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Abstract 
In this paper, we consider the fuzzy fixed-charge transportation problem (FFCTP). Both of fixed and 

transportation cost are fuzzy numbers. Contrary to previous works, Electromagnetism-like Algorithms 

(EM) is firstly proposed in this research area to solve the problem. Three types of EM; original EM, 

revised EM, and hybrid EM are firstly employed for the given problem. The latter is being firstly 

developed and proposed in this paper. Another contribution is to present a novel, simple and cost-efficient 

representation method, named string representation. It is employed for the problem and can be used in 

any extended transportation problems. It is also adaptable for both discrete and continues combinatorial 

optimization problems. The employed operators and parameters are calibrated, according to the full 

factorial and Taguchi experimental design. Besides, different problem sizes are considered at random to 

study the impacts of the rise in the problem size on the performance of the algorithms. 
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1. Introduction 
In recent decades, there have been many researchers who reported new models or methods to 

determine the transportation or the logistics activities that can give the least cost (Gen & Cheng, 

2000). Thomas and Griffin (1996) provided an extensive review and discussion of the supply 

chain literature. They pointed out that for many products, logistics expenditures can constitute as 

much as 30% of the net production cost. There is no doubt that logistics is an important function 

of business and is evolving into strategic supply chain management (New & Payne, 1995).The 

transportation problem (TP) is a well-known and basic network problem. It is also a basic model 

in the logistic networks. In the traditional transportation problem (TP), two kinds of constraints, 

source constraint and destination constraint, and one kind of cost are considered. There are many 

efficient algorithms to solve the traditional TP. 

The fixed cost linear programming problem was introduced by Hirsch & Dantzig (1968). It has 

been widely applied in many decision making and optimization problems and utilized both in 

academia and industry. In a Fixed Charge Transportation Problem (FCTP), a single merchandise 
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is shipped from supplier locations to customer locations. The fixed cost occurs for every route 

that is used for shipping, while the variable cost is proportional to the amount which is shipped. 

The objective minimizes the summation of both costs in accompany with meeting the supply and 

demand requirements of each location. Since the existence of fixed costs leads to discontinuities 

in the objective function, the FCTP is much more difficult to solve in comparison with the TP. It 

is unsolvable by the direct application of the transportation algorithm (Clover et al. 1992). 

It has been shown that the FCTP is NP-hard problem (Hirsch & Dantzig 1968, Klose, 2008). 

Adlakha and Kowalski (2003) developed a simple heuristic algorithm for solving small FCTP 

and stated that the proposed method is more time consuming than the algorithms for solving a 

regular TP. Several heuristic algorithms were presented for solving the FCTP (Gottlieb & 

Paulmann, 1998; Sun et al. 1998, Gen & Cheng, 2000, Adlakha and Kowalski, 2003, Ida et al. 

2004, Liu et al. 2008, Yang & Liu, 2007). Also, some exact methods such as mixed integer 

programming, the branch-and-bound, and the cutting plane method have been reported to solve 

the problem. But these methods are generally inefficient and computationally expensive 

(Steinberg, 1970).  

Gen et al. (2005) surveyed evolutionary algorithms for solving various network design problems 

such as FCTP. Jo et. al (2007), utilized the Prüfer number representation and developed a 

criterion to check the feasibility of the generated chromosomes. They also used a repairing 

procedure for infeasible chromosomes. Their proposed repairing procedure may take long time 

to repair and make a feasible Prüfer number.  

Hajiaghaei-Keshteli et al. (2010) studied the FCTP and proposed a novel method to design a 

chromosome that does not need a repairing procedure for feasibility, i.e. all the produced 

chromosomes are feasible. Besides, they corrected the procedure provided by Jo et al. (2007), 

which designs transportation tree with feasible chromosomes. They illustrated that the previous 

decoding procedure, introduced by Jo et al. (2007), does not produce any transportation tree in 

some situations. In addition, some new crossover and mutation operators are developed by them. 

Othman et al. (2011) continued their work and present two Genetic Algorithms (GAs) for this 

problem. Using Prüfer number representation, they developed two fuzzy logic controllers to 

automatically tune the parameters. 

In another related work, Molla-Alizadeh-Zavardehi et al. (2011) developed a mathematical 

model for a capacitated FCTP in a two-stage supply chain network. They proposed and 

compared an artificial immune algorithm (AIA) and a GA based on the Prüfer number 

representation. Besides, they introduced a new method to calculate the affinity value by using an 

adjustment rate in the proposed AIA. 

Later, Lotfi and Tavakkoli˗Moghaddam (2012) solved the FCTP via GA using priority˗based 

encoding (pb˗GA). They used a new approach in encoding scheme. Besides, El˗Sherbiny and 

Alhamali (2012) solved the same problem by a hybrid particle swarm algorithm with artificial 

immune learning in which a flexible particle is used instead of Prüfer number. Xie and Jia (2012) 

solved a nonlinear problem via a hybrid minimum cost flow˗based HGA, which reduces the time 

and the memory space of computer to achieve the global optimum. Furthermore, 

Molla˗Alizadeh-Zavardehi et al. (2013) presented a fuzzy fixed charge solid transportation 

problem by Metaheuristics. They solved the problem under a fuzzy environment via VNS and a 

hybrid algorithm of VNS and SA. And the recent paper, Altassan et al. (2014) developed a new 

encoding scheme instead of Prüfer number and developed an algorithm for decoding the 

problem. They used Artificial Immune Algorithm to solve the problem. 

Generally, it is often difficult to estimate the actual penalties (e.g., transportation cost, quantity 

of goods delivered, demands, availabilities, the capacities of different modes of transport 

between origins and destinations). Therefore, the typical models which uses crisp numbers for 

their parameters, fail in many practical applications. The purpose of introducing fluctuation in 

transportation problem is to get better customer service. Bit (2005), Bit et al. (1993a, 1993b), Li 
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and Lai (2000) presented the fuzzy compromise programming approach to multi-objective 

transportation problem. Samanta and Roy (2005) proposed an algorithm for solving multi-

objective entropy transportation problem under fuzzy environment. Omar and Samir (2003), and 

Chanas and Kuchta (1996) discussed the solution algorithm for solving the transportation 

problem in fuzzy environment. The entropy optimization in transportation models as well as 

other models also is discussed in the book of Kapur and Kesavan (1992). Ojha et. al. (2009) 

discussed a solid transportation problem with entropy in fuzzy environment. Problems involving 

uncertainty has become the subject of extensive research in the last decade.  

For most of the real-world processes, some parameters (e.g. costs) are not precisely known a 

priori. There are several approaches to modeling the uncertainty in optimization. The natural one 

is to apply the theory of Fuzzy. Therefore, because of all factors mentioned above, we consider 

fuzzy cost numbers for the FCTP in this paper. In the fuzzy FCTP (FFCTP) both mentioned 

costs are supposed to be fuzzy number instead of crisp number. 

The literature of incorporating fuzzy on FCTP is rather limited and relatively recent. Liu et al. 

(2008) modeled fuzzy fixed charge transportation problem as chance-constrained programming 

by using the possibility measure and credibility measure. They used Prüfer number 

representation and employed a GA. Also, Yang and Liu (2007) studied the fixed charge solid 

transportation problem under fuzzy environment. They employed hybrid intelligent algorithm 

which is based on the fuzzy simulation technique and tabu search algorithm. 

Birbil and Fang (2003) first introduced the EM as a new stochastic population-based heuristic 

optimization tool. Solutions are considered as charged particles in EM. The performance of each 

solution is measured by its own charge. All particles magnetize each other in which this force 

leads to a global movement of all particles towards the particles with higher charges or solutions 

with better objective function value. This system provides an iterative method which simulates 

particle interactions, and movement in search space under the impact of electromagnetic force.  

In the electromagnetic space, every particle attracts or repels every other particles according to 

its charge. The direction of particles to move in subsequent iterations is determined by the 

resultant force determined with all the forces exerted by on the particle by other particles. In this 

system, the candidate solutions with a better objective function values attract others while those 

with worse values repel. The amount of attraction or repulsion between two particles in the 

population is directly proportional to the product of their charges and inversely proportional to 

the distance between them. The philosophy behind the algorithm is that the force leads to a 

global movement of all particles into the solutions with higher quality. 

The EM approach has been recently employed to solve several combinatorial optimization 

problems such as set covering problem (Naji-Azimi et al. 2010), project scheduling (Debels et 

al. 2006), nurse scheduling (Maenhout and Vanhoucke, 2007), inventory control (Tsou and Kao, 

2008), etc. 

Here, in order to find the optimal solution for the given problem, FFCTP, we attempt to use both 

efficient algorithms and efficient solution representation way. Some deficiencies of using Prüfer 

number representation, motivates us to develop a new way of representation. This type of 

representation is a new, simple and cost-efficient representation method, named string 

representation. It is being firstly proposed in this paper. The generated string by this type of 

representation, does not need to check or repairing procedure for feasibility. All produced strings 

with our proposed method are feasible, and also if an operator in an algorithm, like mutation or 

crossover operator in GA, operates on a generated string in order to exploit and explore the 

solution space, the operated string will be certainly feasible. In addition, there is an unique 

relation between the generated string and its related transportation network. It means that for 

each string there is only one transportation network and vice versa.  

Another contribution of this paper is to utilize three types of EM in order to solve the given 

problem. The EM is known as an efficient metaheuristic algorithm to tackle NP-hard problems. 
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The motivation behind this algorithm has risen from an attraction-repulsion mechanism to move 

a population of points gradually toward optimality. We utilize two existing well-known EM 

proposed by Birbil and Fang (2003) and Birbil et al. (2004), and moreover, we attempts to 

present a novel high-performing hybrid EM algorithm for solving the given problem, which 

improves the original EM in two aspects. Intensification and diversification are two major issues 

for designing a global search method. Diversification generally refers to the ability to visit many 

and different regions of the search space, whereas intensification refers to the ability to obtain 

high quality solutions within those regions (Lozanoa García-Martínezb (2010)). Besides, the full 

factorial and Taguchi experimental design are employed as parameter tuning methods to 

calibrate the used operators and parameters. 

Five sections follow this Introduction. The next section briefly introduced some knowledge of 

fuzzy costs. Section 3 describes the problem’s details and elaborates the mathematical 

formulation of our model. The proposed algorithms are detailed in Section 4. Section 5, 

describes the Taguchi experimental design and compares the computational results. Finally, in 

Section 6, conclusions are provided and some areas of further research are then presented. 

2. Preliminaries 
The theory of the fuzzy set was firstly introduced by Zadeh (1965) with the membership function 

and then it has been well developed in an extensive range of real problems. In order to measure a 

fuzzy event, the term fuzzy variable was introduced by Kaufman (1975).  

Here, we briefly introduce some primary concepts and results of fuzzy measure theory initiated 

by Bellman and Zadeh (1970). Here, we give definitions and notations taken from Bezdek 

(1993).  
 

Definition 2.1 If X is a collection of objects denoted generically by x, then a fuzzy set in X is a 

set of ordered pairs: 

 ̃  {   ̃       }, where  ̃    is called the membership function which associates with each 

Xx  a number in [0,1] indicating to what degree x is a number. 

 

Definition 2.2   The α-level set of  ̃  is the set   ̃      ̃        where   ∈ [0, 1]. The lower 

and upper bounds of any   -level set  ̃  are represented by finite number     ∈ ̃ 
 and     ∈ ̃ 

.   

 

Definition 2.3   A fuzzy set A is convex if  

                                  ̃               { ̃     ̃   }              ∈    ∈[0,1] 

 

Definition 2.4 A convex fuzzy set  ̃  on   is a fuzzy number if the following conditions hold: 

 

(a) Its membership function is piecewise continuous function. 

(b) There exist three intervals [a,b], [b,c] and [c,d] such that A is increasing on [a,b], equal to 1 

on [b,c], decreasing on [c,d] and equal to 0 elsewhere. 

 

Definition 2.5 The support of a fuzzy set   ̃  is a set  ̃  is a set of elements in X for which   ̃    

is positive, that is, 

                                                         ̃    ∈    ̃       
 

Definition 2.6 Let               denote the trapezoidal fuzzy number, where          
   is the support of   ̃ and         its core. 

 

Remark 2.1 In this paper we denote the set of all fuzzy numbers by F ( ). 
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We next define arithmetic on trapezoidal fuzzy numbers. 

Let   ̃               and   ̃              be two trapezoidal fuzzy numbers. Define, 

 

                            ∈     ̃                   
                            ∈     ̃                     
                 ̃   ̃                       , 

                 ̃   ̃                       . 
 

2.1. Ranking function 

A convenient method for comparing of the fuzzy numbers is by use of ranking function (Maleki, 

2002). We define a ranking function        , which maps every fuzzy number into the 

real line. Here, suppose that   ̃ and   ̃ be two trapezoidal fuzzy numbers. So, we define, 

              ̃   ̃
 

    If and only if      ̃    ( ̃)                                                        (1) 

             ̃   ̃
 

  If and only if      ̃    ( ̃)                                                           (2) 

             ̃   ̃
 

   If and only if      ̃    ( ̃)                                                          (3)   

 

Besides we write  

                      ̃   ̃
 

   If and only if        ̃    ̃
 

 . 

Because there are many ranking function for comparing fuzzy numbers, we only utilize linear 

 (  ̃   ̃)      ̃   ( ̃)  

for any   ̃ and   ̃belonging to      and any  ∈     . 

Here, we introduce a linear ranking function developed by Maleki (2002). For a trapezoidal 

fuzzy number ̃             , we employ ranking function as follows: 

   ̃  ∫      ̃        ̃ 

 

 

     

This reduces to  

                                                         ̃         
 

 
        

Hence, for trapezoidal fuzzy numbers  ̃              and  ̃              we have 

 

                     ̃    ̃  if and only if        
 

 
              

 

 
     . 

 
 

3. Mathematical model and descriptions 
 

The FFCTP can be stated as a transportation problem in which there are m potential distribution 

centers (DCs) and n customers (destinations or demand points). Each of the m potential DCs can 

ship to any of the n customers at a fuzzy shipping cost per unit  ̃   (unit cost for shipping from 

potential DC i to customer j) plus a fuzzy fixed cost  ̃  , assumed for opening this route and an 

opening cost  ̃ , assumed for opening potential DC i. Each potential DC i=1, 2,…, m has ai units 

of supply, and each customer j =1, 2,…, n has a demand of bj units. The objective is to find that 

(1) which candidate places are to be opened as distribution centers, (2) which routes are to be 

opened and (3) the size of the shipment on those routes, so that the total cost of meeting demand, 

given the supply constraints, is minimized. The FFCTP is formulated as follows:  
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Min      ̃  ∑ ∑    ̃  
 
   

 
         ̃        ∑  ̃    

 
    

S.t. 

      ∑    
 
                      i=1,2,…,m, 

      ∑    
 
                      j=1,2,…,n, 

                    

                if           0,           

                if           0, 

                if      ∑    
 
                     i=1,2,…,m, 

                if      ∑    
 
                     i=1,2,…,m. 

 

 

The crisp equivalent of objective function can be written as follows: 

Min   ∑ ∑     
  

   
 
           

       ∑ ∑     
  

   
 
           

       
 

 
 (∑ ∑     

  
   

 
    

       
 

       ∑ ∑    
  

   
 
           

      )   ∑   
    

 
    ∑   

    
 
    

 

 
 (∑   

 
   

 
    ∑   

    
 
   )  

 

Where xij is the unknown quantity to be transported on the route (i,j) that from plant i to 

consumer j,  ̃  is the shipping fuzzy cost per unit from plant i to consumer j. ai is the number of 

units available at plant i, and bj is the number of units demanded at costumer j. The 

transportation cost for shipping per unit from plant i to consumer j is  ̃  × xij. Also  ̃   is the 

fuzzy fixed cost associated with route (i,j) while  ̃  is the fuzzy opening cost assumed for 

opening potential DC i. For an illustration more about of the above model, we solve an example 

here. Suppose there are four potential DCs and six costumers. The transportation costs, fixed cost 

and opening cost are given in Table 1. 

 
Table 1: The example parameters and costs 

Customers 1 2 3 4 5 6 

bj 40 20 10 30 50 20 

Suppliers ia  ijc~  

1 50 (2,3,1,5) (2,7,1,4) (2,5,1,4) (3,8,1,5) (5,6,2,4) (3,18,1,5) 

2 100 (4,6,2,3) (6,8,5,1) (4,10,1,5) (8,9,5,1) (3,7,1,5) (6,10,1,3) 

3 150 (3,7,2,2) (3,9,1,1) (6,11,1,3) (5,7,3,2) (3,7,2,5) (3,15,2,2) 

4 120 (3,5,1,1) (5,7,3,6) (8,13,2,4) (4,5,1,1) (5,9,3,1) (4,5,3,4) 

 
if

~
 ijf

~
 

1 (200,400,50,100) (50,60,10,10) (20,30,10,20) (30,50,20,10) (30,50,10,10) (40,60,10,30) (30,50,10,20) 

2 (700,800,100,100) (50,60,10,30) (60,90,20,10) (40,100,10,50) (80,90,20,40) (20,50,20,30) (60,80,10,20) 

3 (400,700,50,100) (40,80,20,10) (20,70,10,20) (50,90,10,20) (30,60,30,20) (30,40,20,10) (30,60,40,20) 

4 (100,200,50,50) (40,50,10,10) (30,50,20,10) (50,70,20,30) (50,70,30,60)  (20,30,10,20) (30,60,20,10) 

 

 

As shown in Fig. 1, we suppose that customers 1, 3, 5, and 6 are served their demands from DC 

4, and customer 4 is served from DC 1 and also customer 2 receives its demands from both DCs 

1 and 4. In this occasion, we select potential DCs 1 and 4 to be opened and serve the customers' 

demands. The total cost occurred in this allocation is calculated as follows:  
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 The transportation cost from DCs to customers is equal to: 

 ̃    ̃         ̃         ̃         ̃         ̃         ̃         ̃        

=                                                                   
                          

= (40,140,20,80) + (90,240,30,150) + (120,200,40,40) + (           ) + (            ) + 

(200, 360, 120, 40) + (80, 100, 60, 80) = (660,1240,320,490), 

 ( ̃ )                       1985. 

 

 The fixed cost of routs  ̃    ̃     ̃     ̃     ̃     ̃     ̃     ̃    (20,30,10,20) + 

(30,50,10,10) + (40,50,10,10) + (30,50,20,10) + (50,70,20,30) + (20,30,10,20) + (30,60,20,10) = 

(220,340,100,110),  

 ( ̃ )                        .  

 

 The opening cost of DCs  ̃   ̃   ̃   (200,400,50,100) + (100,200,50,50) = 

(300,600,100,150), 

 ( ̃ )                        .  

 

 The objective function value is:  

 ̃                                                           
                   ,  

  ( ̃)                           . 

 

O1

O2

O3

O4

D1

D4

D3

D2

D5

40

20

20

30 10

10

40
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Customers
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Fig. 1: Illustration of designing a transportation network 

 

4. The electromagnetism-like algorithm 
 

4.1. The original EM 

 

The EM motivated by the real electromagnetism theory, to solve the problems with bounded 

variables in the form of: 
 

Min f(x)                               (4) 

s:t: x  [L,U]                        (5) 
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where [L,U] =  nkUxLRx kkk

n ,...,1,|   and x1,… , xn stand for the decision variables. 

Uk, Lk and f (x) represent, upper and lower bounds on the k
th

 variable (k = 1,… , n) and the 

objective function value, respectively. 

The general structure of the EM algorithm is illustrated in Algorithm 1. The process begins with 

an initial set of solutions to sample population size (popsize) of solutions from the feasible 

region. This step can be performed by a random procedure which generates a pool of popsize 

uniformly. The next steps are local search (LSITER), computation of total force exerted on each 

particle, and movement along the direction of the force. 

The local search procedure is utilized for each solution and tries to improve the quality of the 

current population solutions. Then, according to their charges, all the particles or solutions forces 

each other and the total force which exerted on each of them is calculated in the force 

computation procedure. The total force is computed by using the charge of each solution X
i
 or 

objective function value f (X
i
), and the best objective value f (X

best
) in the current population 

(Birbil and Fang, 2003).  
 

 

ALGORITHM 1.EM (popsize, Maximum Iteration (MAXITER), Local Search Iteration (LSITER)) 

 

l. Initialize (popsize) 

2. iteration ← l 

3. while termination criterion is not satisfied do 

4.              Local search 

5.              Calculate Forces 

6.              Move 

7.              iteration ← iteration + l 

8. end while 

 

At last, in the movement procedure, by considering a random step length λ which is uniformly 

distributed between 0 and 1, each solution is moved along the direction of the total force exerted 

on it to its new place in the feasible space. In this work, the specific formulas to compute the 

charges, forces and the movement action of each solution will be explained in Sections 4.1.3 and 

4.1.4.  
 

4.1.1. Encoding scheme and initialization 
 

Despite the EM approach has been designed for continuous optimization problems, here we 

adapt it to utilize in the discrete space. As mentioned in the most works which used metaheuristic 

algorithms to solve optimization problem, the impact of the types of solution representation on 

obtaining optimal solution is inevitable. This is one of the most important decisions in designing 

a metaheuristic. It deals with deciding how to represent solutions and relate them in an efficient 

way in the searching space. It also affects on the time to reach the optimal solution. Besides, 

because of this, some works in different research areas studied and evaluated different types of 

representation. Representation should be easy to decode in order to reduce the cost of the 

algorithm. Several principles have been proposed to evaluate an encoding by (Schwefel, 1995, 

Gen & Cheng, 1997). Required amounts of memory for representation, time complexity for 

executing evaluation and operation on representation, feasibility, legality, completeness, 

uniqueness, heritability, and locality are the main principles that would be considered when one 

wants to develop a representation or evaluate the efficiency of a representation method. 

In this paper, we introduce a new type of representation, named string representation for the 

problem. The string representation is an encoding way which has simple procedure and easy to
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 code. Hence, it does not take an excessive amount of memory. In comparison with the similar 

encoding methods, types of operation, like recombination or fitness evaluation take shorter time 

in this type of representation. Because it uses just random numbers and sort function in a vector, 

it may take a short time to operate on solution or evaluate the fitness value, in comparison to 

previous ways with more probability, especially in the matrix representation. Because in matrix 

representation n
2
 digits are required to represent a solution while n digits are needed in string 

representation. By increasing the solution dimension (n), the difference between these two types 

of representation will be highly increased. In addition, every generated solution by string 

representation is certainly feasible. It does not need any repairing procedure, rejecting procedure 

or penalty strategy. This property is very important for a representation. 

The mapping from solution representation to solutions (decoding) may belong to one of the 

following three cases: 1-to-1 mapping, n-to-1 mapping and 1-to-n mapping (Gen & Cheng, 

1997). For more detail we suggest the reader to see the mentioned reference (Gen & Cheng, 

1997) but in a nutshell we explain 1-to-n mapping. The 1-to-n mapping means that with one 

string as a solution representation we may reach to several and different solutions in a real space 

by decoding. The 1-to-1 mapping is the best among three cases and 1-to-n mapping is the most 

undesired one. The string representation method employed 1-to-1 mapping. Also, by using this 

method, a small change in represented solution imply a small change in its corresponding 

solution, which is a good property for a representation method. 

 

As mentioned earlier in declaring our problem, the network has m potential DCs (warehouses or 

factories) and n customers (destinations or demand points). Each of the m potential DCs can ship 

to any of the n customers. Most of the evolutionary algorithms use a random procedure to 

generate an initial set of solutions. Here, we number potential DCs from 1 to m and put them to 

set S and number the customers from 1 to n and put them to set C. 

The proposed string representation is a two-part vector in which the first part (in the right side) is 

related to the set S and the second corresponds to the set C. The initialization of a string is 

performed from randomly generated m+n digits in range [0,1] for each supplier and customer. 

By ascending sorting of the value corresponding to each supplier and customer, separately in 

each part, the sequence of potential DCs and customers in each part is obtained. This simple 

operation is illustrated in Fig. 2 for a network with four potential DCs and six customers. 

 
 

 Potential DCs Customers 

           
A string for 4 potential DCs and 6 customers 1 2 3 4 1 2 3 4 5 6 

          Initialization (randomly generated) 0.23 0.83 0.68 0.07 0.23 0.68 0.05 0.91 0.42 0.19 

           

Sequence order for each part 4 1 3 2 3 6 1 5 2 4 

           Sorted digits in each part, separately 0.07 0.23 0.68 0.83 0.05 0.19 0.23 0.42 0.68 0.91 

           
Figure 2: Illustration of designing a sequence by a string 

After having a sequence of potential DCs and customers in two parts, we can use it to compute 

the objective function value of this solution and design its corresponding transportation network 

by the following procedure: 

 

Procedure: Convert string representation to its corresponding transportation network 

Input: A two-part vector  

Output: A transportation network 



F. Gholian-Jouybari, A.J. Afshari, M.M. Paydar 

 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 3 , No. 1 Page 48 

Repeat the following process (1 to 7) until all customers' demands be satisfied: 

1. Let i be the leftmost digit in supplier part, and j be the leftmost digit in customer part, add the 

edge (i, j) in transportation network.  

4. Assign the available amount of units xij = min{ai,bj} to the edge (i, j) where i  S and j, k  C. 

5. Update availability ai = ai–xij and bj = bj–xij . 

6. Remove i  from vector if the capacity of i
th

 suppler reaches to zero, i.e. all capacity of i
th

 

supplier is consumed.  

7. Remove j from vector if all demand of j
th

 customer reaches to zero, i.e. all demand of i
th

 

customer is satisfied.  

This procedure is illustrated by an example in Fig. 3. 
 

 

 

 

 

 

 

 

 
 

Figure 3: The allocation of transportation network according to the procedure and string representation 

 

4.1.2. Local search  

The local search procedure agitates each coordinate of a solution and then finds its related 

sequence and evaluates its objective value. The new designed temporary solution will be 

replaced instead of the current solution when its objective value is better than the current 

solution. This procedure is shown in Algorithm 2. 
 

ALGORITHM 2. Local (LSITER) 

1: counter ←1 

2: for i = 1 to popsize do 

3:        for k = 1 to m+n do 

4:               λ1 ← U (0, 1) 

5:               while counter <LSITER do 

6:                           Y ← X
i
 

7:                           λ2 ← U (0, 1) 

8:                           if λ1 > 0.5 then 

9:                              Yk ← Yk + λ2

O1

O2

O3

O4

D1

D4

D3

D2

D5

Plants

Customers

D6
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10:                        else 

11:                                Yk ← Yk − λ2 

12:                        end if 

13:                        if f (Y) < f (X
i
) then 

14:                            X
i
 ← Y 

15:                            counter ← LSITER − 1 

16:                        end if 

17:                        counter ←counter + 1 

18:             end while 

19:       end for 

20: end for 

21: X
best

 ← argmin{f (X
i
), i} 

 

 

4.1.3. Total forces Computation 

As mentioned before, by using the main structure of EM, the best solutions encourage other ones 

to converge to attractive valleys while the inferior solutions discourage the others to move 

toward this region. We define the charge q
i
, and the components )( JjF i

j   of the total force 

exerted on each solution X
i
 and the direction of movement are obtained by adapting the 

equations.
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and X
best

 is the current best solution in the population. 
 

4.1.4. Movement procedure 

After evaluating the effects of all the other solutions, each solution is moved in the direction of 

the force by a random step length λ, uniformly distributed between [0,1]. The formulation 

proposed to calculate the new position of X
i
 is as follows: 

 

JjpopsizeiRNG
F

F
xx ji

i

ji

j

i

j  ,...,,1)(                                                                              (9) 
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where RNGj (Range) denotes the amount of feasible movement toward the zero or one. Since 

RKs (Random Keys) are real numbers between zero and one, the adaptation of Eq. (9) for the 

RKs gives the following formula: 
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where  
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(11) 

 

It is important to notice that we do not move the best solution X
best

 in the current population and apply this 

procedure only to the others. 

 

4.2. The revised EM 

The original EM may converge prematurely when the total force exerted on the particles neglect 

some parts of the solution space, so the original EM an attraction–repulsion mechanism was 

modified to be more convergent (Birbil et al. 2004). In the revised EM, the current population 

perturbed so that a perturbed point denoted by X
P
, is considered as the farthest point from the 

current best point, X
best

. The calculation of the total force vector remains the same for all points 

except X
P
. The components of force exerted to the farthest point are calculated in which they are 

perturbed by a random number λ which is uniformly distributed between 0 and 1.  
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Also in the revised EM, the direction of the total forces exerted to X
P
 is perturbed, i. e., if 

parameter λ is less than parameter νϵ(0,1), then the direction of the component force is reversed. 

After these modifications, Birbil et al. (2004) mentioned that their revised EM is so convergent. 

4.3. The Proposed Hybrid EM 

One of the important issues in designing the hybrid meta-heuristic algorithm is to keep the 

diversity to explore new unvisited regions of the solution space. The right balance between 

intensification and diversification makes metaheuristic algorithms naturally effective to solve the 

complex problems.  

The original EM, explained in 4.1, often suffers from loss of diversity through premature 

convergence of the population, which causes the search to be trapped in a local optimum. 

Diversification refers to the process of replacing inferior solutions of the current population by 

replacing new randomly generated solutions.  
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Here, we propose a new diversification procedure that is utilized when the similarity rate of a 

generation is more than the pre-specified threshold,  . For each iteration, we calculate the 

similarity rate of the iteration,  ̅. This rate is calculated by the following formula: 

 ̅  

∑ (
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(13) 

 If  ̅   , then ω percent of individuals in that iteration should be regenerated randomly from the 

solution space to join the population such that the population size remains popsize. 

We propose a mechanism in order to select ω percent of individuals in each iteration. The fact 

behind this mechanism is to regenerate the solutions that are similar (near) to the best solution or 

have greater inferior rate (greater objective functions in minimization problem). If two solutions 

have the same similarity, i.e., the same distance to the best solution, we assign more probability 

to select the solution with greater inferior rate. We denote the similarity of solution i by si, and 

the inferior rate of each solution by Ii, and calculate them by the following formulas: 
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(14) 
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(15) 

 

As mentioned earlier, in order to use both properties of si and Ii, we use Pi, the selection 

probability, to give a selection chance for each solution. This probability is a linear combination 

of si and Ii, and is evaluated by the following equation: 
                 (16) 

 

The Pi, is the probability of selection and the selection mechanism acts like roulette wheel. The 

greater Pi a solution has, the more chance it has to be selected. 

In order to explain the si, an example is explained here. Suppose that we have two solutions and 

the length of digits in each solution, m+n, is equal to 2+3=5. Here, we show how the si for each 

solution is calculated and depict the schematic presentation in Fig. 4. 
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Figure 4: The graphic scheme of similarity between two solutions and the best one 

 

5. Experimental design 
 

5.1. Taguchi Parameter Design 

The robustness of a product or a process greatly depends on the correct choice of the related 

parameters and operators. Hence, the different parameters and operators of the proposed 

algorithm should be studied here. There are some methods in design of experiments. The full 

factorial design, which tests all possible combinations of factors, is a widely used method in the 

most researches but when the number of factors significantly increases, it does not seem to be an 

effective way.  

As it would be explained clearly later, for the EM there are 28 test problems, two 3 level factors 

in our case that each of which should be run three times. Therefore, the total number of running 

the problem in GA is 28×3
2
 ×3, which is equal to 756. In the revised EM, there are 28 test 

problems, three 3 level factors in our case that each of which should be run three times. Hence, 

the total number of running the problem in revised EM is 28 ×3
3 

×3, which is equal to 2268. In 

the hybrid EM, there are 28 test problems, five 3 level factors in our case that each of which 

should be run three times. Hence, the total number of running the problem in hybrid EM is 28 

×3
5 

×3, which is equal to 20’412. 

So, to be economic, we can use one of the several experimental designs which have been 

suggested to reduce the number of experiments. Among the proposed experimental design 

techniques, Taguchi method is a systematic and efficient approach which uses many ideas for 

experimental design in order to evaluate and implement improvements in operating conditions in 

complex systems and it has been applied successfully in various engineering problems. This 

method uses an orthogonal array to organize the experimental results. 

Dr.Taguchi postulated that there are two types of factors which operate on a process: control 

factors and noise factors. He tends to both minimize the impact of noise and also find the best 

level of the influential controllable factors on the basis of robustness. In addition, Taguchi 

determines the relative importance of each factor with respect to its main impacts on the 

performance of the algorithm. A transformation of the repetition data to another value which is 

the measure of variation is developed by Taguchi. It is the signal-to-noise (S/N) ratio, which 

explains why this type of parameter design is called a robust design (Phadke 1989). Here, the 

term ‘signal’ denotes the desirable value (response variable) and ‘noise’ denotes the undesirable 

value (standard deviation). So the S/N ratio indicates the amount of variation present in the 

response variable. The objective is to maximize the signal-to-noise ratio. The S/N ratio of the 

minimization objectives is: 

 2
10 functionobjectivelog10= ratio S/N
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The control factors of EM are as follows: Population size, LSITER, for the revised EM, the 

factors are: Population size, LSITER, ν, and for the hybrid EM, the factors are: Population size, 

LSITER, θ, α and ω. Levels of these factors are illustrated in Table 2. 

 
Table 2: Factors and their levels 

Factors 
original EM 

symbols 

revised EM 

symbols 

hybrid EM 

symbols 

original 

EM 

Levels 

revised EM 

Levels 

hybrid EM 

Levels 

Population 

size 
A A A A(1)- 80 A(1)- 70 A(1)- 60 

    A(2)-85 A(2)-75 A(2)-65 

    A(3)- 90 A(3)- 80 A(3)- 70 

       

LSITER B B B B (1)- 30 B (1)- 40 B (1)- 50 

    B (2)- 35 B (2)- 45 B (2)- 55 

    B (3)- 40 B (3)- 50 B (3)- 60 

       

ν - C - - C (1)-0.4 - 

    - C (2)-0.5 - 

    - C (3)-0.6 - 

       

θ - - C - - C(1)- 0.8 

    - - C(2)- 0.85 

    - - C(3)- 0.9 

       

α - - D - - D (1)- 0.5 

    - - D (2)- 0.6 

    - - D (3)- 0.7 

       

ω - - E - - E (1)- 60% 

    - - E (2)- 70% 

    - - E (3)- 80% 

       

 

In EM and revised EM, the number of factors are just two and three, respectively. Hence, we 

employ the full factorial design in these algorithms. But, As we can see, we have five factors in 

the hybrid EM. So, in order to reduce the number of experiments, we use the Taguchi method for 

the algorithm. 

 

To select the appropriate orthogonal array for the hybrid EM, it is necessary to calculate the total 

degree of freedom. The proper array should contain a degree of freedom for the total mean, two 

degrees of freedom for each factor with three levels (2×5=10). Thus, the sum of the required 

degrees of freedom is 1+2×5=11. Therefore, the appropriate array must have at least 11 rows. 

The selected orthogonal array should be able to accommodate the factor level combinations in 

the experiment. Considering this, L16 (4^5) is an appropriate array that satisfies these conditions. 

Since there are five factors with three levels and this scheme offers the factor with four levels, 

we should adjust this array to the problem by means of adjustment techniques (Park 1995). 
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Using the dummy level technique we convert the four-level columns into the three-level 

columns. To assign the three-level factor to the four-level column from the orthogonal array L16 

(4^5), one of these levels is required to be replicated twice. In this research first level is chosen 

to be replicated twice. It is essential to notice that, after applying these techniques, the obtained 

array remains orthogonal. Furthermore, the accuracy of this level that is replicated twice is twice 

the accuracy of the other levels. Table 3 shows the orthogonal array L16, where control factors 

are assigned to the columns of the orthogonal array and the corresponding integers in these 

columns indicate the actual levels of these factors. 

 

Table 3: The modified orthogonal array L16 for hybrid EM 

Trial A B C D E 

1 1 1 1 1 1 

2 1 2 2 2 2 

3 1 3 3 3 3 

4 1 3 3 3 3 

5 2 1 2 3 3 

6 2 2 1 3 3 

7 2 3 3 1 2 

8 2 3 3 2 1 

9 3 1 3 3 2 

10 3 2 3 3 1 

11 3 3 1 2 3 

12 3 3 2 1 3 

13 3 1 3 2 3 

14 3 2 3 1 3 

15 3 3 2 3 1 

16 3 3 1 3 2 

 

5.2. Data generation 

In order to present the efficiency of the proposed algorithms for solving the problem, a plan is 

utilized to generate test data. Following Hajiaghaei-Keshteli (2011), the data required for a 

problem consists of the number of DCs and customers, total demand, and range of variable costs, 

route fixed costs and opening fixed costs. For running the algorithms, 28 problem sets were 

generated at random in which seven size of problem are implemented for experimental study. 

The problem size is determined by the number of DCs and customers. The lower and upper 

bounds of variable costs are 2 and 9, such that   ,      ,   and   are made from a uniform 

distribution of U(3, 7), U(0, 1), U(0.25, 1) and U(0.25, 1). Within each problem size, four 

problem types A, B, C, and D are considered. For each problem size, problem types are different 

in range of fuzzy route fixed cost and fuzzy opening fixed cost numbers, which increases 

according to the alphabetic order of the problem types. Variable costs, are uniformly generated in 

the small interval, while the lower and upper bounds of fixed costs are generated in larger 

interval. The problem sizes, types, DCs/customers, and fixed costs ranges are shown in Table 4.
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Table 4: Test problems characteristics 

   Range of variable costs  Range of route fixed costs  Range of opening fixed costs 

Problem size Total Demand Problem type al al-bl α and β  al al-bl α and β  al al-bl α and β 

10×10 10,000 A U(3, 7) U(0, 1) U(0.25, 1)  U(50, 200) U(0, 25) U(5, 25)  U(1000, 4000) U(0, 500) U(100, 500) 
10×20 15,000 B U(3, 7) U(0, 1) U(0.25, 1)  U(100, 400) U(0, 50) U(10, 50)  U(2000, 8000) U(0, 1000) U(200, 1000) 

15×15 15,000 C U(3, 7) U(0, 1) U(0.25, 1)  U(200, 800) U(0, 100) U(20, 100)  U(4000, 16,000) U(0, 2000) U(400, 2000) 

10×30 15,000 D U(3, 7) U(0, 1) U(0.25, 1)  U(400, 1,600) U(0, 200) U(40, 200)  U(8000, 32,000) U(0, 4000) U(800, 4000) 
50×50 50,000             

30×100 30,000             

50×200 50,000             

 

5.3. Parameter Tuning 

To evaluate the performance of employed algorithms, twenty eight test problems, with different 

sizes, are developed. As we discussed in the previous sections, the experiments were designed 

according to the full factorial design for the original EM and revised EM, because of the few 

number of factors, and Taguchi experimental design for the hybrid EM. We used the L16 

orthogonal array for the hybrid EM, so 16 different combinations of control factors were 

considered. Because of the stochastic nature of EMs, three replications were performed for every 

trial in order to achieve the more reliable results. Because the scale of objective functions in each 

instance is different, they could not be employed directly. To solve this dilemma, the relative 

percentage deviation (RPD) is used for every instance. 

RPD = 100
lg




sol

solsol

Min

MinA
 

Where Algsol and Minsol are the obtained objective value for each replication of trial in a given 

instance and the obtained best solution respectively. After converting the objective values to 

RPDs, the mean RPD is calculated for every trial. As shown in Figure 5, in original EM, best 

parameters of factors A, and B, are obviously 2, and 2 respectively, according to the RPD results. 

Similar to original EM, in revised EM, the best parameters for the revised EM are 2,2, and 2 

respectively, according to their alphabetical order in Figure 6. 

To do according Taguchi parameter design instructions for the hybrid EM, the objective values, 

are transformed to S/N ratios. The S/N ratios of trials are averaged in each level and the value is 

shown in Figure 7. But, in determining best parameters of other factors more investigations are 

needed. Thus, in addition to S/N ratios, another measurement, the RPD, is used. The results of 

RPD for each parameter level are demonstrated in Figure 8. As can be seen in Figure 8, the RPD 

illustrates the best parameters of factors A, B, C, D and E as 1, 2, 1, 2 and 2 respectively which 

confirms the same results as S/N ratios.  

 

 

 

Figure 5: RPD for original EM factors 
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Figure 6: RPD for the revised EM factors 

 

Figure 7: S/N ratio for hybrid EM factors 

 

Figure 8: RPD ratio for hybrid EM factors 
 

 

5.4. Experimental results 

For the three algorithms the searching time is set identical and equal to 2×m×n milliseconds. By 

using this criterion, we consider both sizes, m and n, and searching time increases according to 

the rise of either number of potential DCs or customers. Twenty instances are generated for each 

of the seven problem sizes i.e. totally 140 instances, different from the ones used for calibration, 

to avoid bias in the results.  

Each instance is solved three times. We use RPD measure to compare the algorithms. In order to 

verify the statistical validity of the results, we have performed an analysis of variance (ANOVA) 

to accurately analyze the results. The results demonstrate that there is a clear statistically 

significant difference between performances of the algorithms. The means plot and LSD 

intervals (at the 95% confidence level) for the three algorithms are shown in Figure 9. As can be 
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seen, between original and revised EM, there is not as significant difference as between hybrid 

EM and both original and revised EM. 

In order to evaluate the robustness of the algorithms in different situations, we analyzed the 

effects of the problem size on the performance of the algorithms. Figure 10 shows the results of 

the experiments for each problem size, 60 data per average, due to twenty instance for each 

problem size and running three times. It also shows the interaction between the quality of the 

algorithms and the size of problems. As one can conclude, hybrid EM demonstrates a robust 

performance, when the problems size rises. It also shows remarkable performance improvements 

of hybrid EM in large size problems versus other algorithms. The results obtained from revised 

EM are better than original EM, except in size 50×50, but for all problem sizes, the hybrid EM 

could find the better results. 
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Figure 9: Means plot and LSD intervals for the algorithms 

 

 

 
 

Figure 10: Means plot for the interaction between each algorithm and problem size
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6. Conclusion and future works 
In this paper several algorithms presented to handle the fuzzy fixed-charge transportation 

problem. One of our innovation lies in presenting a new solution representation in this research 

area. We also focused on the intensification and diversification phases of the EM and develop a 

new version of EM. In order to tune the parameters of the proposed algorithms, we employed the 

full factorial design and the Taguchi parameter design methods. Applying the Taguchi method, 

the research cut down the original gigantic experiment combinations. To probe our idea which is 

based on the nature of the algorithm, we compare the results of all types of the proposed EM. 

Computational results showed the superiority performance of hybrid EM dealing with the 

problem in all problem sizes. From the obtained results, the revised EM performs approximately 

better than the original EM. But the hybrid EM shows superior performance with a big gap from 

two other types of EM. 

There are potentially unlimited opportunities for research in FFCTP. For future researches, it is 

possible to investigate and develop new algorithms based on other metaheuristics. Another clue 

for future research is to present new version of the metaheuristic algorithms by developing 

capable factors and new operators. Besides some other realistic assumptions, such as dynamic 

environment and truck availability constraints can be utilized. 
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