fig. 5.  The impact of increasing the initial wolf population size on convergence speed (# of Runs) 
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41480 42985 42547  2×2×2  ×) 2(2 1 
75489 79884 77425   3×2×2)  × 3(2   2 
96819 104425 99823  3×2×3  ×) 2(3 3 

107129 121524 109825  3×2×3  ×) 2(4 4 
155514 175450 159698  3×3×5  ×) 3(6 5 

* Adopted from Ardakani et al. (2012) 
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Meta-heuristic approaches have a random nature and the results may change at different runs. In the second test, 
problem #5 is executed for 50 different runs and the best obtained solutions are plotted in Figure 6. According to 
the results, the proposed GWO algorithm was capable of reaching the same solution in 47 out of 50 runs. The 
small deviation shows the stability of the proposed algorithm. 

 
Fig. 6.  The stability diagram of the proposed GWO algorithm 

6. Conclusions 

This study investigated the basic non-linear integer programming model for solving the dynamic cell formation 
problem and production planning to minimize the total sum of machine costs; inert/intra cellular movements 
cost; reconfiguration cost; inventory carrying, shortage, and outsourcing cost originally proposed by Safaei and 
Tavakkoli-Moghaddam (2009a). The proposed model in the mentioned reference suffers lacking some critical 
equations such as constraints to limit amoun of outsourcing, and a constraint to guarantee all the operations 
needed to produce a part will be processed. Besides, the machine investment cost is calculated at every period; 
instead of considering it just once at beginning of the first period. Finally, some reported solutions for solved test 
cases in the reference are distinguished to be wrong and completely inapplicable.  
In this paper, this model is revised and modified by adding required constraints on the amount of part outsourcing 
and guaranteeing the completion of all the operational processes related to the parts.  Adding these constraints, 
led to obtaining better solutions that are all applicable (feasible) and considerably better in objective function value. 
Considering the NP-Hard nature of the problem, a meta-heuristic algorithm based on the GWO method was also 
developed and simulated in Matlab and the sample example was presented in detail and solved by the proposed 
model which led to the significant reduction of total costs by 3% in comparison with the base model. For a fair 
comparison, the machine investment costs are considered at all the periods in the proposed model. Furthermore, 
five more sample problems adopted from the literature are also simulated and the results were compared with 
that of Lingo and PSO. The comparison of the computational results obtained by the proposed GWO algorithm 
revealed that the proposed method is more efficient in optimizing the objective function and reaching a better local 
optimum. 
As a direction for further research, a mathematical model can be developed for considering other effective costs 
that have impacts on the production costs (labor, maintenance and repair, depreciation of machinery, etc.). Also, 
it is suggested that the optimization problem be solved using other meta-heuristic algorithms for finding the best 
algorithm and sorting out such issues.  
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