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Abstract 

Scheduling and timetabling for university system have been a source of attention and an important challenge for the people in 

charge of administrations. The regulations and infrastructures are very diverse between universities, making it impossible to 

come up with a universal model for all. We, in this research, focused on coming up with an algorithm to help with timetabling 

of class courses for Islamic Azad university of Robat Karim. Our goal was to define an algorithm that could improve teacher 

satisfaction, and overall efficiency of the university timetabling. Instead, we managed to come up with an efficient algorithm. 

This research considers different factors such as teacher satisfaction, knowledge and skillset, categorizes students based on un-

dergraduate versus post graduate degree, their research background, their scores and finally student satisfaction as well. This 

multi-objective mathematic model accounts for all the rules, regulations, and limitations of the university setting while following 

challenging confinements that guarantee the feasibility of the solution. Using metaheuristic algorithm of Whale and Genetic, 

while avoiding any breach of the soft limitations, we managed to come up with a system that provides the most satisfaction 

between the teachers and students. In our research, we compared Whale and Genetic algorithm with 4 other metaheuristic algo-

rithms. We concluded that the results of Whale and Genetic algorithm are superior to other algorithms in regards to: Improved 

function goals, less run time, more Pareto front averages, more efficient solutions and results.  
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1.  Introduction  

Scheduling is a very important aspect of today’s fast pace life. Nowadays, people are constantly trying to be more 

efficient and get more done in shorter time. The main focus on time management initially was driven to this issue 

in the late 1950s, after the world war, and during the industrial revolution era. A lot of researchers and mathema-

ticians focused on this matter since. Timetabling is the art of dedicating energy/time to resources in a way that 

there would be no interaction between two different programs while considering all the limitations. Examples of 

timetabling charts are: timetabling for school subjects (Post et al., 2011), timetabling for a project (Agarwal et al., 

2011), scheduling thecrew(Barrera et al., 2012), public transport scheduling(Shafie et al., 2012), scheduling sports 

events (Nurmi et al., 2013), and scheduling flights (Pita et al., 2012). Solving the challenges facing the university 

course timetabling problem (UCTP) is a daunting task due to the diversity among subjects and the broad nature 

of the topic. There are various approaches to overcome such issues. Based on the time required to solve these 

problems and their complex nature, these problems are difficult to solve and fall under the category of NP-Hard. 

These problems are complex and multi-objective, making them challenging to solve. Optimization algorithms are 

divided into different categories such as exact and approximate algorithms. University timetabling is an NP-hard 

problem due to its complexity; thus, exact algorithms are not efficient in solving timetabling problems. An approx-

imate algorithm provides close-to-ideal answers in a short time and is capable of solving NP-hard problems, such 

as the University timetabling problem. Most researchers on this topic agree that timetabling problems are complex 
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NP-Hard problems that as of yet, no perfect algorithm has been introduced that could solve these problems effi-

ciently. In other words, there is no absolute guarantee algorithms that could solve all these problems. As the prob-

lem gets more complex, the time required to run the algorithm is significantly increased as well. Thus, the only 

solution is utilizing an approximate algorithm that provides us with acceptable results in a reasonable run time.  

However, the UCTP involves a multi-dimensional scoring system in which faculty and students are linked to 

courses and classes. Each group’s constraints must be considered while planning to design an efficient algorithm. 

The run time of these algorithms dramatically increase with their scale and complexity (Dokeroglu et al., 2019). 

Hence, there is no perfect algorithm to solve these problems. In order to overcome this complexity heuristic and 

metaheuristic algorithms have been developed. In heuristic algorithms, there is a proper rationale behind the so-

lution but that rationale is only applicable to a specific situation and it may not be the best rational. Thus, these 

heuristic methods are not extensible to other issues and make them less desirable. Another flaw of heuristic algo-

rithms is that they provide one or a few solutions that are supposed to be optimal but in reality, may not be. 

Basically, they get stuck on local (low level) optimal points and do not explore for better solutions. On the other 

hand, metaheuristic algorithms are flexible, their results are extensible and can be used to solve variety of problems 

in the diverse field of the UCTP. Unlike the heuristic algorithms, metaheuristic algorithms do not stop at the local 

optimal point and constantly utilize random numbers to keep looking for the best and most optimal solution (Garry 

and Johnson 2002).  As a whole, a UCTP involves two categories of objectives; (1) weekly timetabling of the courses, 

and (2) Examination timetabling. This study, as a contribution, develops a new hybrid metaheuristic algorithm 

consisting of whale optimization algorithm (WOA) and non-dominated sorting genetic algorithm 2 (NSGA-II) to 

dedicate courses to lecturers and students during a semester. The satisfaction of both groups must be simultane-

ously satisfied subject to all the rough constraints. The efficiency of this hybrid method is confirmed by comparing 

its results with some other metaheuristic algorithms. Besides, this algorithm is successfully conducted in a branch 

of Islamic Azad University (IAU) in Iran.  

2.Literature review 

The whale optimization algorithm was first described by Mirjalili and Lewis (2016) from Griffith University in 

Australia. This algorithm is inspired by observing how humpback whales find their prey in the ocean. They first 

surround their prey, then go around in circles to make giant bubbles swirling around the hunt to make it confused. 

This will also help them locate the prey better and increases their chance of success. This method of hunting, gives 

them multiple advantages. This will allow them to cover a larger area to look for hunting and also a better chance 

of having a successful hunt. This algorithm can avoid local optimization and achieve global optimization while 

reducing the number of calculations required. The genetic algorithm is another algorithm inspired by the nature. 

This algorithm was designed for explaining genetic mutation, populations of chromosomes, and certain parame-

ters such as population size and mutation rate. Natural selection and genetic science were the key components of 

this algorithm. In this algorithm, chromosomes play the role of answers that are allocated to numbers. The condi-

tions required for a population to evolve correspond to the function of value and quality control on a chromosome 

in the algorithm. This has been translated into a mathematical function. Natural selection is considered as the 

fitness function. Similar to DNA gene expression, translation, transcription, and duplication process, here in this 

algorithm, the date is paired two by two, then split and changed with other data until the final optimized product 

is produced by process of random selection. In the past, timetabling had to be done manually. People used to sit 

down, write the number of courses on a piece of paper. Care was taken to not schedule the two most popular 

courses at the same time. Then other courses would be added to the schedule one by one, from the most to least 

popular courses. This process would go on until all courses were dedicated to an instructor. This is no longer 

possible with the number of courses offered at a university each semester. On the other hand, timetabling has 

university-specific limitations such as the number of students, faculty, and space available so there is no universal 

protocol. The protocol for each institution has to be developed specifically for that institution. Especially nowadays 

that more students are enrolled in graduate school, the need for a specific organized system is felt even more. 

Considering that timetabling is a subcategory of NP-Hard, to date, no specific multi-objective algorithm has been 

proposed to solve this problem. There is not a definite solution for these types of problems. Various models such 

as mathematical, computers, graphs, etc. have been proposed in the previous years. All of these models had the 

same goals: putting in data would provide you with an optimized plan which takes into consideration, goals of 

the program, needs, and resources. Mathematical models, especially linear models, have a specific application in 

this field. Timetabling of university courses taking care to have the least deviation from soft limitation has been 

achieved their goals in a short time compared to other mathematical models and algorithms (Fonseca et al., 2017). 
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Generally, timetabling includes scheduling courses, classes, and faculty in a fixed period while considering the 

limitations (Basir et al., 2013). Phillips used an integer programming method to solve the problem of assigning 

classes in larger scale university settings using an absolute number model (Phillips et. al. 2015). Badoni and col-

leagues emphasize on the fact that UCTP is a complicated subject with limited resources which makes finding an 

optimized solution, challenging, to say the least. They proposed an Ant colony optimization algorithm for the 

university timetabling using events based on groupings of students. This novel idea allocated the students into 

groups in a way that each student was only member of one group. Then the results were dedicated to different 

times and rooms based on the solution provided by the Ant colony algorithm (Badoni et al. 2024). Burke et al. 

(2007) have used a metaheuristic method to provide a solution for timetabling based on graphs. Sabar et al. (2009) 

has used the honeybee mating algorithm to solve the issue of timetabling for university courses and exams. This 

nature-inspired algorithm has one big difference to the GA; instead of selecting two parents in each phase, only 

one parent is needed and the second parent is the queen that is available at all levels. Shokri’s group have used a 

twostep method to solve the timetabling problem at Tehran University. The first step involved using a metaheu-

ristic algorithm to solve the problem, while considering all NP hard limitation, while the second step was to allo-

cate courses to specific classrooms. They used a few neighboring functions to optimize the solution and calcula-

tions. This led to an algorithm that generated a solution within a few minutes and had short run time (Shokri et. 

all, 2023). Metaheuristic approaches have become popular over the past decade. Some examples of such algorithms 

are firefly algorithm (FA), cuckoo search (CS), artificial bee colon (ABC), Tabu search (TS), genetic algorithm (GA), 

and simulated annealing (SA) (Badoni et al.,2014). Al-Betar et al (2012) used the memetic algorithm in their research 

for timetabling. They utilized a harmony search algorithm with a metaheuristic method based on the population. 

This algorithm was combined with the hill-climbing algorithm to expand their research. It also was combined with 

the optimum compact particle algorithm to increase the convergence. The results suggested that their method is 

optimized and is predicted to be useful for complicated data. Some other similar algorithms that have been studied 

by researchers are great deluge algorithm which is a type of search and Integer Programming tool and logical 

programming. These have been implemented in artificial intelligence studies (Yadegari et al., 2019). Some articles 

have looked at optimizing the metaheuristic algorithms such as hybrid algorithm by allocating faculty to periods, 

classes, and improving timetabling while considering limitations (Abdullah et al., 2010). Murali et al., (2017) have 

looked into an algorithm based on optimized memetics which uses SA for local probing to solve the problem. 

Mahiba and Durai (2012) proposed a developed GA using a forbidden search algorithm and considering the prob-

lem as a multi-allocating issue. Hiryanto (2013) have looked at solving the dynamic constraint problems using the 

coloring graph. Mallari’s research has proposed a different insight into university timetabling problem by optimiz-

ing an approach to course calendars. They designed a multi-objective linear programming model of absolute num-

bers. Then they assessed the quality of the timetabling calendar bases on the following factors: 1) Compatibility 

with the schedule of students 2) Being feasible based on the time crunch limitations of students 3) Considering 

time limitations of the faculty. They achieved good results using an exact algorithm with 100% satisfaction and 

9.45 % average optimization based on the timetabling calendars. Subulan and colleagues used a multi-objective 

optimization model for a capability-based university course timetabling problem. Their algorithm provides a wide 

range of courses with maximum capacity for the students during a semester. They first categorized the feedback 

received from students based on the student’s understanding of the courses and the course content, then they 

propose a non-linear absolute number model that considered all hard and soft limitations. This model was suc-

cessful in utilizing each student’s capacities and allocate them to each class in a way that their skills/capacity is 

best used. They assessed multiple other parameters such as how to allocate each available course to the faculty that 

has the most skillset in teaching that course. (Subalan et al. 2022). Badoni et al. (2014) Suggested a new algorithm 

which would form from combining GA and local search algorithm. Alzaqebeh and Abdullah (2015) proposed an 

ABC algorithm used to solve problems in courses. This algorithm had three unique properties: utilized different 

methods to choose a self-adjustment system in order to pick the neighboring structure in the search process and 

was able to combine with other local algorithms. Chang et al. (2017) proposed a new mathematical model to solve 

the timetabling of the single machine production problem. This model used solid optimization to consider non-

definitive transaction’s time taking. Unlike the approach of randomized models, this model used an accurate and 

specific distribution method to process the non-definitive parameters. Algethami et al. used a mathematical model 

for course timetabling problem with faculty-course assignment constraints. Tavakoli has looked at two different 

mathematical models for university timetabling. One model was a general model while the other considered some 

limitations and specifics. Such specifics were: knowledge superiority of some professors compared to others, time 

assigned to each professor, faculty consultation to students, quality of teaching. They found out that the model 
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that considered specifics, was superior (Tavakoli et. al. 2018). Vermonten et. al. looked at using an absolute number 

model to decrease the movement of students from class to class while marinating faculty satisfaction and reducing 

the number of days that faculty would need to work. This was achieved by allocating lessons to specific time 

periods and available classes (Vermonten et. al.2016). Kong et al. (2017) presented a model for production timeta-

bling of single-machine systems. Pereira and Vásquez (2017) suggested another mathematical model for timeta-

bling a single machine model. They combined branch and bound algorithms and were able to solve problems with 

up to 300 tasks. Landir et al. (2020) proposed two models of timetabling for high school courses with mixed-integer 

linear programming. They solved both of these using cooperative parallel methods. They solved one with the cut-

ting plane technique and the other using GA. 

Motivated by the relevant literature, there are shortcomings in the context of UCTP that this study tries to cover. 

In this regard, the main contributions of this study can be highlighted as follows: 

• A multi-objective binary integer programming is developed. 

• A new hybrid metaheuristic algorithm, consisting of WOA and NSGA-II, is extended. 

• A real case study, a branch of IAU, is examined using the proposed model and solution method.   

 

3. Problem definition 

A lot of factors should be considered in timetabling for university courses. Some resource limitations to consider 

are time available to offer the courses during weekdays, hours dedicated to education in a day, and equipment 

needed for each course. The objective of this study is to present a timetabling model for university courses in a 

way that maximizes the satisfaction of lecturers and students, while still considering all the limitations. The fol-

lowing rule, as an assumption, for each course should be considered. Each course would be considered 16 hours 

of education per unit, each education hours is 45 minutes, in a semester. This would be fulfilled within a 6 

day/week work schedule in which each day is divided into four time periods from 8 AM to 7 PM. In order to 

formulate the model, we have to consider some constraints, such as available lecturers, classrooms, time of offering 

classes, working days, and time blocks in a day. In general, there are three rough constraints that must be satisfied. 

The first one is resource limitation, for instance, having capable lecturers or having classrooms. The second one is 

non-overlap, so a teacher only dedicates one course/group/classroom in a given time; the same rule applies to 

dedicating a classroom to a course/teacher/group and also dedicating a group of students to a teacher/ course in 

the same given time. The last one is the equipment needed for each course; here, the least needed equipment for 

each course is the whiteboard or based on the contents of that course could be a video projector, computer, labor-

atory equipment, recreational equipment, or maps. Moreover, there exist several soft constraints that should be 

considered. Teacher satisfaction, being able to offer a variety of courses, limiting disruption in the plan, limiting 

classroom changes, or swapping lecturers between classrooms are examples of soft constraints. The violation of 

these kinds of constraints leads to the penalty. The assumptions of this study are also listed below: 

All sessions of a subject/group should be taught by the same teacher. The minimum and maximum sessions that 

each faculty has to teach during a semester should be passed; these session numbers differ between faculties. There 

is no difference in scheduling mandatory versus elective subjects. The minimum required units that a faculty has 

to offer during a semester is two units and the maximum is nine units per day.  
 

4. Mathematical model 
 
The model is formulated through multi-objective binary integer programming. Each activity includes a lecturer, a 

course, a class, and a group of students. This way removes unacceptable combinations from the problem by defin-

ing each activity based on them. An example of an unacceptable combination is a lecturer or group of students that 

are not defined for a specific class or course. The final result of this reduces the problem size and the number of 

variables dramatically.  

The sets, parameters, and decision variables are mentioned as follows. 

Sets: 

𝑟𝜖(1, … , 𝑅) the set of classrooms 

𝑑𝜖(1, … , 𝐷) the set of classes’ day 

𝑡𝜖(1, … , 𝑇) the set of periods 
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𝑐𝜖(1, … , 𝐶) the set of courses 

𝑝𝜖(1, … , 𝑃) the set of lecturers  

𝑔𝜖(1, … , 𝐺) the set of students’ groups 

𝑘𝜖(1, … , 𝐾) the set of equipment  

Parameters: 

𝑊𝑐𝑝𝑡𝑑  the satisfaction of lecturer 𝑝 for course𝑐 in the allotted time 𝑡 on day 𝑑 

𝑊𝑐𝑔𝑡𝑑
′  the satisfaction of a group of students 𝑔 for courses𝑐 in the allotted time 𝑡 on day 𝑑 

𝑎𝑝 the significance of lecturer 𝑝 for the university 

𝑎’𝑔 the importance of group 𝑔 of students for the university 

ℎ𝑐 the number of units of course𝑐 

𝐿𝑝 the minimum number of units allotted to lecturer 𝑝 

𝑈𝑝 the maximum number of unites allotted to lecturer 𝑝 

𝐻𝑚𝑎𝑥
𝑝

 the maximum number of units allotted to a lecturer 𝑝 in a day 

𝐻𝑚𝑖𝑛
𝑝

 the minimum number of units allotted to a lecturer 𝑝 in a day 

𝑦𝑝𝑑 if lecturer 𝑝 has the class on the day 𝑑 will be 1, and otherwise will be 0. 

𝑏𝑝𝑐 if lecturer 𝑝presents the course𝑐 will be 1, and otherwise will be 0. 

𝑒𝑝𝑑  if lecturer 𝑝 is available on day 𝑑 will be 1, and otherwise will be 0. 

𝑓𝑐𝑑  if course𝑐 is available to be presented on day 𝑑will be 1, and otherwise will be 0. 

𝜗𝑟𝑘 if classroom 𝑟 has proper equipment 𝑘will be 1, and otherwise will be 0. 

𝑧𝑐𝑘  if course requires equipment 𝑘will be 1, and otherwise will be 0. 

Variables: 

𝑥𝑐𝑝𝑔𝑡𝑑𝑟 
A binary variable; if lecturer 𝑝presentscourse 𝑐 to group of students𝑔 in period 𝑡 of day𝑑in 

classroom 𝑟will be 1, and otherwise will be 0. 

Objective function: 

𝑀𝑎𝑥𝑓1 = ∑ ∑ ∑ ∑ ∑ ∑ 𝑎𝑝. 𝑊𝑐𝑝𝑡𝑑 . 𝑥𝑐𝑝𝑔𝑡𝑑𝑟

𝑅

𝑟=1

𝐷

𝑑=1

𝑇

𝑡=1

𝐺

𝑔=1

𝑃

𝑝=1

𝐶

𝑐=1

 (1) 

𝑀𝑎𝑥𝑓2 = ∑ ∑ ∑ ∑ ∑ ∑ 𝑎𝑔
′ . 𝑊𝑐𝑔𝑡𝑑

′ . 𝑥𝑐𝑝𝑔𝑡𝑑𝑟

𝑅

𝑟=1

𝐷

𝑑=1

𝑇

𝑡=1

𝐺

𝑔=1

𝑃

𝑝=1

𝐶

𝑐=1

 (2) 

The first objective function (1) maximizes lecturers’ satisfaction with the timetabling. The second objective func-

tion (2) maximizes students’ satisfaction with the timetabling. 

Constraints: 
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∑ ∑ ∑ ∑ ∑ 𝑥𝑐𝑝𝑔𝑡𝑑𝑟 = 1

𝑅

𝑟=1

𝐷

𝑑=1

𝑇

𝑡=1

𝐺

𝑔=1

𝑃

𝑝=1

 ;  ∀𝑐 (3) 

Constraint (3) ensures that based on the educational chart, all the courses for a semester should be offered and 

provided to students. 

∑ ∑ 𝑥𝑐𝑝𝑔𝑡𝑑𝑟 ≤ 1

𝑃

𝑝=1

𝐺

𝑔=1

 ;   ∀𝑐, 𝑑, 𝑡, 𝑟 (4) 

Constraint (4) guarantees that in each period of each day, only one coursesshould be dedicated to a specific 

group of students. 

∑ ∑ ∑ 𝑥𝑐𝑝𝑔𝑡𝑑𝑟 ≤ 1

𝑅

𝑟=1

𝐺

𝑔=1

𝐶

𝑐=1

 ;  ∀𝑝, 𝑡, 𝑑 (5) 

Constraint (5) confirms that each lecturer can only offer one courses in each time-period of a day. 

∑ ∑ ∑ 𝑥𝑐𝑝𝑔𝑡𝑑𝑟 ≤ 1

𝐺

𝑔=1

𝑃

𝑝=1

𝐶

𝑐=1

 ;  ∀𝑟, 𝑑, 𝑡 (6) 

Constraint (6) guarantees that only one course could be offered in a specific classroom at a specific time of the 

day. 

∑ ∑ ∑ ∑ 𝑥𝑐𝑝𝑔𝑡𝑑𝑟 ≤ 𝑏𝑝𝑐

𝑅

𝑟=1

𝐷

𝑑=1

𝑇

𝑡=1

𝐺

𝑔=1

 ;  ∀𝑝, 𝑐 (7) 

Constraint (7) ensures that acourse will not be assigned to alecturer that does not prefer teaching. 

∑ ∑ ∑ ∑ ∑ 𝑥𝑐𝑝𝑔𝑡𝑑𝑟 . ℎ𝑐 ≥ 𝐿𝑝

𝑅

𝑟=1

𝐷

𝑑=1

𝑇

𝑡=1

𝐺

𝑔=1

𝐶

𝑐=1

 ;  ∀𝑝 (8) 

Constraint (8) guarantees that units assigned to each lecturer should be equal to or more than the minimum 

units assigned to each lecturer. 

∑ ∑ ∑ ∑ ∑ 𝑥𝑐𝑝𝑔𝑡𝑑𝑟 . ℎ𝑐 ≤ 𝑈𝑝

𝑅

𝑟=1

𝐷

𝑑=1

𝑇

𝑡=1

𝐺

𝑔=1

𝐶

𝑐=1

 ;  ∀𝑝 (9) 

Constraint (9) ensures that units assigned to each lecturer should be equal to or less than the maximum units 

assigned to each lecturer. 

∑ ∑ ∑ 𝑥𝑐𝑝𝑔𝑡𝑑𝑟 ≤ 1

𝑅

𝑟=1

𝑃

𝑝=1

𝐶

𝑐=1

 ;   ∀𝑔, 𝑡, 𝑑 (10) 

Constraint (10) ensures that each group of students could only be in one classroom at a specific time in a day. 

∑ ∑ ∑ ∑ 𝑥𝑐𝑝𝑔𝑡𝑑𝑟 . 𝑧𝑐𝑘 ≤ 𝜗𝑟𝑘

𝐷

𝑑=1

𝑇

𝑡=1

𝐺

𝑔=1

𝑃

𝑝=1

 ;   ∀𝑐, 𝑟, 𝑘 (11) 

Constraint (11) ensures that a course requiring special equipment would be held in a class properly equipped. 

∑ ∑ ∑ ∑ 𝑥𝑐𝑝𝑔𝑡𝑑𝑟 . ℎ𝑐 ≤ 𝑦𝑝𝑑 . 𝑒𝑝𝑑 . 𝐻𝑚𝑎𝑥
𝑝

𝑅

𝑟=1

𝑇

𝑡=1

𝐺

𝑔=1

𝐶

𝑐=1

 ;  ∀𝑝, 𝑑 (12) 

Constraint (12) indicates that if lecturer𝑝 works on a specific day 𝑑 he will be assigned maximum of 𝐻𝑚𝑎𝑥
𝑝

units. 
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∑ ∑ ∑ ∑ 𝑥𝑐𝑝𝑔𝑡𝑑𝑟 . ℎ𝑐 ≥ 𝑦𝑝𝑑 . 𝐻𝑚𝑖𝑛
𝑝

𝑅

𝑟=1

𝑇

𝑡=1

𝐺

𝑔=1

𝐶

𝑐=1

 ;  ∀𝑝, 𝑑 (13) 

Constraint (13) determines that if lecturer 𝑝 works on a specific day 𝑑 he will be assigned minimum of 

𝐻𝑚𝑖𝑛
𝑝

units. 

∑ ∑ ∑ ∑ 𝑥𝑐𝑝𝑔𝑡𝑑𝑟 ≤

𝑅

𝑟=1

𝑇

𝑡=1

𝐺

𝑔=1

𝑃

𝑝=1

𝑓𝑐𝑑 . 𝑅. 𝑇 ; ∀𝑐, 𝑑 (14) 

Constraint (14) guarantees that course𝑐 could only be offered on day 𝑑 if the chief of educational committee 

allows. 

5. Solution method 

Since the studied problem is known as NP-Hard, a novel meta-heuristic algorithm is suggested. As the proposed 

mathematical model is multi-objective, multi-objective optimization methods should be employed. Thus, the hy-

brid WOA and NSGA-IImethod is developed. In thewhales’ lifestyle, it is preferred to hunt small fishes near 

thewater surface bycreating bubbles surrounding the prey. TheWOAalgorithm is one of the nature-based and pop-

ulation-based optimization algorithms based on the Whale lifestyle that can be used in a variety of contexts. This 

algorithm is consisting of sieging, bubble attack, and hunting. These methods have been designed into a mathe-

matical formulation. In WOA, in the sieging operator, different solutions are achieved by increasing the value of a 

controllable parameter as “a”. By selecting random values for vector “A” between −1 and +1, a search agent can 

be applied. In bubble attach, first it calculates the distance between the wall located in the “X*” and “Y”. Then, the 

position of the whale will be updated to converge walls in the best possible location. Hunting operator is applied 

by using |A| > 1 mode, while the best solution is chosen when |A| < 1 to update the position of the search agents. 

The WOA algorithm has the ability to choose between circular or spiral motion. Finally, the WOA algorithmends 

with satisfying the termination conditions. The whales can identify and surround the hunting grounds. Since the 

optimal design location in the search space is not known, by comparison, the algorithm assumes that the best 

candidate for the present is either target hunting or near-optimal. After the best search agent has been identified, 

other search agents try to update their location to the best search agent (Mirjalili and Lewis 2016; Goli et al. 2020).  

Distance and position expressions are formulated using Eqs (15) and (16). 

𝐷 = |𝑄. 𝑋∗(𝑡) − 𝑋(𝑡)| (15) 

𝑋(𝑡 + 1) = 𝑋∗(𝑡) − 𝐵. 𝐷 
(16) 

From the above equations, “t” represents the iteration of the algorithm, “Q” and “B” are thecoefficients, and “X*” 

is the best position obtained and “X(t)” is the current wall position.The value of X* is also updated in each iteration. 

The values of “Q” and “B” are derived using Eqs. (17) and (18).  

𝐵 = 2. 𝑎. 𝑟 − 𝑎 (17) 

𝑄 = 2. 𝑟 
(18) 

Note that“r” is a random vector that takes value between [0, 1]. 

Furthermore, to have a better search in solution space, crossoverand mutation operators are being used. Besides, 

since the mathematical modelis multi-objective, to sort the solutions and return best Pareto front, theNGSA-II al-

gorithm is combined with the WOA. 
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In order to clarify this hybrid algorithm, Fig. 1 depicts its flowchart.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The flowchart of the proposed hybrid WOA and NSGA-II 

Details of this process are as follow: 

1) Start initiates the algorithm  

2) Hybrid algorithm will start generating random primary population (consistent numbers between 0-1) for the 

next repetition.  

3) Value of each response will be determined based on function fitness.  

4) S1: In this step the whale algorithm will implement its characteristic functions. These functions include encir-

cling prey, creating bubbles surrounding the prey, and swirling around the prey. This algorithm can avoid local 

optimization and achieve global optimization while reducing the number of calculations required.  

S2: Crossover function will exchange random chromosomes from the parent (available responses). Specific differ-

ences in chromosome genes will be paid attention to with regard to convergence.  

S3: Mutation ad evolution will improve the new generation of chromosomes and makes them more deserving.  

Then the whale hybrid will procreate and mutation will occur. At this point the cross over part of the genetic 

algorithm will be replaced by the food seeking behavior of whale algorithm (the mutation will still stay as part of 

the genetic algorithm). The mutation will occur after procreation of the whale algorithm.  

Generate initial random solutions (S0) 

Calculate fitness value for each solution 

Apply sieging and bubble attach 

to find new solution (S1) 

Apply crossover and generate 

new solutions (S2) 
Apply mutation and generate 

new solutions (S3) 

Implementing non-dominated sorting 

Save best Pareto fronts and update (S0) 

Stop condition 

met? 

Print the best Pareto front 

Star

t 

End 

NO 

YES 



139 H. Soleimani et al. 

 

5)   Data will be sorted based on the direction of optimization (sorting and dominant perfectionism). Considering 

that in our research, the procreation will continue 100 times. In each procreation, the next generation whales will 

be sorted from the previous generation.  

6)   The most ideal points on the Pareto front (determined based on Topsis method) will be saved and updated. The 

best sorted whales from the previous step will move on to the next generation.  

7)    As long as the satisfactory conditions are met, algorithm will be stopped. If satisfactory conditions are not met 

yet, return to step 3 again.  

6.Results 

Firstly, the validation of the mathematical modeling is approved through solving by the augmented ɛ-constraint 

method. Besides, the results of augmented ɛ-constraint are compared with the results of WOA-NSGA-II algorithm 

in order to examine the efficiency of the proposed meta-heuristic algorithm. It should be noted that the augmented 

ɛ-constraint method is coded by the GAMS software package. Table 1 indicates the results obtained by both aug-

mented ɛ-constraint method and WOA-NSGA-II algorithm for five small scale instances.  All data, for small scale 

instances, are generated randomly.  

Table 1. The results of augmented ɛ-constraint and WOA-NSGA-II for small scale instances 

Instance 
augmented ɛ-constraint WOA-NSGA-II 

OF 1 OF 2 OF 1 OF 2 

1 12.3654 7.0021 12.3647 7.0110 

2 10.7841 6.9914 10.4412 6.9363 

3 12.3002 7.3560 11.9022 7.2139 

4 11.3697 6.0051 10.4420 5.8029 

5 9.4753 5.5201 9.5443 5.0715 

According to Table 1, two important outcomes can be derived. The first one is that the mathematical modeling is 

valid, and the second one is that the proposed hybrid algorithm indicates a considerable performance to close the 

global optimal solutions.Now, the proposed hybrid algorithm is tested using a real case study, and its results are 

compared with four metaheuristic algorithms to evaluate its effectiveness. In the following, the required data from 

a semester is presented: 

This selected branch of IAU has 53 classrooms. Classes are held 6 days a week from Saturday to Thursday. Each 

day is divided into 150-minute sessions, 135 minutes for the class, and 15 minutes to change classes. One hour for 

lunchtime is also considered. Thus, 4 periods are considered. The course offered during a semester are 640 course 

a week which is presented by 219 lecturers, including 33 associate professors, 14 assistant professors, and 5 invitee 

lecturers from other branches. The classes are divided into 865 class groups. Classroom equipment included com-

puters, an industrial engineering warehouse, laboratories, recreation centers, video projectors, and whiteboards. 

These are divided into 24 different forms of equipment. The maximum and minimum numbers of units allotted to 

a lecturer in a day are 1 and 9. The minimum number of units allotted to associate professors, assistant professors, 

and invitee lecturers are 2, 15, and 16 respectively. Also, the maximum number of units allotted to them are 15, 15, 

and 30. To evaluate algorithms 40 different runs are conducted for the hybrid WOA-GA, MOFA, MOCS, MOABC, 

and NSGA-II. Each multi-objective algorithm is tested through its best objective value and the minimum time 

required to be converged. Plus, mean ideal distance (MID), the number of solutions and Pareto points (No), the 

maximum spread of diversity (MD), spacing, and time required to run the algorithm is the factor used to compare 

the performance of the algorithms. All the algorithms are coded by MATLAB 2018a in a PC with an Intel Core i7 

processor and 8 GB of RAM. The results are shown in Tables 2-6. 
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Table 2. The results ofMOCS(Npop10,Maxiter100) 

Row No MID MD Spacing Min Objs Max Objs CPU time (s) 

1 4 4.8013 2.0952 0.65617 8.2864,6.1495 10.4203,6.85692 389.393253 

2 6 4.0774 4.614 1.1122 5.4921,5.5734 10.6914,6.63733 380.380296 

3 4 3.005 1.8616 0.61355 9.5201,5.2458 10.6248,6.66725 67.576192 

4 3 2.8457 1.6096 0.49226 9.9842,5.4259 11.383,6.72893 363.095719 

5 4 3.005 1.8616 0.61355 9.5201,5.2458 10.6248,6.66725 86.197433 

6 4 4.8013 2.0952 0.65617 8.2864,6.1495 10.4203,6.85692 87.427226 

7 3 2.7873 1.6347 0.49447 9.7217,4.8321 10.7213,6.56012 400.623948 

8 4 4.8013 2.0952 0.65617 8.2864,6.1495 10.4203,6.85692 378.670011 

9 4 3.005 1.8616 0.61355 9.5201,5.2458 10.6248,6.66725 381.996248 

10 4 3.2965 1.5524 0.66155 9.4901,6.3407 10.8263,6.58821 388.257724 

11 4 3.005 1.8616 0.61355 9.5201,5.2458 10.6248,6.66725 383.897925 

12 3 5.0446 2.0603 0.40945 8.4195,5.961 10.743,7.15195 67.394513 

13 5 4.4695 2.0975 0.69355 8.9306,6.1848 10.1304,7.34639 364.225606 

14 3 3.4505 1.4627 0.47734 9.8328,5.8146 10.1869,7.19569 372.510159 

15 4 3.3386 2.5232 0.89747 8.2823,5.8396 10.7437,6.30606 367.175125 

16 4 4.8013 2.0952 0.65617 8.2864,6.1495 10.4203,6.85692 374.632475 

17 3 3.1526 1.4521 0.49995 9.3597,5.2993 9.803,6.6217 373.797456 

18 4 4.8013 2.0952 0.65617 8.2864,6.1495 10.4203,6.85692 495.77886 

19 4 3.005 1.8616 0.61355 9.5201,5.2458 10.6248,6.66725 372.386388 

20 4 4.8013 2.0952 0.65617 8.2864,6.1495 10.4203,6.85692 386.266934 

21 3 4.4857 1.7376 0.49928 8.3075,6.3384 10.4623,6.67999 378.374545 

22 3 3.4505 1.4627 0.47734 9.8328,5.8146 10.1869,7.19569 381.344274 

23 4 4.8013 2.0952 0.65617 8.2864,6.1495 10.4203,6.85692 381.145216 

24 3 3.7186 2.1084 0.57048 8.3705,6.0552 10.8797,6.49637 379.693525 

25 3 5.0446 2.0603 0.40945 8.4195,5.961 10.743,7.15195 435.93543 

26 4 3.005 1.8616 0.61355 9.5201,5.2458 10.6248,6.66725 377.280925 

27 3 2.8457 1.6096 0.49226 9.9842,5.4259 11.383,6.72893 362.990215 

28 3 4.381 2.2562 0.81377 8.9004,6.2806 11.3158,7.45174 376.923551 

29 4 3.005 1.8616 0.61355 9.5201,5.2458 10.6248,6.66725 367.715977 

30 3 5.0446 2.0603 0.40945 8.4195,5.961 10.743,7.15195 370.641711 

31 3 2.8457 1.6096 0.49226 9.9842,5.4259 11.383,6.72893 360.575269 

32 3 5.0446 2.0603 0.40945 8.4195,5.961 10.743,7.15195 368.741979 

33 4 3.005 1.8616 0.61355 9.5201,5.2458 10.6248,6.66725 417.169821 

34 3 2.8457 1.6096 0.49226 9.9842,5.4259 11.383,6.72893 59.637626 

35 4 4.8013 2.0952 0.65617 8.2864,6.1495 10.4203,6.85692 386.856856 

36 3 5.0446 2.0603 0.40945 8.4195,5.961 10.743,7.15195 369.021079 

37 4 4.8013 2.0952 0.65617 8.2864,6.1495 10.4203,6.85692 381.182537 

38 3 5.0446 2.0603 0.40945 8.4195,5.961 10.743,7.15195 377.535353 

39 4 3.3386 2.5232 0.89747 8.2823,5.8396 10.7437,6.30606 384.166365 

40 4 3.005 1.8616 0.61355 9.5201,5.2458 10.6248,6.66725 366.43718 

 

Table 3. The results of MOABC 

Row No MID MD Spacing Min Objs Max Objs CPU time (s) 

1 4 5.4175 2.0127 0.66577 6.1937,4.97 8.2104,5.3709 313.6319 

2 5 6.1223 3.6139 0.73828 5.755,5.1076 10.2547,6.38378 243.7762 

3 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 238.6636 

4 2 12.108 1.7153 0 6.0457,5.5746 8.9866,5.6608 330.3337 

5 3 12.304 2.03 0.49886 6.5483,4.953 8.8454,6.2509 289.3191 

6 2 4.7807 1.1914 0 7.728,4.6578 7.3844,6.0349 299.8714 

7 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 237.3566 

8 2 3.8733 1.0321 0 7.6152,5.5497 8.6732,5.6735 245.4813 

9 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 235.7737 

10 5 6.1223 3.6139 0.73828 5.755,5.1076 10.2547,6.38378 244.3067 
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11 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 234.6121 

12 2 3.2261 1.3764 0 7.995,5.6 9.8892,5.662 274.1609 

13 2 3.3889 1.0455 0 8.3409,4.9227 8.4808,6.0068 310.9488 

14 5 6.1223 3.6139 0.73828 5.755,5.1076 10.2547,6.38378 241.9006 

15 2 5.565 1.2487 0 6.5583,5.3901 8.1138,5.4967 280.3671 

16 3 3.5288 1.83 0.51297 7.4733,4.5978 9.0416,5.8339 248.377 

17 5 6.1223 3.6139 0.73828 5.755,5.1076 10.2547,6.38378 373.0182 

18 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 230.7345 

19 2 3.9818 0.65718 0 7.5451,5.3692 7.9252,5.5743 297.7795 

20 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 235.7886 

21 2 3.9818 0.65718 0 7.5451,5.3692 7.9252,5.5743 297.3477 

22 5 6.1223 3.6139 0.73828 5.755,5.1076 10.2547,6.38378 265.543 

23 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 233.851 

24 2 2.8371 0.80157 0 8.5495,5.315 9.1761,5.4571 217.4256 

25 5 6.1223 3.6139 0.73828 5.755,5.1076 10.2547,6.38378 237.2939 

26 2 3.1845 1.0636 0 8.5055,5.0231 7.3763,5.0919 292.5777 

27 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 233.9039 

28 5 6.1223 3.6139 0.73828 5.755,5.1076 10.2547,6.38378 240.8496 

29 2 3.3889 1.0455 0 8.4808,4.9227 8.3409,6.0068 311.4655 

30 5 6.1223 3.6139 0.73828 5.755,5.1076 10.2547,6.38378 242.0116 

31 2 2.8371 0.80157 0 8.5495,5.315 9.1761,5.4571 216.6561 

32 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 233.6411 

33 2 3.3889 1.0455 0 8.4808,4.9227 8.3409,6.0068 306.9043 

34 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 232.0533 

35 2 2.8371 0.80157 0 8.5495,5.315 9.1761,5.4571 243.8937 

36 5 6.1223 3.6139 0.73828 5.755,5.1076 10.2547,6.38378 242.3563 

37 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 236.2458 

38 2 3.9818 0.65718 0 7.5451,5.3692 7.9252,5.5743 293.8685 

39 5 6.1223 3.6139 0.73828 5.755,5.1076 10.2547,6.38378 238.8366 

40 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 232.64 

 

Table 4. The results of NSGA-II (Npop10, Maxiter100) 

Row No MID MD Spacing Min Objs Max Objs CPU time (s) 

1 8 3.7158 3.6152 0.78854 8.4924,5.6234 10.9611,6.85459 478.3974 

2 7 2.7228 2.6953 0.86332 9.7195,5.256 11.511,6.58945 396.8362 

3 8 4.1402 3.2477 0.82385 8.1063,5.4678 10.5197,6.70001 483.2539 

4 3 3.89 1.3015 0.82139 9.7434,6.8037 11.1888,6.80373 389.3041 

5 7 2.6806 2.9288 0.86358 9.7115,5.5276 11.8037,6.56167 497.0369 

6 5 3.8012 2.1437 0.74522 9.3627,5.3916 10.5554,7.19523 386.8295 

7 6 5.2937 3.3713 0.95368 7.7962,5.9478 12.0411,6.74946 424.1873 

8 2 2.9086 0.93163 0 10.0881,5.73926 10.0997,6.60713 486.0346 

9 5 5.0091 1.8823 0.72841 7.8743,5.6112 9.3752,5.6112 467.0851 

10 8 6.5467 4.7633 1.09 7.3424,5.0653 11.814,6.89804 517.4983 

11 8 3.6288 3.1479 0.86031 8.2652,5.5039 10.518,6.53402 487.9683 

12 2 4.012 0.54021 0 0.10908,0.59666 0.40016,0.080525 504.6668 

13 8 4.9261 3.5983 0.93137 7.3327,5.4733 10.4768,6.37052 537.3668 

14 5 3.2689 2.0615 0.67891 9.112,4.6933 10.0936,6.55319 134.7113 

15 6 4.3617 2.959 0.75506 8.9515,5.8996 11.0811,7.57221 157.8631 

16 8 2.9801 3.6917 0.84561 9.2614,4.6669 11.6789,6.97048 127.1581 

17 5 3.2924 2.3995 0.90467 9.0104,4.9115 9.2905,6.8022 142.2533 

18 2 4.012 0.54021 0 0.10908,0.59666 0.40016,0.080525 161.3064 

19 8 3.4286 3.1299 0.81467 7.9853,4.5069 9.4878,6.275 182.8087 

20 7 3.3858 3.1496 0.93371 8.5129,5.6041 10.2657,6.78724 190.212 

21 8 2.4543 3.767 0.79701 9.8439,4.3662 11.4563,6.96977 142.1386 

22 6 4.1887 3.3873 0.83072 8.037,5.9246 10.8427,6.89954 141.1436 

23 7 3.2715 2.6113 0.87605 9.089,5.4495 11.19,6.60674 153.9007 

24 8 4.578 3.5567 0.84388 7.9837,5.3771 10.6529,6.86254 149.1644 

25 7 9.973 3.4303 0.82565 7.0906,5.4904 10.3134,6.83224 142.9151 

26 8 3.6119 3.3918 0.78746 8.7824,5.5778 10.9265,7.06433 379.1483 

27 5 2.753 1.7036 0.85056 10.3844,5.3051 11.1058,6.6443 174.0149 

28 7 7.6521 3.7863 0.79786 7.468,4.5839 10.0588,7.1488 106.7101 

29 8 4.3525 3.4763 0.82238 8.1638,5.9365 10.5736,6.92236 148.837 

30 8 3.6288 3.1479 0.86031 8.2652,5.5039 10.518,6.53402 155.8771 

31 8 3.6119 3.3918 0.78746 8.7824,5.5778 10.9265,7.06433 164.4036 

32 2 2.3451 0.68895 0 11.4154,5.97043 11.6074,6.40451 166.3039 

33 7 4.9827 2.9376 0.84486 8.5895,6.142 10.3891,7.41904 149.8101 

34 8 3.098 3.5278 0.87739 9.1926,5.8573 11.6708,6.90287 143.7992 

35 6 5.0074 2.8977 0.74684 7.3109,5.7037 9.732,6.4294 172.1561 

36 8 3.4925 2.9981 0.78397 8.8357,5.2249 10.4355,6.81337 157.6984 

37 7 2.6321 2.7765 0.84599 8.9985,5.2895 11.0445,5.86303 148.521 



H. Soleimani et al.  142 

 

38 8 3.7673 2.6101 0.90407 9.4847,5.7893 10.6037,7.3191 140.7252 

39 5 2.8209 2.2569 0.72703 9.4793,5.628 11.0865,6.42384 160.0226 

40 6 3.2661 1.8854 0.99347 101984,6.25934 11.6831,7.02162 155.1001 

 

Table 5. The results of MOFA (Npop10, Maxiter100) 

Row No MID MD Spacing Min Objs Max Objs CPU time (s) 

1 6 3.6297 2.3986 0.77255 8.8221,5.469 10.468,6.69537 267.0957 
2 8 3.8018 3.5799 0.79243 8.7077,4.861 10.7445,7.26843 237.8897 
3 5 3.391 2.1665 0.86032 9.9962,5.3578 10.7906,7.39146 252.3823 
4 7 16.0888 3.8328 0.85107 5.9392,5.6395 10.1077,7.41005 245.0695 
5 6 3.2371 3.7244 0.78799 9.0366,5.311 10.3654,6.3309 197.0864 
6 7 2.935 2.8852 0.81116 9.8125,5.359 11.6404,6.99803 210.5561 
7 6 21.077 3.5561 0.78867 7.2995,5.4479 10.6692,7.20104 189.8917 
8 5 4.1015 2.5362 0.74556 8.422,6.269 11.2025,6.77113 213.4704 
9 6 4.4439 3.8968 0.77636 7.5828,5.3655 12.3226,6.72705 196.0851 

10 6 21.077 3.5561 0.78867 7.2995,5.4479 10.6692,7.20104 185.1998 
11 8 3.8018 3.5799 0.79243 8.7077,4.861 10.7445,7.26843 234.7775 
12 6 2.8936 1.6485 0.72279 10.664,6.36713 10.3654,6.3309 304.0194 
13 7 6.4592 4.564 0.8562 5.6175,5.3947 10.4446,7.18135 190.8236 
14 6 5.5912 3.7882 0.77765 7.7609,5.8515 10.3654,6.3309 274.7113 
15 4 7.4373 2.6886 0.64809 7.0484,6.0356 10.0677,6.53241 217.8631 
16 5 5.8652 2.5387 0.74632 7.5319,5.7651 10.3406,6.65241 367.1581 
17 6 2.8936 1.6485 0.72279 10.664,6.36713 11.3328,6.89602 282.2533 
18 6 5.4452 2.7528 0.94042 8.0627,6.1289 10.3654,6.3309 281.3064 
19 8 3.8018 3.5799 0.79243 8.7077,4.861 10.7445,7.26843 232.8087 
20 6 5.1547 3.3873 0.79894 7.8203,5.817 11.3681,6.97566 240.212 
21 6 4.5308 3.8622 0.77555 8.2265,5.561 10.3654,6.3309 262.1386 
22 6 21.077 3.5561 0.78867 7.2995,5.4479 10.3654,6.3309 191.1436 
23 6 2.2777 2.8134 0.88923 7.8203,5.817 11.3681,6.97566 323.9007 
24 7 6.4592 4.564 0.8562 5.6175,5.3944 10.4446,7.18135 199.1644 
25 6 5.5912 3.7882 0.77765 7.7609,5.8515 11.9039,7.13208 322.9151 
26 7 6.4592 4.564 0.8562 5.6175,5.3947 10.4446,7.18135 359.5838 
27 6 5.4452 2.7528 0.94042 8.0627,6.1289 10.5885,6.97081 246.0149 
28 6 3.2761 2.9969 0.77808 8.1045,4.7514 10.3654,6.3309 340.6662 
29 7 4.6879 3.7751 0.92378 7.3946,5.9659 11.3059,6.5856 238.837 
30 6 4.0077 3.5917 0.7201 8.4707,4.6429 11.9317,7.20338 295.8771 
31 6 21.077 3.5561 0.78867 7.2995,5.4479 10.6692,7.20104 204.4036 
32 6 3.3512 3.8905 0.85921 7.8537,5.6416 11.2213,6.47552 316.3039 
33 7 6.4592 4.564 0.8562 5.6175,5.3947 10.4446,7.18135 237.8101 
34 6 5.5912 3.7882 0.77765 7.7609,5.8515 11.9039,7.13208 293.7992 
35 6 5.4452 2.7528 0.94042 8.0627,6.1289 10.3654,6.3309 232.1561 
36 4 3.8595 2.2698 0.61121 9.0961,5.748 10.9224,7.27629 287.6984 
37 6 2.8936 1.6485 0.72279 10.664,6.36713 10.3654,6.3309 298.521 
38 5 3.5989 1.9087 0.69614 8.9175,5.9949 10.1635,6.60344 340.7252 
39 8 4.248 3.8987 0.94461 8.1551,6.0233 10.9129,7.04679 220.0226 
40 5 3.391 2.1665 0.86032 9.9962,5.3578 10.7906,7.39146 205.1001 

 

Table 6. The results of WOA-NSGA-II (Npop10, Maxiter100) 

Row No MID MD Spacing Min Objs Max Objs CPU time (s) 

1 9 2.999 4.2525 0.83419 8.6862,4.9117 11.7396,6.68615 206.3975 
2 8 3.9656 3.6548 0.7709 7.9892,4.8698 10.3165,6.74114 271.7431 
3 9 5.7183 4.2336 0.85814 8.0453,5.4859 11.3236,7.45402 97.7277 
4 8 3.9656 3.6548 0.7709 7.9892,4.8698 10.3165,6.74114 258.4376 
5 9 7.7748 5.2741 0.87768 6.8779,4.7298 12.2229,7.30193 359.1859 
6 8 2.9457 2.7335 0.83555 9.7615,5.4107 11.2118,6.79905 254.4057 
7 9 2.8093 4.9821 0.99818 8.8797,5.5213 12.8253,7.09139 130.9776 
8 8 3.9656 3.6548 0.7709 7.9892,4.8698 10.3165,6.74114 228.5368 
9 8 3.7872 3.4891 0.78751 8.4617,5.3928 10.9694,6.85889 371.3242 

10 9 2.999 4.2525 0.83419 8.6862,4.9117 11.7396,6.68615 210.528 
11 9 4.8439 4.079 0.86069 7.9025,5.5442 11.307,6.96046 323.1548 
12 8 3.8159 3.7428 0.84714 8.5709,5.7397 11.8683,7.1589 208.2727 
13 9 3.8364 4.5673 0.84549 7.5374,4.7495 11.2211,6.55575 180.7658 
14 8 10.369 4.1176 0.81555 6.9913,4.9607 10.6695,6.78935 366.5846 
15 8 3.8159 3.7428 0.84714 8.5709,5.7397 11.8683,7.1589 199.0616 
16 9 7.7748 5.2741 0.87768 6.8779,4.7298 12.2229,7.30193 358.7594 
17 9 10.472 4.7737 0.91185 6.6866,6.0339 11.4379,6.86742 265.9133 
18 9 3.0567 3.7709 1.0003 9.1416,5.571 11.4033,6.84329 260.2047 
19 8 10.369 4.1176 0.81555 6.9913,4.9607 10.6695,6.78935 63.3337 
20 9 3.5174 3.5436 0.8507 8.9452,5.8784 10.9468,7.14449 202.5844 
21 9 3.8364 4.5673 0.84549 7.5374,4.7495 11.2211,6.55575 184.8945 
22 9 3.8364 4.5673 0.84549 7.5374,4.7495 11.2211,6.55575 178.1566 
23 9 10.472 4.7737 0.91185 6.6866,6.0339 11.4379,6.86742 315.7819 
24 9 5.7183 5.2741 0.87768 6.8779,4.7298 12.2229,7.30193 361.7455 
25 9 10.472 4.7737 0.91185 6.6866,6.0339 11.4379,6.86742 298.0442 
26 9 7.7748 5.2741 0.87768 6.8779,4.7298 12.2229,7.30193 368.9092 
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27 8 3.9656 3.6548 0.7709 7.9892,4.8698 10.3165,6.74114 264.2928 
28 8 3.7872 3.4891 0.78751 8.4617,5.3928 10.9694,6.85889 368.446 
29 9 10.472 4.7737 0.91185 6.6866,6.0339 11.4379,6.86742 316.1113 
30 8 3.8159 3.7428 0.84714 8.5709,5.7397 11.8683,7.1589 199.6867 
31 9 4.0708 3.8502 0.80074 8.4556,5.5189 11.0596,7.16075 176.1479 
32 8 4.6156 3.5319 0.81279 7.8756,5.6095 10.3798,6.83998 290.0322 
33 9 4.0307 3.8386 0.85162 8.4728,6.0434 11.7675,6.94465 372.2921 
34 9 10.472 4.7737 0.91185 6.6866,6.0339 11.4379,6.86742 279.1514 
35 9 5.0712 4.6152 0.83314 7.5497,5.4878 11.348,6.93052 214.6033 
36 8 10.025 3.9784 0.82543 6.801.5.0825 10.4478,7.27647 122.142 
37 9 7.7748 4.7737 0.91185 6.6866,6.0339 11.4379,6.86742 285.0839 
38 9 4.8439 4.079 0.86069 7.9025,5.5442 11.307,6.96046 332.4619 
39 8 3.9656 3.6548 0.7709 7.9892,4.8698 10.3165,6.74114 235.9232 
40 9 3.5226 4.1528 0.86669 8.7702,4.9771 11.516,7.24573 47.769651 

 

Interpretation of the results:  

According to Table 2, Theaverage Maximum Objectives (optimized point on Pareto front) are 10.65218, the average 

minimum number of goal function is 7.78878, and average maximum number of second goal function is 6.823258. 

Average minimum second goal function is 5.25601, average minimum and maximum number (points on the Pareto 

front) of the first function is 9.77003 and the same number for the second function is 6.289632. Average time re-

quired to do 40 runs of the Cuckoo algorithm is 344. 1263 seconds. The number of Pareto points is 3-6 (3.65 average), 

the average distance compared to ideal is 3.896348, the most distribution number of the points in this algorithm 

averages at 1.995903. The average distance numbers of this algorithm are 0.598702. Based on the results in Table 3: 

Theaverage maximum number of first objective function is 8.97655, and the average minimum number of first 

objective function is 6.99504. The average maximum number for the second objective function is 5.887878 and the 

average minimum number of second objective function is 5.01025. The average maximum and minimum number 

of Pareto front in the first function is 7.985797 and this was 5.449064 for the second Pareto front numbers. The 

average run time (for the 40 runs) of honeybee colony was 261.3892 seconds. The number of Pareto fronts were 

between 2-5 (3.75 is average). The average distance from the ideal in this algorithm is 5.568798. The highest distri-

bution (scattering) number for the points in this algorithm averages at 2.067499.  The mean Spacing is 0.445993. 

Based on Table 4 data: Theaverage Maximum number for the first objective is 10.25949, while the average mini-

mum number for the first objective function is 7.759005. Theaverage Maximum number for the second objective is 

6.418554, while the average minimum number for the second objective function is 5.29339. The average maximum 

and minimum number of Pareto front in the first function is 9.308267 and this was 5.8323324 for the second Pareto 

front numbers. The average run time (for the 40 runs) of Genetic algorithm was 260.1292 seconds. The number of 

Pareto fronts were between 2-8 (6.375 is average). The average distance from the ideal in this algorithm is 3.987323. 

The highest distribution (scattering) number for the points in this algorithm averages at 2.758198.  The mean Spac-

ing is 0.755132. Based on Table 5 data: The average Maximum number for the first objective is 10.79905 while the 

average minimum number for the first objective function is 7.0104. The average Maximum number for the second 

objective is 6.87386, while the average minimum number for the second objective function is 5.3269. The average 

maximum and minimum number of Pareto front in the first function is 9.379025 and this was 6.133629 for the 

second Pareto front numbers. The average run time (for the 40 runs) of Firefly algorithm was 255.936 seconds. The 

number of Pareto fronts were between 4-8 (6.15is average). The average distance from the ideal in this algorithm 

is 5.798708. The highest distribution (scattering) number for the points in this algorithm averages at 3.231473.  The 

mean Spacing is 0.777608. Based on Table 6 data: The average Maximum number for the first objective is 11.29926, 

while the average minimum number for the first objective function is 7.84315. The average Maximum number for 

the second objective is 6.93955, while the average minimum number for the second objective function is 5.33492. 

The average maximum and minimum number of Pareto front in the first function is 9.605298 and this was 6.134329 



H. Soleimani et al.  144 

 

for the second Pareto front numbers. The average run time (for the 40 runs) of Whale and Genetic hybrid algorithm 

was 2507394 seconds. The number of Pareto fronts were between 8-9 (8.625 is average). The average distance from 

the ideal in this algorithm is 5.635975. The highest distribution (scattering) number for the points in this algorithm 

averages at 4.201225. The mean Spacing is 0.796847. 

1. Interpretation of the multi -objective model:  

Considering that both aim functions are at a maximum, the output of aim function possesses a better satisfaction 

rate in the mathematical model. We ran the minimum and maximums of all 5 algorithms and compared them. 

Based on the data extrapolated from the tables after doing 200 runs, the Whale and Genetic algorithm, carries the 

best aim function numbers and the most satisfaction rate compared to all other algorithms.  

2. Interpretation of run times for all multi-objective algorithms:  

What matters in timetabling for university courses is solving the mathematical model using the most out of uni-

versity resources and considering all limitations in the shortest run time possible. Again, the Whale and Genetic 

algorithm had the shortest run time and most efficiency between all algorithms.  

3. Interpretation of number of number of solutions provided by thePareto front for the metaheuristic 

algorithm:  

Knowing that the final answer of any multi-objective model will result in a group of points on the Pareto front, 

and an algorithm that could generate more diverse Pareto fronts is superior to the other algorithms, we noticed 

that Whale and Genetic algorithm has the most Pareto front points and is a better algorithm because it provides 

the user with more choices and reliable results. The provided answers on the Whale and Genetic algorithm 

were more efficient than the other algorithms.  

4. Interpreting mean ideal distance:  

This reflects the average Pareto answers compared to an ideal point of each algorithm. The least mean ideal dis-

tance, the better that Pareto front. Mean ideal distance is also an element of convergence of algorithms and is 

extrapolated from the following formula: 𝑀𝐼𝐷 =
1

𝑛
∑ 𝑐𝑖

𝑛
𝑖=1  

The whale and Genetic algorithm had the second best mean ideal distance (after Cuckoo algorithm) between all.  

5. Interpreting maximum spread or diversity results:  

We utilized this as a method to compare algorithm in our study. Maximum spread defines the most diversity of 

Pareto front answers and is calculated using the difference between starting points and ending points of the Pareto 

front from the following formula: 
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Whale and Genetic algorithm, had the best maximum spread compared to all other algorithms.  

6. Interpretation of Pareto front point spacing results: 

This category was also utilized in our study to compare algorithms. Spacing is calculating the Euclidean distance 

on the Pareto front which means calculating the shortest distance between two different points. This is calculated 

using Pythagoras non negative ratio and Manhattan distance (organized and equal distance) with the following 

formula: 𝐷𝑒𝑢𝑐 = (∑ 𝑥𝑖 − 𝑦𝑖)2)
1

2
𝑝
𝑖=1  

𝐷𝑚𝑎𝑛 = ∑|𝑥𝑖 − 𝑦𝑖|

𝑝

𝑖=1

 

We utilized MATLAB software and Function distance to come up with the results.  

The whale and Genetic algorithm overall had the best results compared to all other algorithm in most categories.  
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Moreover, Figure 2indicates six different runsof the hybrid WOA and NSGA-II. 

 

 

 

 

 

Figure. 2. Pareto surface for six different runs of the hybridWOA and NSGA-II 

Figure 2 depicts the Pareto front points of 6 out of 40 different runs (numbers 1,7,13,27,32,40). The algorithm 

was able to reach these points in a fast and efficient time. These points represent the maximum optimization points 

between all 7 algorithms. Using Topsis method, the most optimized point will be picked from all the available 

Pareto front points on each chart.  
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7.Summary and concluding remarks 

University timetabling is a complicated multi-objective topic that lacks an aim function and is not something that 

could be generalized to other universities. Limitations, regulations and other differences between universities or 

countries will make drawing any conclusion, difficult. Besides, personal preferences of faculty, students and uni-

versity staff is also different and will make things more complicated. In order to solve these problems, previous 

semester’s timetable or trial and error is used which has a lot of shortcomings and is a less than ideal method to 

solve the problem. These methods do not take into consideration, some limitations and thus, are not designed to 

achieve any desirability or satisfaction. In our research, prior to designing a model, we looked at faculty satisfaction 

and allocated a number to their satisfaction. This number was allocated based on the knowledge base, experience, 

publications, and the specific courses that each faculty taught. Then a mathematical model was designed based on 

soft and hard limitations using GAMS software as a trial run. Then 5 metaheuristic algorithms were used by 

MATLAB software to design the main model. Forty runs of each algorithm (200 total runs) were performed and 

results were compared between the algorithms. We concluded that the Whale and Genetic algorithm is superior 

to all other algorithms in reference to maximum and minimum number of optimized aim functions, time required 

to run the model, number of ideal answers, distribution and overall data gathering. This might not stand true in 

other models or other universities due to inter-university differences and other regulations. This paper addressed 

a multi-objective binary integer programming model in which the satisfaction of lecturers and students was con-

sidered as two conflicting objectives. A new hybrid algorithm based on WOA and NSGA-II was developed. This 

algorithm was compared with four multi-objective metaheuristic algorithms in terms of No, MD, MID, spacing, 

and CPU time. The results indicated that the hybrid WOA-NSGA-II could outperform the other ones due to the 

quality of results and running time. The proposed algorithm could find the most Pareto solutions while presenting 

the best values of the maximum spread of diversity and spacing. Implementation of this algorithm in a real case 

study led to maximizing the satisfaction of both lecturers and students at the same time. Although this study pro-

vided some interesting managerial implications, there were several limitations. For instance, all the parameters of 

this study were static; however, some of them, such as provided units in a semester, would be dynamics. Similarly, 

the satisfaction of lecturers and students were considered as a definite number. Future studies can extend the pre-

sent study through several aspects. One of the major aspects is to represent heuristic or metaheuristic algorithms, 

and then compare their results with this study’s findings. In a similar way, bi-level relaxation and decomposition 

methods can be implemented. Likewise, the mathematical model can be developed through practical assumptions; 

the model can be reformulated under uncertainty through fuzzy or robust optimization models. 
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Appendix: 

The designed code is a consistent code based on a fitness model:   
c=1:nc 

 tc=0; 
if tc==1;break;end 
NVAR(1)=ng*np*nc; 
For example, if we assume 3 groups, 7 professors and 2 courses, the 2 following Matrix will be utilized to allocate the courses 

to the professors (data from one semester were input into Excell MATLAB program and used for this)  
>>x1=rand(3,7,2) 
x1=(:,:,1) 
0.1484       0.0700      0.0715      0.3942       0.1287     0.0602       0.0379 
0.0805       0.5246      0.6813      0.6093       0.1978     0.07038     0.1196 
0.7115       0.7982      0.4286      0.9963      0.8461      0.5827       0.3951 

https://www.sid.ir/en/journal/SearchPaper.aspx?writer=155659
https://www.sid.ir/en/journal/SearchPaper.aspx?writer=599184
https://www.sid.ir/en/journal/SearchPaper.aspx?writer=280474
https://www.sid.ir/en/journal/SearchPaper.aspx?writer=26294
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x1=(:,:,2) 
0.5672      0.9138      0.1778      0.9643      0.7384       0.7937       0.7462 
0.2674      0.3675      0.3438      0.5874      0.1692       0.5271       0.6381 
0.3928      0.5736      0.8517      0.8974      0.0072       0.2310       0.8649 

a1(1,:)=x1(g,:,c);a1=a1.*b(:,c)';%L7 
 

a1=a1.*EP; 
 [vpc,up]=sort(a1,'descend');up(vpc==0)=[]; 
for p=up 
    if tc==1;break;end 

NVAR(2)=ng*np*nc*nd;. 
a2(1,:)=x2(g,p,c,:);a2=a2.*f(c,:);%L14. 
[vd,ud]=sort(a2,'descend');ud(vd==0)=[]; 
NVAR(3)=ng*np*nc*nd*nk*nr; 
for d=ud 
   if tc==1;break;end 
 
   k=find(z(c,:)==1);  
  a3(1,:)=x3(g,p,c,d,k,:);a3=a3.*v(:,k)';%L11 

  for t=1:nt 
 

s4(:,:)=X(c,:,:,t,d,r);%L4 
if sum(s4(:))>0;continue;end 

 
S5(:,:,:)=X(:,p,:,t,d,:);%L5 
if sum(s5(:))>0;continue;end 

 

S6(:,:,:)=X(:,:,:,t,d,r);%L6 
if sum(s6(:))>0;continue;end  
 
 
S10(:,:,:)=X(:,:,g,t,d,:);%L10 
if sum(s10(:))>0;continue;end 
 
if VP(p)+h(c)>U(p);continue;end%L9 
 
if VPD(p,d)+h(c)>Hmax(p);continue;end%L12 
 
X(c,p,g,t,d,r)=1;%L3 

 
YP(p)=1; 
 

Z1=Z1+(W(c,p,t,d)*a(p));%L1 
 

Z2=Z2+(WP(c,g,t,d)*ap(g));%L2 
 
VP(p)=VP(p)+h(c); 
VPD(p,d)=VPD(p,d)+h(c); 
if VP(p)>U(p);EP(p)=0;end 
if VPD(p,d)>Hmax(p);EPD(p,d)=0;end 
tc=1;break 
 
if tc==0 
CH(1)=CH(1)+1; 
 
p=1:np 
if YP(p)==0;continue;end 
if L(p)>VP(p) 
CH(2)=CH(2)+L(p)-VP(p);%L8 
 
for d=1:nd 
if Y(p,d)==0;continue;end 
if Hmin(p)>VPD(p,d) 
CH(3)=CH(3)+Hmin(p)-VPD(p,d);%L13 
SCH=sum(CH); 
sol.fit=fit'*(1+SCH); 
sol.SCH=SCH; 
fit=[1/Z1 1/Z2]; 
fit(isnan(fit))=10^10; 
sol.info.RealFit=[Z1 Z2] 


