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Abstract 

Vendor-managed inventory (VMI) is a popular inventory management system that allows a vendor to access sales data and 
manage inventory levels for his retailers. The formulation of service level and pricing decisions are finite in the VMI model 
literature. The study examines how a manufacturer and its retailer communicate with one another to optimize their net profits 
through modifying service level, pricing, and inventory policy in a VMI system employing a Stackelberg game. The manufac-
turer produces a product and distributes it to several retailers at a similar wholesale price. The retailers subsequently offer the 
product at retail pricing in independent marketplaces. The Cobb-Douglas demand function could characterize the demand rate 
in every market, which is an enhancing function of the service level, however, a reducing function of retail prices. The manu-
facturer selects its wholesale pricing, replenishment cycles, backorder amount, and binary variable for production capacity to 
optimize profit. Retailers determine retail pricing and service levels so that they may optimize their profitability. Solution pro-
cedures are evolved for finding the Stackelberg game equilibrium from which no firm is inclined to deviate from maximizing 
its profit. The balance benefits the manufacturer while increasing the revenues of the retailers. If the retailers are prepared to 
engage with the manufacturer via a cooperative contract, the equilibrium could be enhanced to the advantage of both the man-
ufacturer and his retailers. Ultimately, a numerical example is shown, along with the appropriate sensitivity analysis, to 
demonstrate that. 1) In certain circumstances, the manufacturer might benefit from his leadership and monopolize the addi-
tional profit generated by the VMI system. 2) The manufacturer's profit, and later the retailers' profit, could be increased more 
by the cooperative contract, in comparison to the Stackelberg equilibrium; 3) Market-related parameters have a substantial 
impact on the net profit of any enterprise. 
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1. Introduction 

Vendor-managed inventory (VMI) mainly may assist a decentralized supply chain in optimizing its inventory 
management performance. The vendor supervises the retailer's inventory by making replenishment decisions for 
the retailer under the VMI approach. The vendor seems to have the option of organizing the manufacturing and 
distribution processes based on actual demand. In contrast to a traditional supply chain, the VMI system vendor 
will prefer to accept more responsibility for the system's operating expenses than the customers to maximize the 
system's overall profit. As a result, rather than centralized decision-making as in an ordinary supply chain, de-
termining the optimal operating strategy for the VMI system is based on the Stackelberg game, in which the ven-
dor seems to be the leader and the customers are the followers (Deng et al. (2020)). 
Stackelberg games are often employed in the literature on VMI systems. Wu et al. (2005) analyze supply chain 
coordination in a one-vendor, one-retailer environment using a VMI contract. The contract states that the vendor, 
as a Stackelberg leader, maintains the retailer's inventory and covers inventory-holding expenses; it is the retail-
er's responsibility to sell products and set their retail pricing. The findings indicate that the contract allows the 
vendor and the retailer to interact while achieving optimal profit coordination. Viswanathan (2009) utilizes the 
Stackelberg game to represent discount pricing decisions in a vendor–buyer supply chain. The findings reveal 
that the leader's optimal conditional approach improves VMI system coordination. Wang et al. (2010) investigat-
ed two alternative models of the Stackelberg game in the VMI system, where retailers selling prices are supposed 
to be exogenously set, with the cooperative advertisement issues of a monopolistic manufacturer with competi-
tive duopolistic retailers. Seyed Esfahani, Biazaran, and Gharakhani (2011) utilized an identical Stackelberg-
manufacturer or Stackelberg-retailer game to depict the interaction between the manufacturer and the retailer. 
Braide, Cao, and Zeng (2013) employed a discount pricing strategy for coordinating VMI supply chains with 
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several retailers, and the Stackelberg game was utilized in the supply chain modeling. Taleizadeh, Noori-daryan, 
and Cárdenas-Barrón (2015) used the VMI model in a two-level supply chain with deterministic and price-
sensitive demand, including a singular vendor and numerous retailers. They established the optimal retailer pric-
ing and the optimal replenishment value for raw materials and finished goods to optimize the profit function 
using the Stackelberg method. De Giovanni, Karray and Martín-Herrán (2019) employed a differential Stackel-
berg paradigm to assess the effects of collaborative advertising inside bilateral monopolies. Wei et al. (2020) used 
Stackelberg's game theory to compare VMI and retailer-managed inventory (RMI) techniques and the contribu-
tions of stochastic learning. Karimi et al. (2021a) examined a Stackelberg game model in a VMI system with one 
manufacturer as the leader and numerous retailers as followers to choose the optimal retailers. Karimi et al. 
(2021b) suggested a vendor managed inventory model with a single manufacturer and a single retailer. The de-
mand rate for the product is considered a declining function of price and a rising function of service level. Mah-
davisharif et al. (2022) developed a complete model depending on the Stackelberg game to address the problem 
of a two-echelon supply chain with unpredictable demand, which is price and time-dependent. Poursoltan, 
Seyedhosseini, and Jabbarzadeh (2021) examined a closed-loop VMI-type supply chain with a retailer, a manu-
facturer, and a remanufacturer. In this study, the impact of the learning effect is considered in both manufactur-
ing and remanufacturing. They developed a new hybrid approach to solve the MINLP model. Cai et al. (2021) 
developed a bi-level supply chain model under the VMI strategy with a single retailer and a single supplier. 
They examined the customer's strategic behavior on system performance. The VMI model was studied by Kusu-
ma and Kallista (2022) at three levels: vendor, distributor, and retailer. The goal of this concept is for retailers to 
choose the finest vendors. Each vendor has a scheduler that calculates the number of products that should be 
produced on the customer’s inventory and preferences. 
In addition, the distributor has three levels of control over the products delivered: vendor inventory, customers, 
and customer preferences. Modares, Farimani, and Emroozi (2022) studied a two-level SC model with several 
retailers and vendors under the VMI strategy. This study considers three objectives: minimization of total supply 
chain costs, maximization of the retailer weight value and maximization of production reliability. The model was 
solved using PSO and GA metaheuristic algorithms. Karampour et al. (2022) presented a bi-objective Green VMI-
type SC model. This study aims to minimize carbon emissions and maximize inventory profit. They solved the 
NLP model by MORDA, NSGA-II, and MOKA algorithms. 
It is critical to develop and assign demands in the VMI system. Various demand functions are suggested in the 
literature on VMI-type supply chains. Several investigations have shown that demand is based on quality (Chen 
et al. (2021)), quality and marketing effort (Huang, He, and Wang (2019)), and stock (Zanoni and Jaber, (2015)). 
Whereas some have argued that demand is a function of pricing (– for example, Yu, Huang, and Liang (2009); 
Almehdawe and Mantin (2010); Rasay, Zare Mehrjerdi and Fallah Nezhad (2013); Yu et al. (2013); Zare Mehr-
jerdi, Fallah Nezhad and Rasai (2014); Niknamfar and Pasandideh (2014); Rasay, Zare Mehrjerdi and Fallah 
Nezhad (2015); Taleizadeh, Noori-daryan, and Cárdenas-Barrón (2015); Haji, Afzalabadi, and Haji (2018); Bah-
rami and Pasandideh (2019); Batarfi, Jaber and Glock (2019)). Various economists have claimed that consumer 
behavior cannot be adequately described by referring to demands merely depending on sales prices. As a result, 
research started to focus on other factors, such as price and stock level (Hemmati, Fatemi Ghomi, and Sajadieh 
(2017)), price and advertising (Yu and Huang (2010) and Deng et al. (2020)), price and time (Mahdavisharif et al. 
(2022)), as well as price and service level (Karimi et al. (2021b)). As previously stated, Karimi et al. (2021b) is the 
only research considering demand function as a function of price and service level in the VMI system. While the 
service level influences the consumer's buying decision, a greater degree of service encourages people to pur-
chase the products. Nevertheless, raising the service level could increase service costs. Therefore, the retailer and 
the manufacturer should collaborate on pricing and service level decisions to optimize profit. As a result, the 
emphasis of this study is on how to coordinate pricing and service level decisions for a decentralized supply 
chain under VMI and the impact of the interplay between retail price and service level strategies.  
Karimi et al. (2021b) proposed a VMI system with a single retailer and manufacturer. Demand is a linear function 
of price and service level, and the model is solved using a combination of analytical and numerical approaches. 
However, in this research, in addition to the presence of several retailers, the Cobb-Douglas demand function is 
used to define every retailer's demand (which is reliant on price and service level). Additionally, to reduce ex-
pense, a binary decision variable is employed to ensure that the manufacturing process continues uninterrupted 
by production setup when production capacity is used up. Furthermore, depending on the Stackelberg equilibri-
um, the manufacturer realizes that his profit could be higher by altering his wholesale price to obtain an extra 
system profit. The retailers benefit from the increased profit by signing a profit-sharing contract with the manu-
facturer. Ultimately, only the analytical technique is used to solve the models. Table 1 shows the novelty of the 
paper in comparison to other relevant VMI model studies. 
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The remaining research is structured as follows: The next section outlines the issue; Then the profit functions of 
the participants discuss in section 3; In Section 4, the Stackelberg game model is presented, and the model' solu-
tion mechanism is presented in section 5. Section 6 explores a cooperative contract enhancement; Section 7 pro-
vides a numerical example and sensitivity assessments, and Section 8 concludes the article. 

2. A description of the problem 

This article investigates a VMI supply chain comprising one manufacturer and numerous retailers. The manufac-
turer fabricates a single product with limited production capacity and sells it via various retailers. The manufac-
turer and retailer have a leader-follower relationship, as depicted in Fig. 1. Instead of focusing on pricing, retail-
ers provide service levels to attract more consumers. As a result, in this research, the product demands of retail-
ers i, D_i (p_i,s_i), i =1, 2, ..., n are influenced by their retail price (p_i) and the service level of the retailer i (s_i). 
The Cobb–Douglas demand function accurately depicts the link between D_i (p_i,s_i) and p_i and s_i: 

D_i (p_i,s_i )=K_i  (s_i^(α_i ))/(p_i^(a_i ) )     i=1,2,…,n (1) 

Where Ki is a positive constant, it indicates the retailer's market scale α_i and a_i represent the elasticity parame-
ters s_i and p_i, respectively. 

 

Figure. 1. Problem schematic and Stackelberg game 

 

Table 1. The novelty of this research 
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Almahda & Mantin (2010) n  *   *  *  Analytical and KKT 

Braide, Cao, and Zeng (2013) n  *   *  *  Heuristic 

Niknamfar and Pasandideh (2014) n  *   *    GA 

Rasay, Zare Mehrjerdi and Fallah Nezhad 

(2015) 
n  *   *   * KKT 

Hemmati, Fatemi Ghomi and Sajadieh 

(2017) 
1  * * *     Heuristic 

Haji, Afzalabadi and Haji (2018) 1  *   *    Analytical 

Huang, He, and Wang (2019) 1   * *     Analytical 

Batarfi, Jaber and Glock (2019) 1  * * *     Analytical 

Deng et al. (2020) n  * *   *   Heuristic 

Chen et al. (2021) 1   * *     Analytical 

Karampour et al. (2022) n  *  *     MORDA, NSGA-II, and MOKA 

Mahdavisharif et al. (2022) 1  * *   *   Analytical and iterative 

Karimi et al. (2021b) 1 * *  *     Analytical  and KKT 

Current study n * *   *  * * Analytical 
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The annotations included the following: 

Parameters: 
𝐷𝑖(𝑝𝑖 , 𝑠𝑖) The demand of 𝑖 -th retailer 
𝐾𝑖 Basic market demand of 𝑖 -th retailer 
𝑎𝑖 The price elasticity of demand for retailer 𝑖 
𝛼𝑖 The elasticity of retailer 𝑖 's demand in terms of service 
𝐶𝑎𝑝 Production capacity of the product for the manufacture 

𝐶𝑚 The manufacturer's product manufacturing cost 
𝐻𝑟𝑖 Holding costs at retailer 𝑖 
𝐻𝑚 manufacturer's holding cost 
𝐵𝑟𝑖 Costs associated with backorders paid by the manufacturer to the retailer 𝑖 
𝑆𝑟𝑖 The product's fixed order cost for the retailer 𝑖 
𝑆𝑚 The product's fixed order cost for the manufacturer 
𝜉𝑖 The cost of inventory for retailer 𝑖  
𝜑𝑖 The product’s transportation cost from the manufacturer to the retailer 𝑖 
𝜂𝑖 The service cost factor for retailer 𝑖 
𝛾 an adequately large positive number 𝛾 > 𝐶𝑎𝑝 

 
Variables influencing manufacturer decisions 
𝐶 product's common replenishment cycle 

𝑦𝑖 a percentage of retailer 𝑖 's backlog time 
𝑤𝑝 wholesale price set by the manufacturer  

𝑧 A binary variable that equals one if the production capacity of manufacture is upper 

Variables influencing retailer decisions 

𝑝𝑖 Retailer 𝑖 's selling price  
𝑠𝑖 𝑖 's retailer service level 
 

3. Player profit function 

3.1. The net profit of the manufacturer 

The net profit of a manufacturer is calculated by deducting the revenue from the total cost. Furthermore, the re-
tailer 𝑖 pays (𝑤𝑝 + 𝜉𝑖) to the manufacturer for each unit of product. As a result, the manufacturer's revenue is 

determined as follows: 

𝑇𝑅𝑚 = ∑ 𝐷𝑖

𝑛

𝑖=1
(𝑝𝑖 , 𝑠𝑖)(𝑤𝑝 + 𝜉𝑖) (2) 

The transportation and manufacturing expenses are included in the direct manufacturing cost. 

𝑇𝐷𝐶𝑚 = ∑ 𝐷𝑖

𝑛

𝑖=1
(𝑝𝑖 , 𝑠𝑖)(𝐶𝑚 + 𝜙𝑖) (3) 

Moreover, indirect costs include those associated with the supply chain inventory system separated into retailer 
and manufacturer inventory system costs. The retailer warehouse inventory level is demonstrated in Fig. 2(a). As 
noticed, retailer i's inventory costs, including holding and ordering expenses, can be calculated from Eq. (4). 

𝑇𝐼𝐶𝑟𝑖
=

1

𝐶
[
𝐷𝑖(𝑝𝑖 , 𝑠𝑖)𝐶

2

2
(𝐻𝑟𝑖(1 − 𝑦𝑖)

2 + 𝐵𝑟𝑖𝑦𝑖
2) + 𝑆𝑟𝑖] (4) 

The manufacturer warehouse inventory level is displayed in Fig. 2(b). A redundant production capacity 
(∑ 𝐷𝑖

𝑛
𝑖=1 (𝑝𝑖 , 𝑠𝑖) < 𝐶𝑎𝑝) means that a manufacturer cannot regularly make its product, increasing its product in-

ventory costs. The production setup cost (𝑆𝑚), equivalent to the economic production quantity (EPQ), is neces-
sary. Thus, the manufacturer's inventory cost for the product equals 

𝑇𝐼𝐶𝑚
1 =

1

𝐶
[𝐻𝑚 ∑

𝐷𝑖(𝑝𝑖 , 𝑠𝑖)
2𝐶2

2𝐶𝑎𝑝

𝑛

𝑖=1
+ 𝑆𝑚] (5) 

Nevertheless, ∑ 𝐷𝑖(𝑝𝑖 , 𝑠𝑖) = 𝐶𝑎𝑝𝑛
𝑖=1 , the manufacturing process continues uninterrupted after the production ca-

pacity is used up. The manufacturer's inventory cost is 
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Figure. 2. (a) Retailer i's inventory level and (b) manufacturer's inventory level  

𝑇𝐼𝐶𝑚
2 =

1

𝐶
[𝐻𝑚 ∑

𝐷𝑖(𝑝𝑖 , 𝑠𝑖)
2𝐶2

2𝐶𝑎𝑝

𝑛

𝑖=1
] (6) 

Based on the research above, the overall inventory cost of the VMI system could be stated as 

𝑇𝐼𝐶 = 𝑇𝐼𝐶𝑟𝑖
+ 𝑧𝑇𝐼𝐶𝑚

1 + (1 − 𝑧)𝑇𝐼𝐶𝑚
2  (7) 

Where 1=Z denotes the presence of a production setup cost and 𝑧 =0 otherwise. Therefore, the net manufacturer 

profit may be calculated as follows: 

𝑁𝑃𝑚(𝑦𝑖 , 𝐶, 𝑤𝑝, 𝑧) = 𝑇𝑅𝑚 − 𝑇𝐼𝐶 − 𝑇𝐷𝐶𝑚 = ∑𝐷𝑖

𝑛

𝑖=1

(𝑝𝑖 , 𝑠𝑖)(𝑤𝑝 + 𝜉𝑖) −
1

𝐶
[∑𝑆𝑟𝑖

𝑛

𝑖=1

+ 𝑧𝑆𝑚] 

 

−
𝐶

2
[∑𝐷𝑖(𝑝𝑖 , 𝑠𝑖)(𝐻𝑟𝑖(1 − 𝑦𝑖)

2 + 𝐵𝑟𝑖𝑦𝑖
2)

𝑛

𝑖=1

+ 𝐻𝑚 ∑
𝐷𝑖(𝑝𝑖 , 𝑠𝑖)

2

𝐶𝑎𝑝

𝑛

𝑖=1

] − ∑𝐷𝑖

𝑛

𝑖=1

(𝑝𝑖 , 𝑠𝑖)(𝐶𝑚 + 𝜙𝑖) 

(8) 

3.2. Net profits of every retailer 

The retailer is expected to have a service cost of 1/2𝜂𝑖𝑠𝑖
2 for the service level  

𝑠𝑖  of the retailer 𝑖. This provides easy analysis control and assures that the profit function on 𝑠𝑖  is concave. Improving 

service level could result in a lower return on service expenditure (Tsay and Agrawal (2000), Xiao and Yang (2008), 

Giri and Maiti (2014), Ali et al. (2018), and Pi, Fang, and Zhang (2019)). The net retailer profit could be calculated as 

follows: 

𝑁𝑃𝑟𝑖
(𝑝𝑖 , 𝑠𝑖) = (𝑝𝑖 − 𝑤𝑝 − 𝜉𝑖)𝐷𝑖(𝑝𝑖 , 𝑠𝑖) −

𝜂𝑖𝑠𝑖
2

2
 (9) 

4. Stackelberg game model 

In this study, the Stackelberg game model was developed. 

SG Model:  

𝑁𝑃𝑚(𝑦𝑖 , 𝐶, 𝑤𝑝, 𝑧) = ∑𝐷𝑖

𝑛

𝑖=1

(𝑝𝑖 , 𝑠𝑖)(𝑤𝑝 + 𝜉𝑖 − 𝐶𝑚 − 𝜙𝑖) −
1

𝐶
[∑𝑆𝑟𝑖

𝑛

𝑖=1

+ 𝑧𝑆𝑚] 

−
𝐶

2
[∑𝐷𝑖(𝑝𝑖 , 𝑠𝑖)(𝐻𝑟𝑖(1 − 𝑦𝑖)

2 + 𝐵𝑟𝑖𝑦𝑖
2)

𝑛

𝑖=1

+ 𝐻𝑚 ∑
𝐷𝑖(𝑝𝑖 , 𝑠𝑖)

2

𝐶𝑎𝑝

𝑛

𝑖=1

] 

(10) 

 

∑𝐷𝑖

𝑛

𝑖=1

(𝑝𝑖 , 𝑠𝑖) ≤ 𝐶𝑎𝑝 
(11) 
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𝐶𝑎𝑝 − ∑𝐷𝑖

𝑛

𝑖=1

(𝑝𝑖 , 𝑠𝑖) ≤ 𝛾𝑧 
(12) 

0 ≤ 𝑦𝑖 ≤ 1    𝑖 = 1,2, … , 𝑛 (13) 

𝑧𝜖{0,1}, 𝐶 > 0, 𝑤𝑝 ≥ 0 (14) 

𝑀𝑎𝑥 𝑁𝑃𝑟𝑖
(𝑝𝑖 , 𝑠𝑖) = (𝑝𝑖 − 𝑤𝑝 − 𝜉𝑖)𝐷𝑖(𝑝𝑖 , 𝑠𝑖) −

𝜂𝑖𝑠𝑖
2

2
 

(15) 

(𝑝𝑖 − 𝑤𝑝 − 𝜉𝑖) > 0 (16) 

𝑝𝑖 , 𝑠𝑖 ≥ 0 (17) 

Where Eq. (10) is the objective function of the manufacturer, Eq. (15) denotes the objective function of the retailer. 
Eq. (11) ensures that the manufacturer's total demand does not surpass his production capacity; constraint (12) is 
utilized for setting 𝑧 =1 when the manufacturer's capacity is redundant. Eq. (13) is used to set the limits for the pro-
portion of backlog that cannot exceed 100% of the demand. The present basic retailing condition is expressed by Eq. 
(13), and Eqs show the range of variables. (14, 17). 

5. Solution procedure 

The optimal retailer response function is employed to calculate equilibrium. The optimal manufacturing decision is 
then examined depending on the optimal retailer reactions. 

5.1. Retailers' optimal approach 

The optimal service level and retail pricing are expressed as follows for the maximizing 𝑁𝑃𝑟𝑖
(𝑝𝑖 , 𝑠𝑖) as the concave 

function of 𝑠𝑖  and 𝑝𝑖: 
Theorem 1 states that the optimal retail pricing for 𝑎𝑖 > 1 and 0 < 𝛼𝑖 < 1 would be as follows: 

𝑝𝑖
∗(𝑤𝑝) =

𝑎𝑖(𝑤𝑝 + 𝜉𝑖)

𝑎𝑖 − 1
      𝑖 = 1,2, … , 𝑛. (18) 

In addition, the service level is as follows: 

si
∗(wp) = [

Kiαi

ηi

(wp + ξi)

ai − 1
]

1
2−αi

(
ai(wp + ξi)

ai − 1
)

−ai
2−αi

       i = 1,2, … , n (19) 

Proof: Appendix A contains the proof. 

The retailer profit is calculated by inserting Eqs. (18), (19) into Eq. (15) as follows: 

NPri

∗(wp) =
ηi(2 − αi)

2αi
[
Kiαi

ηi

(wp + ξi)

ai − 1
]

2
2−αi

(
ai(wp + ξi)

ai − 1
)

−2ai
2−αi

       i = 1,2,… , n (20) 

As a result, the optimal retailer demand rate may be expressed as: 

Di
∗(wp) = Ki [

Kiαi

ηi

(wp + ξi)

ai − 1
]

αi
2−αi

(
ai(wp + ξi)

ai − 1
)

−2ai
2−αi

       i = 1,2,… , n (21) 

Property 1. If the manufacturer raises wp, every retailer raises (reduces)  

pi
∗ (si

∗) to maximize NPri
(pi, si), as well as the manufacturer's demand rate decreases. 

Proof. 
∂pi

∗

∂wp
=

ai

ai−1
> 0 (

∂si
∗

∂wp
= −

(ai−1)

(2−αi)(wp+ξi)
[
Kiαi

ηi

(wp+ξi)

ai−1
]

1

2−αi (
ai(wp+ξi)

ai−1
)

−ai
2−αi) < 0 for any ai > 1 (0 < αi < 1). As a result, 

whenwp rises, the retailer i raises (reduces), pi
∗ (si

∗) to mazimizeNPri
(pi, si). Furthermore, we have 

∂Di(pi
∗(wp),si

∗(wp))

∂wp
=

−
Ki(2ai−αi)

(2−αi)(wp+ξi)
[
Kiαi

ηi

(wp+ξi)

ai−1
]

αi
2−αi (

ai(wp+ξi)

ai−1
)

−2ai
2−αi

< 0 since ai > 1and0 < αi < 1. Consequently, when a manufacturer in-

creases its wholesale price, the demand rate of each retailer decreases, and therefore the manufacturer's demand rate 

decreases. Property 1 has been proved. 
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5.2. The manufacturer's optimal approach 

The SG model may be reformulated by replacing the retailers' optimal reaction functions from Eqs. (19) and (20) into 
Eq. (10) and constraints (11) and (12). 

𝑁𝑃𝑚(𝑦𝑖 , 𝐶, 𝑤𝑝, 𝑧) = ∑𝐷𝑖

𝑛

𝑖=1

(𝑝𝑖
∗(𝑤𝑝)𝑠𝑖

∗(𝑤𝑝))(𝑤𝑝 + 𝜉𝑖 − 𝐶𝑚 − 𝜙𝑖) −
1

𝐶
[∑𝑆𝑟𝑖

𝑛

𝑖=1

+ 𝑧𝑆𝑚] 

−
𝐶

2
[∑𝐷𝑖(𝑝𝑖

∗(𝑤𝑝)𝑠𝑖
∗(𝑤𝑝))(𝐻𝑟𝑖(1 − 𝑦𝑖)

2 + 𝐵𝑟𝑖𝑦𝑖
2)

𝑛

𝑖=1

+ 𝐻𝑚 ∑
𝐷𝑖(𝑝𝑖

∗(𝑤𝑝)𝑠𝑖
∗(𝑤𝑝))

2

𝐶𝑎𝑝

𝑛

𝑖=1

] 

(22) 

S.t:  

∑𝐷𝑖

𝑛

𝑖=1

(𝑝𝑖
∗(𝑤𝑝)𝑠𝑖

∗(𝑤𝑝)) ≤ 𝐶𝑎𝑝 (23) 

𝐶𝑎𝑝 − ∑𝐷𝑖

𝑛

𝑖=1

(𝑝𝑖
∗(𝑤𝑝)𝑠𝑖

∗(𝑤𝑝)) ≤ 𝛾𝑧 (24) 

0 ≤ 𝑦𝑖 ≤ 1      𝑖 = 1,2, … , 𝑛 (25) 

𝑧𝜖{0,1}, 𝐶 > 0, 𝑤𝑝 ≥ 0 (26) 

To calculate net profit 𝑁𝑃𝑚 analytically, we proceed by simplifying restrictions (23 and 24). According to property 

(1), the manufacturer demand rate ∑ 𝐷𝑖
𝑛
𝑖=1 (𝑝𝑖

∗(𝑤𝑝)𝑠𝑖
∗(𝑤𝑝)) is a declining function with regard to 𝑤𝑝 . There is just one 

solution 𝑤𝑝  to the equation ∑ 𝐷𝑖
𝑛
𝑖=1 (𝑝𝑖

∗(𝑤𝑝)𝑠𝑖
∗(𝑤𝑝)) = 𝐶𝑎𝑝, which is the lowest wholesale price (denoted by 𝑤𝑝

𝑚𝑖𝑛  ). 

In two cases, constraints (23 and 24) could be simplified. 𝑧 = 1 is one case, and ∑ 𝐷𝑖
𝑛
𝑖=1 (𝑝𝑖

∗(𝑤𝑝)𝑠𝑖
∗(𝑤𝑝)) < 𝐶𝑎𝑝 could 

be used to replace the two constraints. SG model could subsequently be reformulated as the following model (desig-
nated as the SG1 model): 

SG1 Model: 

𝑁𝑃𝑚(𝑦𝑖 , 𝐶, 𝑤𝑝) = ∑𝐷𝑖

𝑛

𝑖=1

(𝑝𝑖
∗(𝑤𝑝)𝑠𝑖

∗(𝑤𝑝))(𝑤𝑝 + 𝜉𝑖 − 𝐶𝑚 − 𝜙𝑖) −
1

𝐶
[∑𝑆𝑟𝑖

𝑛

𝑖=1

+ 𝑆𝑚] 

−
𝐶

2
[∑𝐷𝑖(𝑝𝑖

∗(𝑤𝑝)𝑠𝑖
∗(𝑤𝑝))(𝐻𝑟𝑖(1 − 𝑦𝑖)

2 + 𝐵𝑟𝑖𝑦𝑖
2)

𝑛

𝑖=1

+ 𝐻𝑚 ∑
𝐷𝑖(𝑝𝑖

∗(𝑤𝑝)𝑠𝑖
∗(𝑤𝑝))

2

𝐶𝑎𝑝

𝑛

𝑖=1

] 

(27) 

S.t:  

0 ≤ 𝑦𝑖 ≤ 1      𝑖 = 1,2, … , 𝑛 (28) 

∑𝐷𝑖

𝑛

𝑖=1

(𝑝𝑖
∗(𝑤𝑝)𝑠𝑖

∗(𝑤𝑝)) < 𝐶𝑎𝑝 (29) 

𝐶 > 0, 𝑤𝑝 ≥ 0 (30) 

The alternative case is 𝑧 = 0, and the two limitations (23 and 24) could be replaced by 𝑤𝑝 = 𝑤𝑝
𝑚𝑖𝑛 . Afterward, the SG 

model may be rearranged as the following model (designated as the SG2 model): 

SG2 Model: 

𝑁𝑃𝑚(𝑦𝑖 , 𝐶, 𝑤𝑝) = ∑ 𝐷𝑖

𝑛

𝑖=1
(𝑝𝑖

∗(𝑤𝑝
𝑚𝑖𝑛)𝑠𝑖

∗(𝑤𝑝
𝑚𝑖𝑛))(𝑤𝑝

𝑚𝑖𝑛 + 𝜉𝑖 − 𝐶𝑚 − 𝜙𝑖) −
1

𝐶
[∑ 𝑆𝑟𝑖

𝑛

𝑖=1
] 

(31) 
−

𝐶

2
[∑ 𝐷𝑖(𝑝𝑖

∗(𝑤𝑝
𝑚𝑖𝑛)𝑠𝑖

∗(𝑤𝑝
𝑚𝑖𝑛))(𝐻𝑟𝑖(1 − 𝑦𝑖)

2 + 𝐵𝑟𝑖𝑦𝑖
2)

𝑛

𝑖=1
+ 𝐻𝑚 ∑

𝐷𝑖(𝑝𝑖
∗(𝑤𝑝

𝑚𝑖𝑛)𝑠𝑖
∗(𝑤𝑝

𝑚𝑖𝑛))
2

𝐶𝑎𝑝

𝑛

𝑖=1
] 

S.t: 
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0 ≤ 𝑦𝑖 ≤ 1      𝑖 = 1,2, … , 𝑛 and 𝐶 > 0 

(32) 

Let us proceed with the case 𝑧 = 1. With respect to 𝑦𝑖, the second derivative of Eq. (27) is:  

𝜕2𝑁𝑃𝑚(𝑦𝑖 , 𝐶, 𝑤𝑝)

𝜕𝑦𝑖
2 = −𝐶 𝐷𝑖 (𝑝𝑖

∗(𝑤𝑝)𝑠𝑖
∗(𝑤𝑝)) (𝐻𝑟𝑖 + 𝐵𝑟𝑖) < 0 (33) 

As a result, 𝑁𝑃𝑚(𝑦𝑖 , 𝐶, 𝑤𝑝) is a concave function of 𝑦𝑖 , regardless of 𝐶 and 𝑤𝑝 . The optimal 𝑦𝑖  is determined using the 

first derivative 
𝜕𝑁𝑃𝑚(𝑦𝑖,𝐶,𝑤𝑝)

𝜕𝑦𝑖
= 0 of Eq. (27) with respect to 𝑦𝑖  as follows: 

𝑦𝑖
∗ =

𝐻𝑟𝑖
𝐻𝑟𝑖 + 𝐵𝑟𝑖

 (34) 

Inserting Eq. (34) into Eq. (27) yields: 

𝑁𝑃𝑚(𝐶, 𝑤𝑝) = ∑ 𝐷𝑖

𝑛

𝑖=1
(𝑝𝑖

∗(𝑤𝑝)𝑠𝑖
∗(𝑤𝑝))(𝑤𝑝 + 𝜉𝑖 − 𝐶𝑚 − 𝜙𝑖) −

1

𝐶
[∑ 𝑆𝑟𝑖

𝑛

𝑖=1
+ 𝑆𝑚] 

−
𝐶

2
[∑ 𝐷𝑖(𝑝𝑖

∗(𝑤𝑝)𝑠𝑖
∗(𝑤𝑝)) (

𝐻𝑟𝑖𝐵𝑟𝑖
𝐻𝑟𝑖 + 𝐵𝑟𝑖

)
𝑛

𝑖=1
+ 𝐻𝑚 ∑

𝐷𝑖(𝑝𝑖
∗(𝑤𝑝)𝑠𝑖

∗(𝑤𝑝))
2

𝐶𝑎𝑝

𝑛

𝑖=1
] 

(35) 

With respect to 𝐶, the second derivative of Eq. (35) is 

𝜕2𝑁𝑃𝑚(𝐶, 𝑤𝑝)

𝜕𝐶2 = −
2

𝐶3  (∑ 𝑆𝑟𝑖
𝑛

𝑖=1
+ 𝑆𝑚) < 0 (36) 

As a result, regardless of 𝑤𝑝 , 𝑁𝑃𝑚(𝐶, 𝑤𝑝) is a concave function of 𝐶. 

Since
𝜕𝑁𝑃𝑚(𝐶,𝑤𝑝)

𝜕𝐶
= 0 the optimal 𝐶 (represented by 𝐶1

∗) is as follows: 

𝐶1
∗ =

√

2(∑ 𝑆𝑟𝑖
𝑛
𝑖=1 + 𝑆𝑚)

∑ 𝐷𝑖(𝑝𝑖
∗(𝑤𝑝)𝑠𝑖

∗(𝑤𝑝)) (
𝐻𝑟𝑖𝐵𝑟𝑖

𝐻𝑟𝑖 + 𝐵𝑟𝑖
) +𝑛

𝑖=1 𝐻𝑚 ∑
𝐷𝑖(𝑝𝑖

∗(𝑤𝑝)𝑠𝑖
∗(𝑤𝑝))

2

𝐶𝑎𝑝
𝑛
𝑖=1

 
(37) 

By inserting Eq. (37) in (35), the net manufacturer profit becomes a function of 𝑤𝑝  as follows: 

𝑁𝑃𝑚(𝑤𝑝) = ∑𝐷𝑖

𝑛

𝑖=1

(𝑝𝑖
∗(𝑤𝑝)𝑠𝑖

∗(𝑤𝑝))(𝑤𝑝 + 𝜉𝑖 − 𝐶𝑚 − 𝜙𝑖) 

(38) 

−√2(∑𝑆𝑟𝑖

𝑛

𝑖=1

+ 𝑆𝑚)(∑𝐷𝑖(𝑝𝑖
∗(𝑤𝑝)𝑠𝑖

∗(𝑤𝑝)) (
𝐻𝑟𝑖𝐵𝑟𝑖

𝐻𝑟𝑖 + 𝐵𝑟𝑖
) +

𝑛

𝑖=1

𝐻𝑚 ∑
𝐷𝑖(𝑝𝑖

∗(𝑤𝑝)𝑠𝑖
∗(𝑤𝑝))

2

𝐶𝑎𝑝

𝑛

𝑖=1

) 

Equation (38) is a continuous function 𝑤𝑝 .Given that the manufacturer's capacity is redundant (𝑧 = 1) and that the 

maximum of Eq. (38) exists, the optimal 𝑤𝑝  (referred to as 𝑤𝑝1
∗ ) for maximizing (38) is to satisfy 

𝜕𝑁𝑃𝑚(𝑤𝑝)

𝜕𝑤𝑝
|
𝑤𝑝=𝑤𝑝1

∗
= 0                                                                    

(39) 

Concerning Eq. (39), one question remains unanswered: how to handle a case 
∑ 𝐷𝑖

𝑛
𝑖=1 (𝑝𝑖

∗(𝑤𝑝1
∗ )𝑠𝑖

∗(𝑤𝑝1
∗ )) ≥ 𝐶𝑎𝑝. If ∑ 𝐷𝑖

𝑛
𝑖=1 (𝑝𝑖

∗(𝑤𝑝1
∗ )𝑠𝑖

∗(𝑤𝑝1
∗ )) ≥ 𝐶𝑎𝑝, Eq. (38) is a monotone function with respect to 

𝑤𝑝
∗ > 𝑤𝑝

𝑚𝑖𝑛 , and the case 𝑧 = 1 may be ignored since 𝑤𝑝  is 𝑤𝑝
𝑚𝑖𝑛  (belong to the case 𝑧 = 0). When 𝑧 =

0∑ 𝐷𝑖
𝑛
𝑖=1 (𝑝𝑖

∗(𝑤𝑝)𝑠𝑖
∗(𝑤𝑝)) = 𝐶𝑎𝑝 or 𝑤𝑝 = 𝑤𝑝

𝑚𝑖𝑛 .  

A similar analysis could be utilized to obtain the optimal 𝑦𝑖
∗ that is the same as Eq. (34) and the optimal 𝐶. 

𝐶2
∗ =

√

2∑ 𝑆𝑟𝑖
𝑛
𝑖=1

∑ 𝐷𝑖(𝑝𝑖
∗(𝑤𝑝

𝑚𝑖𝑛)𝑠𝑖
∗(𝑤𝑝

𝑚𝑖𝑛)) (
𝐻𝑟𝑖𝐵𝑟𝑖

𝐻𝑟𝑖 + 𝐵𝑟𝑖
) +𝑛

𝑖=1 𝐻𝑚 ∑
𝐷𝑖(𝑝𝑖

∗(𝑤𝑝
𝑚𝑖𝑛)𝑠𝑖

∗(𝑤𝑝
𝑚𝑖𝑛))

2

𝐶𝑎𝑝
𝑛
𝑖=1

 
(40) 

The manufacturer's net profit is then calculated. 
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𝑁𝑃𝑚(𝑤𝑝
𝑚𝑖𝑛) = ∑𝐷𝑖

𝑛

𝑖=1

(𝑝𝑖
∗(𝑤𝑝

𝑚𝑖𝑛)𝑠𝑖
∗(𝑤𝑝

𝑚𝑖𝑛))(𝑤𝑝
𝑚𝑖𝑛 + 𝜉𝑖 − 𝐶𝑚 − 𝜙𝑖) 

−√2∑𝑆𝑟𝑖

𝑛

𝑖=1

(∑𝐷𝑖(𝑝𝑖
∗(𝑤𝑝

𝑚𝑖𝑛)𝑠𝑖
∗(𝑤𝑝

𝑚𝑖𝑛)) (
𝐻𝑟𝑖𝐵𝑟𝑖

𝐻𝑟𝑖 + 𝐵𝑟𝑖
) +

𝑛

𝑖=1

𝐻𝑚 ∑
𝐷𝑖(𝑝𝑖

∗(𝑤𝑝
𝑚𝑖𝑛)𝑠𝑖

∗(𝑤𝑝
𝑚𝑖𝑛))

2

𝐶𝑎𝑝

𝑛

𝑖=1

) 

(41) 

The above analyses demonstrate that the Stackelberg game equilibrium exists and could be identified by one of the 
two conditions that result in the manufacturer's net profit being greater than the other. 

Condition 1: Eqs. (18), (19), (34), (37) and (39) and 𝑧∗ = 1 

Condition 2: Eqs. (18), (19), (34), (40), 𝑤𝑝
∗ = 𝑤𝑝

𝑚𝑖𝑛 , 𝑧∗ = 0. 

Theorem 2: In the Stackelberg game offered by the SG model, there is only one Stackelberg equilibrium point. 

Proof. Consider Appendix B. 

 
5.3. Algorithm procedure 

In a series of phases, a solution algorithm is suggested for driving the unique Stackelberg game equilibrium, includ-
ing: 

Step 1: By solving the equation∑ 𝐷𝑖
𝑛
𝑖=1 (𝑝𝑖

∗(𝑤𝑝)𝑠𝑖
∗(𝑤𝑝)) = 𝐶𝑎𝑝, we can calculate the minimum wholesale price 𝑤𝑝

𝑚𝑖𝑛  . 

Step 2: Calculating 𝑁𝑃𝑚(𝑤𝑝1
∗ ) to correspond to 𝑧 = 1: calculate the candidate solution for

pw
using equation (39). If 

𝑤𝑝1
∗ > 𝑤𝑝

𝑚𝑖𝑛  the optimal 𝑤𝑝1
∗  is obtained, and 𝑁𝑃𝑚(𝑤𝑝1

∗ )  is obtained by substituting into Eq (38), otherwise, set 

𝑁𝑃𝑚(𝑤𝑝1
∗ ) = 0. 

Step3:  𝑁𝑃𝑚(𝑤𝑝
𝑚𝑖𝑛) corresponding to 𝑧 = 0 is calculated as follows: 𝑁𝑃𝑚(𝑤𝑝

𝑚𝑖𝑛) is obtained by substituting 𝑤𝑝
𝑚𝑖𝑛  into 

Eq. (41). 

Step 4: if 𝑚𝑎𝑥 {𝑁𝑃𝑚(𝑤𝑝1
∗ ), 𝑁𝑃𝑚(𝑤𝑝

𝑚𝑖𝑛)} ≤ 0 stop. If 𝑁𝑃𝑚(𝑤𝑝1
∗ ) > 𝑁𝑃𝑚(𝑤𝑝

𝑚𝑖𝑛) and 𝑚𝑎𝑥 {𝑁𝑃𝑚(𝑤𝑝1
∗ ),𝑁𝑃𝑚(𝑤𝑝

𝑚𝑖𝑛)} > 0 

proceed to Step 5. If not, proceeds to Step 6. 

Step 5: The following equations provide the Stackelberg game equilibrium: 𝑧∗ = 1, 𝑤𝑝
∗ = 𝑤𝑝1

∗  , 𝑝𝑖
∗  𝑖 = 1,2, … , 𝑛  (from 

Eq. (18)), 𝑠𝑖
∗ 𝑖 = 1,2, … , 𝑛    (from Eq. (19)), 𝑦𝑖

∗ 𝑖 = 1,2,… , 𝑛  (from Eq. (34)), and  𝐶∗  (from Eq (37)). 

Step 6: The following equations provide the Stackelberg game equilibrium: 𝑧∗ = 0, 𝑤𝑝
∗ = 𝑤𝑝1

∗ , 𝑝𝑖
∗  𝑖 = 1,2,… , 𝑛 , (from 

Eq. 18), 𝑠𝑖
∗ 𝑖 = 1,2,… , 𝑛  , (from Eq. (19)), 𝑦𝑖

∗ 𝑖 = 1,2,… , 𝑛  (from Eq. (34)), and 𝐶∗  (from Eq (40)). 

6. Enhancement via a cooperative contract 

The Stackelberg game's equilibrium is the outcome of a non-cooperative game in which the manufacturer uses his 
leadership to maximize his profits by considering the optimal reactions of his retailers. Any deviation from the 
Stackelberg equilibrium by the manufacturer results in a loss for him. Nevertheless, these deviations may not result 
in a loss for his retailers, as the manufacturer can perceive. As a result, the manufacturer is aware of which deviations 
might increase the overall profit of the VMI system. Therefore, if the retailers are eager to collaborate with him, the 
manufacturer could be able to increase profits for all enterprises. The section will examine how the manufacturer 
leverages his informational advantages to increase his profit, which benefits both the manufacturer and his retailers. 
The enhancement is only possible by adjusting the wholesale price 𝑤𝑝  since, according to Eq. (20), the retailer's profit 

is impacted by a single manufacturer decision variable (𝑤𝑝). The section assumes that: 

The manufacturer is eager to deviate from the Stackelberg equilibrium to generate a higher system profit than the 
Stackelberg equilibrium.  

The manufacturer and his retailers may establish a cooperative agreement to divide the increased profit associated 
with a given weight 𝛿𝑖   𝑖 = 0,1,… , 𝑛 and ∑ 𝛿𝑖 = 1𝑛

𝑖=0 , where 𝑖 = 0 represents the manufacturer. 

As a result, the manufacturer and his retailers might boost their revenues in comparison to the Stackelberg game 
equilibrium by following the instructions below: 

Step 1: The manufacturer modifies 𝑤𝑝  and computes the maximum additional benefit. (The additional profit is equal 

to the difference between the system profit in the two modes 𝑤𝑝  current and 𝑤𝑝  optimal). 
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Step 2: If the maximum additional profit is less than zero, the process is terminated, and the Stackelberg equilibrium 
is maintained in its present state. If not, go to Step 3. 

Step 3: Sign a cooperative arrangement outlining how the enterprises will split the additional profit. 

7. Numerical example 

 
In this part, we analyze 1) the advantages of the Stackelberg game; and 2) the effect of the cooperative contract on 
the manufacturer's and retailers' profits compared to the outcomes at the Stackelberg game equilibrium. 3); the im-
pact of specific market characteristics on the manufacturer's and his retailers' decisions and profitability. According 
to Almehdawe and Mantin (2010), the inputs are derived from the suggested assumptions and previous research. 
The retailers received identical inputs as in (Deng et al. (2020)) for the aim of simplicity. The inputs encompass 
𝑛 = 3,𝐾𝑖 = 3 × 106, 𝑎𝑖 = 1.8, 𝛼𝑖 = 0.2, 𝜂𝑖 = 10, 𝜉𝑖 = 9, 𝐵𝑟𝑖 = 200,𝐻𝑟𝑖 = 
 4, 𝑆𝑟𝑖 = 40,𝜙𝑖 = 3, 𝐶𝑎𝑝 = 200,𝐻𝑚 = 3, 𝑆𝑚 = 100, 𝐶𝑚 = 160, 𝛿𝑖 = 0.25 (𝑖 = 0,1,2,3).   

7.1. The manufacturer's benefit and future improvement  

We modify the wholesale price from $229 (𝑤𝑝
𝑚𝑖𝑛) to $430 to demonstrate 

the benefit of the Stackelberg to the manufacturer, as well as potential additional benefits to 
the manufacturer and his retailers via a cooperative agreement and yield the corresponding outcomes demonstrat-
ed in Fig. 3, where the series 𝑛 ∗ 𝑁𝑃𝑟𝑖

_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑇𝑁𝑃_𝑐𝑢𝑟𝑟𝑒𝑛𝑡,  𝑁𝑃𝑚_𝑐𝑢𝑟𝑟𝑒𝑛𝑡, and  𝑁𝑃𝑚_𝑏𝑎𝑠𝑒 represent the sum of 

three-retailer net profits, the total net profit of the VMI system, the manufacturer's net profit at the current modifying 
wholesale price (𝑤𝑝), and the manufacturer's net profit at the base instance's Stackelberg equilibrium. Because of Fig. 

3, we deduce the following: 
[1] The manufacturer benefits from the Stackelberg game's equilibrium in a non-cooperative context under the as-
sumptions specified in section 3.2. If the initial 𝑤𝑝  is $229, we could observe from series  𝑁𝑃𝑚_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑁𝑃𝑚_𝑏𝑎𝑠𝑒 

that if the manufacturer decides to adjusted 𝑤𝑝  from $229 to $342 (the Stackelberg equilibrium), the manufacturer's 

profit could rise (17548-14306)/14306=22.66 percent. [2] If the initial 𝑤𝑝  is more than the Stackelberg equilibrium 

price 𝑤𝑝
∗, the price shift from the initial 𝑤𝑝  to the Stackelberg game equilibrium price 𝑤𝑝

∗,  benefits both the manufac-

turer and its retailers. If the initial 𝑤𝑝=430 is changed to 𝑤𝑝 , the retailer's profit will rise by (38037-31178)/ 

31178=22 percent, while the manufacturer's profit would rise by (17622-17037)/ 17037=3.43 percent. 
[3] Depending on the assumptions in Section 6, if the manufacturer and his retailers are inclined to collaborate, the 
manufacturer must deviate 𝑤𝑝  from $342 (the Stackelberg equilibrium price) to $229, bringing the VMI system the 

maximum extra profit of $68032-$55659=$12373. The manufacturer and his retailers subsequently benefit from 
them by applying a specified profit-sharing weight of 𝛿0 = 𝛿1 = 𝛿2 = 𝛿3 =0.25. 

 

Figure. 3. The Stackelberg equilibrium and its enhancement 

  

In comparison to the Stackelberg equilibrium, the manufacturer and his retailer improve their profits by 
0.25*12373/17548=17.62 percent and 0.25*12373/(38037/3)=24.39 percent, correspondingly. 

7.2. Sensitivity analysis 
Table 2 shows the ideal values of decision variables, as well as a sensitivity analysis of a few parameters. 
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A few observations are chosen from Table 2 and summarized as follows. 

 

 

Table 2: A sensitivity analysis 

Parameters value 𝒔𝒊
∗ 𝒑𝒊

∗ 𝒚𝒊
∗ 𝒘𝒑

∗  𝑫𝒊
∗ 𝑪∗ 𝒛∗ 𝑵𝑷𝒓𝒊

∗  𝑵𝑷𝒎
∗  

Basic example  16.77 791.25 0.020 342.67 31.99 1.15 1 12657.65 17677.55 

𝐾𝑖  

2000000 13.37 793.51 0.020 343.67 20.28 1.48 1 8046.30 11203.41 

4000000 19.69 790.02 0.020 342.12 44.17 0.96 1 17449.24 24413.09 

𝑎𝑖 

1.7 23.69 916.60 0.020 368.42 52.04 0.87 1 25252.14 32906.45 

1.9 11.93 700.98 0.020 323.05 19.30 1.52 1 6409.66 9461.96 

𝛼𝑖 

0.16 13.90 801.32 0.020 347.14 27.11 1.26 1 11103.41 15314.84 

0.24 19.95 781.24 0.020 338.22 38.20 1.04 1 14590.86 20636.40 

𝑛 

1 16.73 795.86 0.020 344.72 31.64 1.70 1 12592.44 5837.83 

6 16.79 789.80 0.020 342.02 33.33 0.74 0 13217.21 35571.46 

𝐶𝑎𝑝 

100 16.76 792.89 0.020 343.40 33.33 0.70 0 13279.33 17767.80 

300 16.78 790.67 0.020 342.41 32.04 1.17 1 12665.88 17685.47 

𝐶𝑚 

100 19.93 536.44 0.020 229.42 66.67 0.49 0 17881.17 26597.07 

220 14.60 1081.18 0.020 471.52 17.74 1.75 1 9590.37 13392.72 

𝐻𝑟𝑖 

2 16.79 788.92 0.010 341.63 32.17 1.53 1 12690.86 17786.50 

6 16.75 793.20 0.029 343.53 31.85 0.96 1 12630.02 17592.76 

𝐻𝑚 

1 16.78 790.08 0.020 342.15 32.08 1.19 1 12674.40 17693.55 

5 16.76 792.36 0.020 343.16 31.91 1.11 1 12641.93 17662.19 

𝐵𝑟𝑖 

100 16.77 791.17 0.038 342.63 32.00 1.16 1 12658.83 17681.26 

300 16.77 791.28 0.013 342.68 31.99 1.15 1 12657.24 17676.29 

𝑆𝑟𝑖 

20 16.79 789.48 0.020 341.88 32.13 1.02 1 12682.85 17741.09 

60 16.76 792.80 0.020 343.35 31.88 1.27 1 12635.73 17622.36 

𝑆𝑚 

50 16.79 789.80 0.020 342.02 32.11 1.15 1 12678.35 17729.75 

150 16.76 792.55 0.020 343.25 31.89 1.15 1 12639.21 17631.11 

𝜙𝑖 

1 19.93 536.44 0.020 229.42 66.67 0.49 0 17881.17 17871.76 

5 16.68 800.91 0.020 346.96 31.27 1.17 1 12521.84 17487.78 

𝜉𝑖  

7 16.77 791.25 0.020 344.67 31.99 1.15 1 12657.65 17677.55 

11 16.77 791.25 0.020 340.67 31.99 1.15 1 12657.65 17677.55 

𝜂𝑖  

5 28.77 558.76 0.020 239.34 66.67 0.75 1 18625.31 19108.46 

15 13.39 791.45 0.020 342.76 30.57 1.18 1 12097.38 16890.45 
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7.2.1. Market parameters 

Let us examine the retailer's service level elasticity (𝛼𝑖). According to Fig. 4b, when 𝛼𝑖  increases, so do the net profits 
of all enterprises. For instance, by increasing 𝛼𝑖  from 0.28 to 0.32, the manufacturer's production capacity is ade-
quate, and its net profit grows from 24363.6 to 29053.9 by 19.25 percent. The retailer's net profit rises by 17.89 per-
cent from 17007.33 to 20050.12. The explanation for this is because, with such alteration 𝛼𝑖 , each retailer's demand 
rises by 22.26 percent, from 46.15 to 56.43, with a moderate decrease in wholesale and retail prices. The wholesale 
price drops by 1.31 percent from 333.79 to 329.40, while every retailer's retail price drop by 1.28 percent from 
771.29 to 761.40.  

  

  

Figure. 4. The impact of 𝜶𝒊, Take note that when 𝜶𝒊 ≥ 𝟎. 𝟑𝟔, the manufacturer's manufacturing capacity is used up 

 

In a VMI system where the production capacity is redundant, a higher profit rise may be achieved for a similar boost 
in 𝛼𝑖  than in a system where the capacity remains utilized up. For instance, in the case of redundant manufacturing 
capacity, a rise in 𝛼𝑖  from 0.28 to 0.32 enhances the profits of the manufacturer and each retailer by 19.25 percent, 
from 24363.6 to 29053.9, and by 17.89 percent, from 17007.33 to 20050.12, correspondingly. Their profits rise from 
35318.19 to 42500.13 by 20.33 percent and from 23371.44 to 25195.39 by 7.80 percent, likewise, when 𝛼𝑖  is in-
creased from 0.36 to 0.40 (due to inadequate manufacturing capacity). There is significant differentiation in im-
provement on the retailer profit between such two situations. As long as demand remains within total capacity, re-
tailers may raise their profitability by offering services to boost sales. When capacity is achieved, increasing service 
levels will not increase sales; however, it may rise in pricing.  
Let us now consider another market parameter – the price elasticity 𝑎𝑖 . From Fig. 5 and Table 2, with the decrease  𝑎𝑖 , 
net profit, and prices of both the manufacturer and retailers and service level of retailers are significantly increased, 
no matter whether the manufacturer’s production capacity is sufficient or not (the manufacturer reaches its capacity 
when 𝑎𝑖  is about 1.6).  
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Figure.5. The impact of 𝒂𝒊, note. When 𝒂𝒊 < 𝟏. 𝟔, the manufacturer's manufacturing capacity is used up. 

For example, when 𝑎𝑖  decreases from 1.8 in the base example to 1.7, the manufacturers and each retailer’s profits 
increase dramatically by (32906.45-17677.55)/ 17677.55=86.45% and (25252.14-12657.65)/ 12657.65=99.50%. 
For instance, when 𝑎𝑖  is decreased from 1.8 to 1.7, the manufacturer's (retailer’s) net profit increases by (32906.45-
17677.55)/ 17677.55=86.45% ((25252.14-12657.65)/ 12657.65=99.50.  The reason for the increase in retailer’s 
profit is that, when 𝑎𝑖  decreases, each retailer's demand and retail price increase from 31.99 units and $791.25 to 
52.04 units and $916.60. Similarly, due to the increasing product demand and  
𝑤𝑝

∗ rising, the manufacturer's profit can skyrocket. 

The effects 𝐾𝑖  on the manufacturer's and all retailer's profits are comparable to those of 
𝛼𝑖; thus, they are deleted. 

7.2.2. Inventory parameters 

Inventory-related parameters have a minor impact on manufacturers’ and retailers' profits; however, they might 
have a significant effect on their inventory policies on occasion. When the holding cost per unit completed product 
𝐻𝑟𝑖 is reduced from $4 to $2, the manufacturer's profit increases only by (17786.50-17677.55)/ 17677.55=0.61 per-
cent, while the common replenishment cycle 𝐶 boosts by (1.53-1.15)/ 1.15=33.04 percent, as illustrated in Table 2. 

8. Conclusion 

Using the Stackelberg model, the article describes a VMI system with one manufacturer and multiple retailers, and 
when it comes to price, service levels, and inventory rules, the manufacturer takes the lead, and all retailers follow. In 
the investigated VMI system, the manufacturer produces a single product at a wholesale price due to manufacturing 
capacity constraints and provides the product to retailers, who subsequently sell the product in the dispread market 
at retail price. The Cobb-Douglas demand function describes the demand rate for a product in the retail market, a 
declining function of price, and a rising service level function. The Stackelberg game equilibrium is proved to be 
unique and could achieve using the algorithm steps provided. We demonstrate that, compared to the Stackelberg 
equilibrium, the manufacturer's and their retailers' profits might be significantly higher, and we prove the conditions 
for raising the profit of any enterprise depending on certain additional assumptions in Section 6. Ultimately, a numer-
ical analysis is carried out to fully understand the suggested models and assess the influence of market and inventory 
parameters, resulting in the following management implications: 
1) The manufacturer and its retailers must recognize market-related parameters since they substantially influence 
their profits. By increasing 𝛼𝑖  and 𝐾𝑖 , When the manufacturer's production capacity is sufficient, a minor drop in re-
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tail and wholesale pricing, as well as an improvement in retail service level, can boost the manufacturer's net profit. 
When a manufacturer's manufacturing capacity is depleted, they might boost their net profits by raising retail service 
levels and charge higher prices while demand is constrained by continuous supply. 
2) The profits of the manufacturer and his retailers in the VMI system always increase as 𝑎𝑖  is reduced. For example, 
in our analysis, a 10-percent drop in price elasticity (from 1.8 to 1.7) may improve the manufacturer's and every re-
tailer's profits by 86.45 percent and 99.50 percent, respectively.  
3) The manufacturer might utilize the retailer's information in the VMI system to maximize its profit. In our example, 
the Stackelberg equilibrium may enhance the manufacturer's profit by 22.66 percent at the starting wholesale price 
𝑤𝑝=229 (before utilizing the Stackelberg game). 

4) When the manufacturer's capacity is used up, he may monopolize all of the system's additional profit owing to 
lower manufacturing costs. However, in most situations, it will be more logical for the manufacturer to share the ad-
ditional profit generated by the VMI system with his retailers because of higher system revenue or lower system 
costs.  
5) Retailers benefit from the Stackelberg equilibrium if the wholesale price is initially set higher than that at the equi-
librium Stackelberg pricing. Assuming the starting wholesale price 𝑤𝑝=430, the Stackelberg equilibrium may boost 

the retailer's profit by 22%. 
6) Only when it is smaller than that of the Stackelberg equilibrium can the system profit, and then the profit of every 
enterprise is enhanced compared to the Stackelberg equilibrium. In our case, the manufacturer's and retailers' profits 
might rise roughly 20% compared to the Stackelberg equilibrium.  
This study has some limitations that can be considered in future studies. On the one hand, while our theoretical con-
clusions are potentially helpful and generic for VMI practices, collecting data from real-world VMI systems to conduct 
a specific case study is desirable. Analyzing an actual VMI situation would be fascinating to produce more precise 
recommendations for supply chain participants to acquire their optimal prices and service level investments. It is 
proposed that a centralized model of the investigated VMI system is evolved and that our findings be compared to 
those of the centralized model. In addition, the suggested model included deterministic demand. In the future, sto-
chastic demand may be used. In addition, it is suggested that future research take competition among retailers into 
account. Ultimately, as an extension of our Stackelberg game, advertising promos (Khorshidvand et al. 2021(a), 
2021(b) and 2021(c)) may be integrated with price and service level. This study used only the traditional retail 
channel to sell the manufacturer's products. Due to the changes in the buying process caused by modern technology, 
considering the online channel is also recommended for the manufacturer. Considering a discount strategy can also 
be an exciting topic for future research. 
Appendixes 

Appendix A. The proof of Theorem 1   

The Hessian matrix is a negative definite.  

𝜕2𝑁𝑃𝑟𝑖
(𝑝𝑖 , 𝑠𝑖)

𝜕𝑝𝑖
2 = 𝐾𝑖𝑎𝑖𝑠𝑖

𝛼𝑖𝑝𝑖
−𝑎𝑖−2

[(𝑎𝑖 − 1)𝑝𝑖 − (𝑎𝑖 + 1)(𝑤𝑝 + 𝜉𝑖)] 

𝜕2𝑁𝑃𝑟𝑖
(𝑝𝑖 , 𝑠𝑖)

𝜕𝑝𝑖𝜕𝑠𝑖
=

𝜕2𝑁𝑃𝑟𝑖
(𝑝𝑖 , 𝑠𝑖)

𝜕𝑠𝑖𝜕𝑝𝑖
= 𝐾𝑖𝛼𝑖𝑠𝑖

𝛼𝑖−1
𝑝𝑖

−𝑎𝑖−1
[(1 − 𝑎𝑖)𝑝𝑖 + 𝑎𝑖(𝑤𝑝 + 𝜉𝑖)] 

𝜕2𝑁𝑃𝑟𝑖
(𝑝𝑖 , 𝑠𝑖)

𝜕𝑠𝑖
2 = 𝐾𝑖𝛼𝑖(𝛼𝑖 − 1)𝑠𝑖

𝛼𝑖−2
𝑝𝑖

−𝑎𝑖(𝑝𝑖 − 𝑤𝑝 − 𝜉𝑖) 

The Hessian matrix is thus equal to 

[
 
 
 
 
𝜕2𝑁𝑃𝑟𝑖

(𝑝𝑖 , 𝑠𝑖)

𝜕𝑝𝑖
2

𝜕2𝑁𝑃𝑟𝑖
(𝑝𝑖 , 𝑠𝑖)

𝜕𝑝𝑖𝜕𝑠𝑖

𝜕2𝑁𝑃𝑟𝑖
(𝑝𝑖 , 𝑠𝑖)

𝜕𝑠𝑖𝜕𝑝𝑖

𝜕2𝑁𝑃𝑟𝑖
(𝑝𝑖 , 𝑠𝑖)

𝜕𝑠𝑖
2 ]

 
 
 
 

 

The Hessian matrix's determinant is positive and 
𝜕2𝑁𝑃𝑟𝑖

(𝑝𝑖,𝑠𝑖)

𝜕𝑝𝑖
2 |

𝑝𝑖=𝑝𝑖
∗
= −𝐾𝑖𝑠𝑖

𝛼𝑖 (
𝑎𝑖(𝑤𝑝+𝜉𝑖)

𝑎𝑖−1
)
−𝑎𝑖−2

(𝑤𝑝 + 𝜉𝑖) < 0 the Hessian 

matrix is negative definite. Therefore, solving the first-order conditions 
𝜕𝑁𝑃𝑟𝑖

(𝑝𝑖,𝑠𝑖,𝑤𝑝)

𝜕𝑝𝑖
= 0 and 

𝜕𝑁𝑃𝑟𝑖
(𝑝𝑖,𝑠𝑖,𝑤𝑝)

𝜕𝑠𝑖
= 0 for 

(𝑝𝑖 , 𝑠𝑖) yields the optimal retailer reactions in (16) and (17). 

𝜕𝑁𝑃𝑟𝑖
(𝑝𝑖 , 𝑠𝑖)

𝜕𝑝𝑖
= 𝐾𝑖𝑠𝑖

𝛼𝑖𝑝𝑖
−𝑎𝑖−1

[(1 − 𝑎𝑖)𝑝𝑖 + 𝑎𝑖(𝑤𝑝 + 𝜉𝑖)] = 0 ⟹ 𝑝𝑖
∗(𝑤𝑝) =

𝑎𝑖(𝑤𝑝 + 𝜉𝑖)

𝑎𝑖 − 1
  

𝜕𝑁𝑃𝑟𝑖
(𝑝𝑖 , 𝑠𝑖)

𝜕𝑠𝑖
= 𝐾𝑖𝛼𝑖𝑠𝑖

𝛼𝑖−1
𝑝𝑖

−𝑎𝑖(𝑝𝑖 − 𝑤𝑝 − 𝜉𝑖) − 𝜂𝑖𝑠𝑖 = 0   ⟹   
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𝑠𝑖
∗(𝑤𝑝) = [

𝐾𝑖𝛼𝑖

𝜂𝑖

(𝑤𝑝 + 𝜉𝑖)

𝑎𝑖 − 1
]

1
2−𝛼𝑖

(
𝑎𝑖(𝑤𝑝 + 𝜉𝑖)

𝑎𝑖 − 1
)

−𝑎𝑖
2−𝛼𝑖

  

 

Theorem 1 is proved.  

Appendix B. The proof of Theorem 2 

Proof. When the manufacturer's capacity is used up (𝑧∗ = 0), ∑ 𝐷𝑖
𝑛
𝑖=1 (𝑝𝑖

∗(𝑤𝑝)𝑠𝑖
∗(𝑤𝑝)) = 𝐶𝑎𝑝 may be used to deter-

mine the unique 𝑤𝑝
∗ = 𝑤𝑝

𝑚𝑖𝑛 . Afterward, we may derive unique 𝑝𝑖
∗,𝑠𝑖

∗, 𝑦𝑖
∗, and 𝐶∗ by substituting 𝑤𝑝

𝑚𝑖𝑛  into Esq. (18), 

(19), (34), and (40). When a manufacturer's capacity is redundant (𝑧∗=1), we could use Eq. to identify the critical 
point (𝑤𝑝

∗) at which the manufacturer's profit is maximized (38). Without losing generality, we assume there are two 

key point points 𝑤𝑝
∗ designated by 𝑤𝑝𝑐

∗ > 𝑤𝑝𝑑
∗  if there is more than one 𝑤𝑝

∗. Eq. (20) states that 𝑁𝑃𝑟𝑖

∗  is a diminishing 

function of 𝑤𝑝
∗ because 

𝜕𝑁𝑃𝑟𝑖
∗

𝜕𝑤𝑝
∗ < 0. As a result, the manufacturer, as the leader, knows 𝑁𝑃𝑟𝑖

∗(𝑤𝑝𝑐
∗ ) < 𝑁𝑃𝑟𝑖

∗(𝑤𝑝𝑑
∗ ), and 𝑤𝑝𝑑

∗  

will be chosen as the ultimate optimal solution if the manufacturer attempts to satisfy his retailers. In such a case, we 
derive the unique values of 𝑝𝑖

∗, 𝑠𝑖
∗, 𝑦𝑖

∗, and 𝐶∗ by inserting 𝑤𝑝𝑑
∗  into Eqs. (18), (19), (34), (37), and (39). Ultimately, at 

both 𝑧∗=1 and 0, the manufacturer cannot achieve his maximum profit. We are assuming that the manufacturer can 
maximize his profit at both 𝑧∗=1 and 0. Therefore, we have two 𝑤𝑝

∗ in this circumstance. We deduce from the analysis 

in case 𝑧∗=1 that only the smaller 𝑤𝑝
∗ of them will be chosen. As a result, we achieve the unique Stackelberg equilibri-

um. Theorem 2 is proved. 
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