

# A novel radial super-efficiency DEA model handling negative data

Elnaz Babazadeh<sup>1,\*</sup>, Jafar Pourmahmoud<sup>1</sup>

#### Abstract

Super-efficiency model in the presence of negative data is a relatively neglected issue in the DEA field. The existing super-efficiency models have some shortcomings in practice. In this paper, a novel VRS radial super-efficiency DEA model based on Directional Distance Function (DDF) is proposed to provide a complete ranking order of units (including efficient and inefficient ones). The proposed model is feasible no matter whether data are non-negative or not. This model shows more reliability on differentiating efficient units from inefficient ones via a new bounded super-efficiency measure. It can project each unit onto the super-efficiency frontier along a new non-negative direction and produce improved targets for inefficient units. The model overcomes the infeasibility issues occur in Nerlove–Luenberger supper-efficiency model. The proposed model conveys good properties such as monotonicity, unit invariance and translation invariance. Apart from numerical examples, an empirical study in bank sector demonstrates the superiority of the proposed model.

Keywords: Data envelopment analysis; Super-efficiency model; Negative data; DDF model.

Received: January 2018-02 Revised: June 2018-13 Accepted: June 2018-17

# 1. Introduction

Data Envelopment Analysis (DEA) is a powerful tool in the context of production management for performance measurement. The purpose of DEA is to measure the relative efficiency of a set of decision making units (DMUs) where multiple inputs convert into multiple outputs (Charnes et al., 1978). Conventional DEA models assume non-negative values for inputs and outputs. However, there are many applications in which one or more inputs and/or outputs are necessarily negative such as the performance analysis of socially responsible and mutual funds (Basso and Funari, 2014), and the macroeconomic performance where "rate of growth of GDP per capita" can be either negative or positive (Lovell, 1995). In DEA literature, there have been various approaches for dealing with unrestricted in sign variables.

Lovell and Pastor (1995) and Pastor (1996) approached negative data using a translation invariance classification, for the first time. They added a number to all the data to convert them to positive ones. Many DEA models such as CCR do not have translation invariance property to apply the treatment of negative data (Ali and Seiford, 1990). Many researches have been carried out in the DEA literature to address the occurrence of the negative data.

<sup>\*</sup> Corresponding author; elnaz.babazadeh@azaruniv.ac.ir

<sup>&</sup>lt;sup>1</sup> Department of Applied Mathematics Azarbaijan Shahid Madani University, Tabriz, Iran.

Silva Portela et al. (2004) proposed range directional measure (RDM) model using some variations of the DDF. Sharp et al. (2007) extended a modified slack-based measure for negative data, inspired by the Silva's RDM model. Emrouznejad et al. (2010) proposed a Semi-Oriented Radial Measure (SORM). While Kerstens and Van de Woestyne (2011) modified the traditional proportional distance function, Cheng et al. (2013) suggested variant of the traditional input- or output-oriented radial efficiency measure to handle negative inputs and outputs. Kerstens and Van de Woestyne (2014) highlighted some shortcomings in Cheng's method using a more general case of the DDF proposed by Kerstens and Van de Woestyne (2011). An overview of the large number of DEA modeling approaches can be found in Pastor and Ruiz (2007), and Pastor and Aparicio (2015). All the above presented models did not study ranking units in the presence of negative data. As known, in the absence of negative data, the classical super-efficiency model under constant returns to scale (CRS) does not suffer from the infeasibility problem, but the super-efficiency model based upon the variable returns to scale (VRS) model of Banker et al. (1984) may be infeasible for a given unit under evaluation (see, e.g., Seiford and Zhu (1999), Chen and Liang (2011), Lee et al. (2011), Lee and Zhu (2012)). Many modified VRS radial super-efficiency DEA models (see, e.g., Chen (2005), Cook et al. (2009), Lee et al. (2011)) were proposed to address the infeasibility issue. On the other hand, Ray (2008) suggested the VRS Nerlove-Luenberger super-efficiency DEA model, based on the DDF model and showed that apart from two exceptions the model is feasible. By choosing proper directions, Chen et al. (2013) proposed a DDF-based VRS super-efficiency DEA model to address the infeasibility issues mentioned in Ray (2008). Lin and Chen (2015) consider the model in Chen et al. (2013) when zero data exist in outputs. All these modified super-efficiency DEA models are proposed for the non-negative data and the infeasibility issue when there are negative inputs or outputs still exists. For the first time, Hadi-Vencheh and Esmaeilzadeh (2013) provided a super-efficiency model (VE model) based on the RDM model for ranking units in the presence of negative data. However, Pourmahmoud et al. (2016) highlighted some shortcomings in VE model and proved that their model suffers from the common infeasibility and unboundedness problems. Pourmahmoud et al. (2016) showed that the VE model will be always feasible when all range of possible improvements are strictly positive. In addition, they defined four cases in which the envelopment form of the VE model is infeasible. In general, the infeasibility occurs when (i) there exists zero range of possible improvements in inputs and/or outputs of the evaluated DMU and (ii) the corresponding inputs (outputs) with a zero amount of improvement of the DMU under evaluation are outside of the production possibility set (PPS) spanned by the inputs (outputs) of the remaining DMUs. Recently, Lin and Chen (2017) proposed a novel DDF-based VRS radial super-efficiency DEA model which is feasible and is able to handle negative data. This paper highlights some cases that their model is not responding for ranking of all units for example when units consume the same inputs. Apart from Hadi-Vencheh and Esmaeilzadeh (2013) and Lin and Chen (2017), super-efficiency models with negative data have received no attention in the literature. The contribution of this paper is seven fold:

- 1. A novel DDF-based VRS super-efficiency model interacting with negative data is proposed.
- 2. By choosing a new non-negative improvement direction, a novel DDF-based DEA model is introduced.
- 3. The proposed model is always feasible and conveys good properties such as unit invariance, translation invariance and monotonicity.
- 4. This study shows that in distinguishing units, proposed model shows higher reliability than the other super-efficiency models compared in this study, due to introducing a bounded super-efficiency measure.
- 5. The model produces improved targets for inefficient units.

- 6. The infeasibility issues mentioned in Ray (2008) does not occur under our proposed model.
- 7. Numerical examples and an empirical study in bank sector demonstrate the applicability and the superiority of the proposed model.

The rest of the paper is outlined as follows. Section 2 briefly presents the concept of DDF model, DDF-based super-efficiency model and the model proposed by Lin and Chen (2017). In Section 3, a novel radial DDF-based super-efficiency model handling negative data is introduced. In section 4, the proposed model is applied to two numerical examples.

The penultimate section is devoted to an illustration application and finally Section 6 concludes this study.

# 2. Preliminaries

### 2.1. DDF model

Consider a set of *n* observed DMUs,  $\{DMU_j (j = 1, 2, ..., n)\}$  where each observation transforms *m* inputs,  $x_{ij}$  (i = 1, 2, ..., m), into outputs,  $y_{rj}$  (r = 1, 2, ..., s). Consider an input-output bundle for  $DMU_o(x_o, y_o)$  and a reference input-output bundle ( $g^x, g^y$ ). Furthermore, assume that all data are non-negative. Production possibility set  $T_o(x, y)$  from the observed input-output for n DMUs can be defined as follows:

 $T_o(x, y) = \{(x, y) : x \ge \sum_{j=1}^n \lambda_j x_j; y \le \sum_{j=1}^n \lambda_j y_j; \sum_{j=1}^n \lambda_j = 1; \lambda_j \ge 0; (j = 1, 2, ..., n)\}$ which is constructed assuming convexity, free disposibility of inputs and outputs, and VRS. Based on  $T_o$ , the DDF regarding  $T_o(x, y)$  can be expressed as follows (Chambers et al., 1996):  $D(x_o, y_o; g^x, g^y) = \max \beta : (x_o - g^x, y_o + g^y) \in T_o.$  (1)

The reference bundle  $(g^x, g^y)$  can be chosen in an arbitrary way and this makes the DDF varies with reference to the evaluated unit. The VRS DEA formulation for model (1) is as follows: max  $\beta$ 

s.t. 
$$\sum_{j=1}^{n} \lambda_j x_{ij} \le x_{io} - \beta g^x, \quad \forall i,$$

$$\sum_{j=1}^{n} \lambda_j y_{rj} \ge y_{ro} + \beta g^y, \quad \forall r,$$

$$\sum_{j=1}^{n} \lambda_j = 1,$$

$$\lambda_j \ge 0,$$

$$\beta \ free.$$

$$(2)$$

Model (2) combines the features of both an input- and output-oriented models in which each input and output of the unit under assessment are decreased and increased respectively, at the same time by the same portion  $\beta$ . The factor  $\beta^*$  as the optimal value of  $\beta$  in model (2) is the Nerlove–Luenberger (N–L) measure of technical inefficiency for the evaluated unit. By implication, its efficiency equals  $1 - \beta^*$  (Ray (2008)).

#### 2.2. Super-efficiency model based on DDF

The super-efficiency version of model (1) is obtained when  $DMU_o$  under evaluation is removed from the reference set.  $T_o^s(x, y)$  of super-efficiency for *n* DMUs can be defined as follows:

$$T_o^s(x,y) = \begin{cases} (x,y): x \ge \sum_{\substack{j=1\\j\neq o}}^n \lambda_j x_j; \ y \le \sum_{\substack{j=1\\j\neq o}}^n \lambda_j y_j; \sum_{\substack{j=1\\j\neq o}}^n \lambda_j = 1; \lambda_j \ge 0; (j = 1,2, ..., n; j \neq o) \end{cases}$$
  
The super-efficiency based on DDF model (1) is as follows:  
$$D(x_o, y_o; g^x, g^y) = \max \beta : (x_o - g^x, y_o + g^y) \in T_o^s.$$
  
DDF-based super-efficiency DEA model can be established as follows:

$$\begin{array}{ll} \max & \beta \\ \text{s.t.} & \sum_{j=1}^{n} \lambda_j \mathbf{x}_{ij} \leq \mathbf{x}_{io} - \beta g^x, \quad \forall i, \\ & \sum_{j\neq o}^{j\neq o} \\ \sum_{j=1}^{n} \lambda_j \mathbf{y}_{rj} \geq \mathbf{y}_{ro} + \beta g^y, \quad \forall r, \\ & \sum_{j\neq o}^{n} \lambda_j = 1, \\ & \mathbf{x}_j \geq 0, \quad \forall j, j \neq o \\ & \beta \text{ free} \end{array}$$

Ray (2008) defined the super-efficiency score of the evaluated  $DMU_o$  equals  $1 - \beta_o^*$ , where  $\beta_o^*$  is the optimum value of model (3). The smaller the value of  $\beta_o^*$ , the more efficient the  $DMU_o$  is. For any efficient  $DMU_o$ ,  $1 - \beta_o^*$  is no less than 1.

The direction vector  $(g^x, g^y)$  should be non-negative and non-zero, and can be chosen in an arbitrary way (Chen *et al.*(2013), Ray (2008)). Briec and Kerstens (2009) indicated that model (3) cannot guarantee the feasibility, if the direction is a constant vector and the output direction vector is non-zero. Hence,  $g^x$  and  $g^y$  are often considered as the function of  $x_o$  and  $y_o$ . If all input and output data are non-negative, the standard DDF for the  $DMU_o$  is adopted by choosing  $(x_o, y_o)$  as  $(g^x, g^y)$  (Chambers *et al.* (1998), Briec (1997)) and the N-L super-efficiency model (NLS model) is obtained. The NLS model is very often feasible for non-negative data, but it fails in the two cases (Ray (2008)). To address these infeasibility issues, Chen *et al.* (2013) selected a new reference input–output bundle for the DDF and propose a modified DDF-based VRS super-efficiency model. However Lin and Chen (2015) showed that the model proposed by Chen *et al.* (2013) does not fully eliminate the infeasibility issue in Ray (2008). In this regards, Lin and Chen (2015) proposed a modified DDF-based super-efficiency DEA model (LCS model) by choosing  $\left(x_{io} + \max_{j\neq o} \{x_{ij}\}, y_{ro}\right)$  as  $(g^x, g^y)$ . The LCS model successfully addresses the infeasibility issue in conventional VRS radial super-efficiency DEA models and the NLS model under non-negative data.

#### 2.3. Proposed model by Lin and Chen (2017)

Lin and Chen (2017) showed that in the presence of negative data, both the NLS and LCS models might be infeasible. This is because their related direction vectors,  $(x_{io}, y_{ro})$  and  $(x_{io} + \max_{j \neq o} \{x_{ij}\}, y_{ro})$ , might be negative, which could result in the  $DMU_o$  to be further away from the super-efficiency frontier and thus lead to infeasibility. Accordingly, they choose a new direction vector which is always non-negative and non-zero, independent of inputs and outputs being non-negative or not. Their proposed model is as follows:

$$\begin{array}{ll} \max & \beta \\ \text{s.t.} & \sum_{j=1}^{n} \lambda_j x_{ij} \leq (1-\beta) x_{io} - a_i \beta, \quad \forall i, \\ & \stackrel{j \neq o}{\sum_{j=1}^{n} \lambda_j y_{rj} \geq (1+\beta) y_{ro} - b_r \beta, \quad \forall r, \\ & \sum_{j=0}^{j \neq o} \lambda_j = 1, \\ & \stackrel{j \neq o}{\lambda_j \geq 0, \quad \forall j, j \neq o} \\ & \beta \text{ free} \end{array}$$

Where  $a_i = k * \max_{j=1,2,...,n} \{|x_{ij}|\}$ , i = 1,2,...,m and  $b_r = \min_{j=1,2,...,n} \{y_{rj}\}$ , r = 1,2,...,s; k is a constant, satisfying  $k \ge 3$ .

Consider the numerical example presented in Table 1 where there are eight DMUs with one positive input(x), and two free in sign-valued outputs  $(y_1 \text{ and } y_2)$ .

|      |   |       | -     |
|------|---|-------|-------|
| DMUs | x | $y_1$ | $y_2$ |
| А    | 1 | -6    | 5     |
| В    | 1 | -6    | 3     |
| С    | 1 | -5    | -2    |
| D    | 1 | -2    | -5    |
| Е    | 1 | 2     | -6    |
| F    | 1 | -3.5  | 3.5   |
| G    | 1 | 6.5   | -3    |
| Н    | 1 | 5     | 2     |
|      |   |       |       |

| Table | 1. | Numerical | example |
|-------|----|-----------|---------|
|-------|----|-----------|---------|

The results of applying model (4) to the units in Table 1 are presented in Table 2. The optimal values of  $1 - \beta^*$  besides the optimal slack values  $(s^*; t_1^*, t_2^*)$  are shown in columns two-five. The input and outputs projections  $(x^*; y_1^*, y_2^*)$  are represented in the columns six-eight. Projection points are computed by inserting the optimal value in the right-hand side of the input and output inequalities in model (4).

| rubic 21 The results of numerical champie | Table 2. | The results | of numerical | example |
|-------------------------------------------|----------|-------------|--------------|---------|
|-------------------------------------------|----------|-------------|--------------|---------|

| DMUs | $1 - \beta^*$ | s*     | $t_1^*$ | $t_2^*$ | <i>x</i> * | $y_1^*$ | $y_2^*$ |
|------|---------------|--------|---------|---------|------------|---------|---------|
| А    | 1.1364        | 0.5455 | 2.5000  | 0.0000  | 1.5455     | -6.0000 | 3.5000  |
| В    | 1.0000        | 0.0000 | 7.3333  | 0.0000  | 1.0000     | -6.0000 | 3.0000  |
| С    | 1.0000        | 0.0000 | 10.0000 | 4.0000  | 1.0000     | -5.0000 | -2.0000 |
| D    | 1.0000        | 0.0000 | 7.0000  | 7.0000  | 1.0000     | -2.0000 | -5.0000 |
| Е    | 1.0000        | 0.0000 | 3.0000  | 8.0000  | 1.0000     | 2.0000  | -6.0000 |
| F    | 1.0000        | 0.0000 | 3.0000  | 0.0000  | 1.0000     | -3.5000 | 3.5000  |
| G    | 1.1200        | 0.4800 | 0.0000  | 5.3600  | 1.4800     | 5.0000  | -3.3600 |
| Н    | 1.2657        | 1.0627 | 0.0000  | 0.0000  | 2.0627     | 2.0776  | -0.1254 |

Table 2 reports that  $\beta_B^* = \beta_C^* = \beta_D^* = \beta_E^* = \beta_F^* = 0$ ,  $\beta_A^* = -0.1364$ ,  $\beta_G^* = -0.1200$  and  $\beta_H^* = -0.2657$ . DMUs A, G and H are Pareto-efficient, while DMUs B, C, D, E and F are inefficient due to the optimal slack-values. Table 1 shows that all the units are on the frontier in their input components meaning that input level is efficient; but due to illogical results for DMUs A, G and H the input projections are not on the efficient frontier, as represented in Table 2. This is because  $x_{io} + a_i > 0$ ,  $\forall i$  for each  $o \in \{1, 2, ..., n\}$  and model (4) uses a unified changing rate  $\beta$  for both inputs and outputs. Thus, when units consume the same inputs, our expectation is  $\beta^* = 0$  and  $x^* = 1$  for all units whether efficient or inefficient. This demonstrates that the optimal values of  $\beta^*$  and the projection points for DMUs A, G and H are illogical results. Consequently, using the  $1 - \beta^*$  as the super-efficiency measure, model (4) is unable to provide a complete ranking order for all units. Note that this expectation is not true, when units produce the same outputs; because in this case  $y_{ro} - b_r = 0$ ,  $\forall r$  for each  $o \in \{1, 2, ..., n\}$  and the output constraints in model (4) is changed and the output projection for all units equals one.

#### 3. Proposed super-efficiency model

In this section, a new super-efficiency DEA model based on DDF is proposed for ranking all DMUs in the presence of negative data. The proposed DDF-based super-efficiency model by choosing  $(x_i^{max} - x_{io}, y_{ro} - y_r^{min})$  as the new reference input-output bundle is as follows:

$$\begin{array}{ll} \max & \delta \\ s.t. & \sum_{j=1}^{n} \lambda_j x_{ij} \leq x_{io} - (x_i^{max} - x_{io})\delta, \quad \forall i, \\ & \sum_{j\neq o}^{j\neq o} \lambda_j y_{rj} \geq y_{ro} + (y_{ro} - y_r^{min})\delta, \quad \forall r, \\ & \sum_{j=1}^{j\neq o} \lambda_j = 1, \\ & \lambda_j \geq 0, \ \forall j, \ j \neq o \\ & \delta \ \text{free} \end{array}$$

where

$$x_i^{max} = \max_{j=1,2,\dots,n} \{x_{ij}\}, \ i = 1, 2, \dots, m$$

and

$$y_r^{min} = \min_{j=1,2,\dots,n} \{y_{rj}\}, r = 1,2,\dots,s.$$

Note that the new direction is non-negative<sup>1</sup>.

It is proved that for each unit the optimal value of model (5) is  $\delta^* \ge 0$  for  $(x_{io}, y_{ro}) \in T_o^s$  and  $\delta^* \le 0$  for  $(x_{io}, y_{ro}) \notin T_o^s$ . To have a ranking order for all units, a measure is needed which is bigger than 1 for efficient DMUs and also between 0 and 1 for inefficient ones. In so doing,  $\rho^* = 1 - \frac{\delta^*}{\delta_o}$  is considered as a new measure of super-efficiency where  $\hat{\delta}_o$  is defined as:  $\hat{\delta}_o = 1$   $+ \min \left\{ \min_i \left( \frac{x_{io} - x_i^{min}}{x_i^{max} - x_{io}}; \frac{x_i^{max} - x_{io} \neq 0}{x_{io} - x_i^{min} \neq 0} \right), \min_r \left( \frac{y_r^{max} - y_{ro}}{y_{ro} - y_r^{min}}; \frac{y_r^{max} - y_{ro} \neq 0}{y_{ro} - y_r^{min} \neq 0} \right) \right\}$ where  $x_i^{min} = \min_{i=1,2,...,n} \{x_{ij}\}, i = 1,2,...,m$ 

and

$$y_r^{max} = \max_{j=1,2,\dots,n} \{y_{rj}\}, r = 1,2,\dots,s.$$

Where numerator and/or denominator are zero, the corresponding term is dropped.

Theorem 1. Model (5) is always feasible and the following inequalities are hold:

a)  $0 < \rho^* \le 1$  for  $(x_{io}, y_{ro}) \in T_o^s$ ;

b)  $1 < \rho^* \le 2$  for  $(x_{io}, y_{ro}) \notin T_o^s$ .

**Proof.** The proof is given in Appendix A,

**Corollary 1.**  $\rho^* \in (0,2]$  for all units.

From model (5) the output-projections for  $DMU_o$  are

 $y_{ro}^* = y_{ro} + (y_{ro} - y_r^{min})\delta^*, \quad \forall r$ 

where  $\delta^*$  is the optimal value of model (5). According to the results mentioned in Appendix A,  $y_{ro}^* = y_{ro} + (y_{ro} - y_r^{min})\delta^* \ge y_{ro}$ , when  $(x_{io}, y_{ro}) \in T_o^s$ 

(5)

<sup>&</sup>lt;sup>1</sup> The direction can be zero when  $x_i^{max} = x_{io}$ ,  $\forall i$  and  $y_r^{min} = y_{ro}$ ,  $\forall r$ . However, in this case the evaluated unit is absolutely the worst inefficient one.

and

 $y_{ro}^* = y_{ro} + (y_{ro} - y_r^{min})\delta^* \ge y_{ro} - (y_{ro} - y_r^{min}) = y_r^{min}$ , when  $(x_{io}, y_{ro}) \notin T_o^s$ . Therefore, the following Lemma is hold.

**Lemma 1.** For the data set with non-negative outputs,  $y_{ro}^* \ge 0$  satisfies for any  $DMU_o$  ( $o \in \{1, 2, ..., n\}$ ).

**Corollary 2.** From Theorem 1 and Lemma 1, it is concluded that the infeasibility issues occur in NLS model does not occur under our proposed model.

**Theorem 2.** Model (5) is unit invariant (The proof is given in Appendix B).

**Theorem 3.** Model (5) is translation invariant (The proof is given in Appendix C).

**Theorem 4.** If inputs (outputs) of the  $DMU_o$  are reduced (increased), the optimal value of model (5) does not increase (The proof is given in Appendix D).

Further examination of the proposed method is made by applying DMUs in Table 1. Table 3 reports the results when proposed model is applied to the numerical example in Table 1. The optimal solutions of the proposed model  $\delta^*$  besides  $\hat{\delta}_o$  are shown in the second and third columns of Table 3, respectively; and the super-efficiency measure  $\rho^*$  is presented in the fourth column. The columns five-seven of Table 3 show the projection point for a unit under evaluation.

| DMUs | $\delta^*$ | $\hat{\delta}_{o}$ | $ ho^*$ | <i>x</i> * | $y_1^*$ | $y_2^*$ | Ranking order |
|------|------------|--------------------|---------|------------|---------|---------|---------------|
| А    | -0.1364    | 1.0000             | 1.1364  | 1.0000     | -6.0000 | 3.5000  | 2             |
| В    | 0.2222     | 1.2222             | 0.8182  | 1.0000     | -6.0000 | 5.0000  | 5             |
| С    | 1.5745     | 2.7500             | 0.4275  | 1.0000     | -3.4255 | 4.2979  | 7             |
| D    | 2.1163     | 3.1250             | 0.3228  | 1.0000     | 6.4651  | -2.8837 | 8             |
| Е    | 0.5625     | 1.5625             | 0.6400  | 1.0000     | 6.5000  | -6.0000 | 6             |
| F    | 0.0804     | 1.1579             | 0.9306  | 1.0000     | -3.2991 | 4.2634  | 4             |
| G    | -0.1200    | 3.6667             | 1.0327  | 1.0000     | 5.0000  | -3.3600 | 3             |
| Н    | -0.2657    | 1.1364             | 1.2338  | 1.0000     | 2.0776  | -0.1254 | 1             |

Table 3. The results of applying proposed model for data set in Table 1

The results show that DMUs A, G and H are efficient; since their supper-efficiency measures are greater than one. However, units B, C, D, E and F are inefficient, since their supper-efficiency measures are less than one. As seen, the proposed model provides improved targets for inefficient units. Column five shows that  $x^* = 1$  for all units, and this logical outcome was expected. The proposed model provides ranking order for all units, shown in column eight: H > A > G > F > B > E > C > D.

### 4. Numerical example

In this section, two numerical examples are used to show the applicability and merits of the proposed model.

### Example 1.

Consider the data set of "the notional effluent processing system" from Sharp *et al.* (2007) presented in Table 4. There are 13 DMUs, with two inputs  $\{x_1, x_2\}$  and three outputs  $\{y_1, y_2, y_3\}$ : one positive input (cost), one non-positive input (effluent), one positive output (saleable output), and two non-positive outputs (methane and CO2).

| DMUs | $x_l$ | <i>x</i> <sub>2</sub> | <i>Y1</i> | <i>Y</i> 2 | <i>y</i> <sub>3</sub> |
|------|-------|-----------------------|-----------|------------|-----------------------|
| А    | 1.03  | -0.05                 | 0.56      | -0.09      | -0.44                 |
| В    | 1.75  | -0.17                 | 0.74      | -0.24      | -0.31                 |
| С    | 1.44  | -0.56                 | 1.37      | -0.35      | -0.21                 |
| D    | 10.8  | -0.22                 | 5.61      | -0.98      | -3.79                 |
| E    | 1.30  | -0.07                 | 0.49      | -1.08      | -0.34                 |
| F    | 1.98  | -0.10                 | 1.61      | -0.44      | -0.34                 |
| G    | 0.97  | -0.17                 | 0.82      | -0.08      | -0.43                 |
| Н    | 9.82  | -2.32                 | 5.61      | -1.42      | -1.94                 |
| Ι    | 1.59  | 0.00                  | 0.52      | 0.00       | -0.37                 |
| J    | 5.96  | -0.15                 | 2.14      | -0.52      | -0.18                 |
| K    | 1.29  | -0.11                 | 0.57      | 0.00       | -0.24                 |
| L    | 2.38  | -0.25                 | 0.57      | -0.67      | -0.43                 |
| Μ    | 10.30 | -0.16                 | 9.56      | -0.58      | 0.00                  |

| Tabla /  | Data | cote nee | d in | Evampla 1 | ovtracted   | from Sharn |
|----------|------|----------|------|-----------|-------------|------------|
| Table 4. | Data | sets use | uш   | Example 1 | , extracted | from Snarp |

Table 5, shows the results of applying model (4) and model (5) on data sets used in Table 4. The second column represents the super-efficiency provided by model (4) and the columns four-six show the results obtained after model (5) is applied. As seen in the second and the sixth columns in Table 5, both models are feasible for all units and they can differentiate the performance of both efficient and inefficient units for used data set. The optimal values of  $\delta^*$ ,  $\hat{\delta}_0$  and the super-efficiency measure  $\rho^*$  are represented in the columns four-six in Table 5, respectively. For both models, DMUs C, G, H, K and M are efficient, since their supper-efficiency measures are greater than 1 and the others are inefficient, since their supper-efficiency measures are less than 1. Columns three and seven which represents the ranking order of all units using model (4) and model (5), respectively, reflect that the ranking orders of both models are close; however their super-efficiency measures are different. This is due to the different improvement directions and different measures.

| DMUs | $1 - \beta^*$ | Ranking<br>order | $\delta^*$ | $\hat{\delta}_o$ | $ ho^*$ | Ranking<br>order |
|------|---------------|------------------|------------|------------------|---------|------------------|
| А    | 0.9982        | 7                | 0.0050     | 1.0061           | 0.9950  | 7                |
| В    | 0.9863        | 10               | 0.0261     | 1.0862           | 0.9760  | 10               |
| С    | 1.0412        | 3                | -0.1126    | 1.0502           | 1.1072  | 3                |
| D    | 0.9192        | 13               | 0.6954     | 1.7715           | 0.6074  | 13               |
| Е    | 0.9955        | 8                | 0.0117     | 1.0347           | 0.9887  | 8                |
| F    | 0.9921        | 9                | 0.0279     | 1.0986           | 0.9746  | 11               |
| G    | 1.0108        | 5                | -0.0307    | 1.0597           | 1.0290  | 5                |
| Н    | 1.4023        | 2                | -0.7654    | 1.7715           | 1.4321  | 1                |
| Ι    | 1.0000        | 6                | 0.0000     | 1.0673           | 1.0000  | 6                |
| J    | 0.9829        | 11               | 0.0207     | 1.0499           | 0.9803  | 9                |
| К    | 1.0292        | 4                | -0.0396    | 1.0336           | 1.0383  | 4                |
| L    | 0.9694        | 12               | 0.0681     | 1.1280           | 0.9397  | 12               |
| М    | 1.5402        | 1                | -0.5402    | 1.6905           | 1.3195  | 2                |
|      |               |                  |            |                  |         |                  |

Table 5. Applying the proposed model for data set in Table 4

As can be seen from Table 5, all the super-efficiency scores yielded by model (5) for inefficient units are less than or equal to those generated by model (4). The super-efficiency scores vary from 0.9192 to 1.5402 under the model (4), whereas they vary from 0.6074 to 1.4321 under our proposed model. Obviously, the super-efficiency scores yielded from model (5) have bigger changing ranges for units in comparison with model (4). This shows the merits of the proposed model. From Table 5, DMUs M and D have the best and the worst performance under model (4), respectively, whereas DMUs H and D have the best and the worst performance under proposed model (5), respectively. Table 6 shows the target input-output values of inefficient units, determined by model (5).

Table 6. Improved targets for inefficient DMUs provided by model (5)

| DMUs | $x_1^*$ | $x_2^*$ | $y_1^*$ | $y_2^*$ | <i>y</i> <sub>3</sub> * |
|------|---------|---------|---------|---------|-------------------------|
| А    | 0.9813  | -0.0502 | 0.5603  | -0.0834 | -0.4233                 |
| В    | 1.5138  | -0.1744 | 0.7465  | -0.2092 | -0.2192                 |
| D    | 10.8000 | -0.3730 | 9.1705  | -0.6740 | -3.7900                 |
| Е    | 1.1893  | -0.0708 | 0.4900  | -1.0760 | -0.2998                 |
| F    | 1.7335  | -0.1028 | 1.6413  | -0.4126 | -0.2436                 |
| Ι    | 1.5900  | 0.0000  | 0.5200  | 0.0000  | -0.3700                 |
| J    | 5.8598  | -0.1531 | 2.1742  | -0.5014 | -0.1052                 |
| L    | 1.8069  | -0.2670 | 0.5754  | -0.6190 | -0.2013                 |

Lin and Chen (2017) calculated the improved targets for inefficient units. The proposed model demonstrates that in each inefficient unit, the inputs and the outputs should be reduced and expanded, respectively, in order to tend to the super-efficiency frontier. Hence, the proposed model the same as Lin and Chen's model can provide improved target inputs and outputs for all the inefficient units but there are variations due to having different directions in their movements to reach the super-efficiency frontier.

### Example 2

In this example, 7 hypothetical DMUs with two inputs  $\{x_1, x_2\}$  and one output  $\{y\}$ , are assumed as listed in Table 7. Note that one input  $(x_1)$  and the output (y) contain negative values for some units.

| DMUs | <b>X</b> 1 | <b>X</b> 2 | У    |
|------|------------|------------|------|
| А    | -3         | 10         | 2.5  |
| В    | -2         | 8          | 4    |
| С    | 2.5        | 5          | -0.1 |
| D    | -5         | 1          | 3.2  |
| Е    | 4.5        | 6          | 2    |
| F    | -4         | 5.5        | 4.5  |
| G    | 2          | 9          | -1   |

Table 7. Assumed data sets for Example 2

The outcomes after applying model (4) and model (5) to the assumed data set are reported in Table 8. The second column represents the super-efficiency provided by model (4) and the columns four-six show the results obtained after proposed model is applied. Both models are able to provide the feasible solutions for all units and obtain the super-efficiency measures for them, as shown in the second and sixth columns. From the results it can be concluded that in both models DMUs D and F are efficient, since their supper-efficiency measures are greater than 1. All units other than DMUs D and F are inefficient, since their supper-efficiency measures are less than 1. The outcomes for the ranking orders using model (4) and model (5) shown in the third and seventh columns, respectively represents that DMU D is superior to other units in both models. Their ranking orders are different however.

 Table 8. Outcomes after applying the assume data on the model (4) and the model (5)

| DMUs | $1 - \beta^*$ | Ranking<br>order | δ*      | $\widehat{\boldsymbol{\delta}}_{o}$ | ρ*     | Ranking<br>Order |
|------|---------------|------------------|---------|-------------------------------------|--------|------------------|
| А    | 0.8333        | 6                | 0.2491  | 1.2667                              | 0.8034 | 4                |
| В    | 0.9235        | 3                | 0.1000  | 1.1000                              | 0.9091 | 3                |
| С    | 0.8857        | 4                | 0.8000  | 1.8000                              | 0.5556 | 6                |
| D    | 1.1441        | 1                | -0.4704 | 1.3095                              | 1.3592 | 1                |
| Е    | 0.8611        | 5                | 0.6364  | 1.8333                              | 0.6529 | 5                |
| F    | 1.1225        | 2                | -0.1330 | 1.1176                              | 1.1190 | 2                |
| G    | 0.7949        | 7                | 2.8000  | 3.8000                              | 0.2632 | 7                |
|      |               |                  |         |                                     |        |                  |

| Table 9. Im | proved targ | gets for inef        | ficient units        | s provided b   | y model (5) |
|-------------|-------------|----------------------|----------------------|----------------|-------------|
|             | DMUs        | $\mathbf{x}_{1}^{*}$ | $\mathbf{x}_{2}^{*}$ | $\mathbf{y}^*$ |             |
|             | А           | -4.8679              | 10.0000              | 3.3717         | -           |
|             | В           | -2.6500              | 7.8000               | 4.5000         |             |
|             | С           | 0.9000               | 1.0000               | 0.6200         |             |
|             | Е           | 4.5000               | 3.4545               | 3.9091         |             |
|             | G           | -5.0000              | 6.2000               | -1.0000        |             |
|             |             |                      |                      |                |             |

Table 9 represents the improved targets for inefficient units obtained from proposed model.

As can be seen from the above two examples, all the super-efficiency scores yielded by model (5) for inefficient units are less than or equal to those generated by model (4). Thus, the results show more reliability and responsibility of the proposed model. From the theoretical analyses it is concluded that, the same as Lin and Chen's model, the proposed model can deal with the data set with free in sign values and can provide improved targets for inefficient units.

To examine the monotonicity of the proposed model, consider the data set used in Table 7. Suppose that the first input of DMU F is decreased from -4 to -104 and its output is increased from 4.5 to 204.5 in the following way:  $x_1$ =-4-L, and y=4.5+2\*L, where L increases from 0 to 100 with the step size equals to 1. When L increases from 0 to 100, the optimal value of model (5) i.e.,  $\delta^*$  decreases gradually from -0.1330 to -0.9757. Figure 1 shows the changes of  $\delta^*$  with respect to L for DMU F. As can be seen, the value of  $\delta^*$  monotonically decreases with the increase of L and this confirms Theorem 4 which claims the monotonicity of the proposed model.



Figure 1. The change of the optimal value of model (5) for DMU F

The next section provides a numerical illustration to show the superiority and flexibility of the proposed model in comparison with Lin and Chen's proposed model and VE model.

# 5. An empirical application

In this section a real world data of the 61 banks in the GCC<sup>1</sup> countries is used to show the applicability and merits of the proposed model (5) in comparison with VE model, and Lin and Chen's proposed model (4). In this evaluation, the input variables are total assets, capital and deposits. The output variables are loans and equity in each branch. Note that the last output could take both positive and negative values among the banks. For full definitions of variables see Emrouznejad and Anouze (2010). Table 10 below shows the descriptive statistics of the variables.

| Table 10. Descriptive statistics of the banks data |        |          |         |         |         |  |  |  |  |
|----------------------------------------------------|--------|----------|---------|---------|---------|--|--|--|--|
| Variables (million<br>\$)                          | Min    | Max      | Mean    | Median  | St. Dev |  |  |  |  |
| Inputs                                             |        |          |         |         |         |  |  |  |  |
| Assets                                             | 252.49 | 29313    | 5569.16 | 2390.31 | 6667.20 |  |  |  |  |
| Equity                                             | 50.19  | 2381.04  | 627.15  | 398.84  | 615.02  |  |  |  |  |
| Deposit                                            | 26.05  | 25251.31 | 4495.24 | 2006.6  | 5560.15 |  |  |  |  |
| Outputs                                            |        |          |         |         |         |  |  |  |  |
| Loan                                               | 120.97 | 15379    | 2777.32 | 1427.89 | 3222.04 |  |  |  |  |
| Profit                                             | -51    | 647.7    | 93.11   | 41.59   | 128.45  |  |  |  |  |

The outcomes are reported in Table 11.

Table 11. Outcomes after applying the assume data on three models: VE model, Lin and Chen's model and the proposed model

| Banks | VE model   | $1 - \beta^*$ | Ranking<br>Order | δ*      | $\widehat{\delta}_{o}$ | ρ*     | Ranking<br>Order |
|-------|------------|---------------|------------------|---------|------------------------|--------|------------------|
| 1     | Infeasible | 1.0052        | 6                | -0.0157 | 13.3825                | 1.0012 | 13               |
| 2     | 0.9639     | 0.9904        | 37               | 0.0323  | 1.3040                 | 0.9752 | 43               |
| 3     | 1.0077     | 1.0016        | 11               | -0.0049 | 1.0583                 | 1.0046 | 10               |
| 4     | 0.9327     | 0.9796        | 46               | 0.0674  | 1.1656                 | 0.9421 | 55               |
| 5     | 1.0121     | 1.0030        | 8                | -0.0089 | 1.0083                 | 1.0088 | 7                |
| 6     | 0.9038     | 0.9743        | 49               | 0.0890  | 1.1770                 | 0.9244 | 57               |
| 7     | 1.523      | 1.0946        | 3                | -0.2452 | 1.2046                 | 1.2036 | 1                |
| 8     | 0.9442     | 0.9869        | 41               | 0.0422  | 1.0478                 | 0.9597 | 51               |
| 9     | Infeasible | 1.1699        | 2                | -0.1699 | 3.7898                 | 1.0448 | 3                |
| 10    | 0.9009     | 0.9673        | 52               | 0.1298  | 1.6258                 | 0.9202 | 58               |
|       |            |               |                  |         |                        |        |                  |

<sup>1</sup>The Gulf Cooperation Council (GCC), is a trade bloc involving the six Arab states of the Persian Gulf with many economic and social objectives (for full details see www.gcc-sg.org).

| 11 | 0.007  | 0.0004 | 10 | 0.0019  | 1.0106 | 0.0092 |    |
|----|--------|--------|----|---------|--------|--------|----|
| 11 | 0.997  | 0.9994 | 19 | 0.0018  | 1.0106 | 0.9983 | 23 |
| 12 | 0.9879 | 0.9977 | 27 | 0.0071  | 1.0102 | 0.9929 | 32 |
| 13 | 0.9677 | 0.9910 | 36 | 0.0284  | 1.0456 | 0.9728 | 46 |
| 14 | 0.9991 | 0.9998 | 16 | 0.0006  | 1.0226 | 0.9994 | 17 |
| 15 | 0.9920 | 0.9983 | 25 | 0.0054  | 1.1486 | 0.9953 | 30 |
| 16 | 0.9602 | 0.9873 | 40 | 0.0402  | 1.1142 | 0.9639 | 47 |
| 17 | 0.9014 | 0.9752 | 48 | 0.0875  | 1.1825 | 0.9260 | 56 |
| 18 | 0.9951 | 0.9989 | 22 | 0.0033  | 1.0123 | 0.9967 | 26 |
| 19 | 0.975  | 0.9936 | 33 | 0.0235  | 1.6556 | 0.9858 | 36 |
| 20 | 0.8804 | 0.9689 | 50 | 0.1142  | 1.2379 | 0.9078 | 60 |
| 21 | 0.9969 | 0.9992 | 21 | 0.0023  | 1.0189 | 0.9977 | 25 |
| 22 | 1.0051 | 1.0015 | 12 | -0.0043 | 1.0705 | 1.0040 | 11 |
| 23 | 0.9899 | 0.9971 | 28 | 0.0093  | 1.1986 | 0.9923 | 33 |
| 24 | 0.9952 | 0.9985 | 23 | 0.0045  | 1.0519 | 0.9957 | 27 |
| 25 | 0.973  | 0.9916 | 35 | 0.0261  | 1.0654 | 0.9755 | 42 |
| 26 | 1.0585 | 1.0130 | 4  | -0.0422 | 1.1938 | 1.0353 | 4  |
| 27 | 0.9962 | 0.9993 | 20 | 0.0022  | 1.2542 | 0.9982 | 24 |
| 28 | 0.9802 | 0.9946 | 31 | 0.0170  | 1.0395 | 0.9836 | 39 |
| 29 | 0.9825 | 0.9952 | 30 | 0.0159  | 1.2575 | 0.9873 | 35 |
| 30 | 0.7877 | 0.9194 | 53 | 0.3915  | 1.7512 | 0.7765 | 61 |
| 31 | 1.0004 | 1.0001 | 15 | -0.0003 | 1.0062 | 1.0003 | 16 |
| 32 | 0.9986 | 0.9996 | 18 | 0.0012  | 1.0174 | 0.9988 | 21 |
| 33 | 0.9991 | 0.9997 | 17 | 0.0009  | 1.3407 | 0.9993 | 18 |
| 34 | 0.9754 | 0.9946 | 31 | 0.017   | 1.0580 | 0.9840 | 38 |
| 35 | 0.9643 | 0.9901 | 38 | 0.0325  | 1.2605 | 0.9742 | 45 |
| 36 | 0.9984 | 0.9996 | 18 | 0.0012  | 1.0102 | 0.9989 | 20 |
| 37 | 0.9489 | 0.9850 | 43 | 0.0582  | 1.5556 | 0.9626 | 49 |
| 38 | 0.9563 | 0.9867 | 42 | 0.0421  | 1.1018 | 0.9618 | 50 |
| 39 | 0.8865 | 0.9675 | 51 | 0.1207  | 1.4626 | 0.9174 | 59 |
| 40 | 0.9949 | 0.9985 | 23 | 0.0045  | 1.0168 | 0.9956 | 28 |
| 41 | 0.9179 | 0.9794 | 47 | 0.0872  | 1.7237 | 0.9494 | 54 |
| 42 | 0.9837 | 0.9967 | 29 | 0.0105  | 1.0794 | 0.9903 | 34 |
| 43 | 0.9935 | 0.9982 | 26 | 0.0054  | 1.0191 | 0.9947 | 31 |
| 44 | 0.9979 | 0.9996 | 18 | 0.0013  | 1.0140 | 0.9987 | 22 |
|    |        |        |    |         |        |        |    |

| 45 | 1.0017     | 1.0003 | 14 | -0.0007 | 1.0071 | 1.0007 | 15 |
|----|------------|--------|----|---------|--------|--------|----|
| 46 | Infeasible | 1.2310 | 1  | -0.231  | 1.3627 | 1.1695 | 2  |
| 47 | 0.994      | 0.9984 | 24 | 0.0048  | 1.0243 | 0.9953 | 29 |
| 48 | 1.0249     | 1.0036 | 7  | -0.0107 | 1.0001 | 1.0107 | 6  |
| 49 | 1.0025     | 1.0008 | 13 | -0.0023 | 1.0489 | 1.0022 | 12 |
| 50 | 1.0206     | 1.0028 | 9  | -0.0087 | 1.0070 | 1.0087 | 8  |
| 51 | 1.0059     | 1.0020 | 10 | -0.006  | 1.0290 | 1.0058 | 9  |
| 52 | 0.9301     | 0.9823 | 44 | 0.0655  | 1.3850 | 0.9527 | 52 |
| 53 | 0.9157     | 0.9799 | 45 | 0.084   | 1.6664 | 0.9496 | 53 |
| 54 | 1.028      | 1.0058 | 5  | -0.0231 | 1.3004 | 1.0177 | 5  |
| 55 | 0.9562     | 0.9884 | 39 | 0.0441  | 1.7124 | 0.9742 | 44 |
| 56 | 0.9794     | 0.9939 | 32 | 0.0206  | 1.3131 | 0.9843 | 37 |
| 57 | 0.9560     | 0.9867 | 42 | 0.0444  | 1.2116 | 0.9634 | 48 |
| 58 | 0.9938     | 0.9997 | 17 | 0.0008  | 1.0009 | 0.9992 | 19 |
| 59 | 0.9755     | 0.9926 | 34 | 0.0238  | 1.1484 | 0.9793 | 41 |
| 60 | 1.0009     | 1.0003 | 14 | -0.0008 | 1.0112 | 1.0008 | 14 |
| 61 | 0.9681     | 0.9939 | 32 | 0.0189  | 1.0190 | 0.9814 | 40 |
|    |            |        |    |         |        |        |    |

As it is shown in the second column in Table 11, VE model is infeasible for DMUs 1, 9 and 46. Both model (4) and model (5) are feasible for all units; however their super-efficiency measures are different as represented in the third and seventh columns. As can be seen, all the super-efficiency scores yielded by model (5) for inefficient units are less than or equal to those generated by model (4) as shown in Figure 2. The super-efficiency scores vary from 0.9194 to 1.2310 under the Lin and Chen's model, whereas they vary from 0.7765 to 1.2310 under our proposed model. From Figure 2, in general, the super-efficiency scores obtained from model (4) is around 1.0000 for inefficient DMUs, whereas the scores yielded from model (5) have bigger changing ranges for inefficient ones. From Table 11, DMUs 46 and 30 have the best and the worst performance, respectively under both models. Column seven presents a complete ranking order for all units (both efficient and inefficient ones) using proposed model. However, from column four, Lin and Chen's model cannot put discriminations between some inefficient units: between DMUs 45 and 60, DMUs 33 and 58, DMUs 32, 36 and 44, DMUs 24 and 40, DMUs 28 and 34, DMUs 56 and 61, and also DMUs 38 and 57. This shows that the proposed model is more responsive than model (4) and it can differentiate the units better than model (4).



Figure 2. Comparison of efficiency score between Lin and Chen's model and the proposed model.

Table 12 shows the target input-output values of inefficient units determined by Lin and Chen's model and the proposed model.

|       | Input targets (million \$) |                |          |                    |          | Output targets (million \$) |                |          |                    |          |
|-------|----------------------------|----------------|----------|--------------------|----------|-----------------------------|----------------|----------|--------------------|----------|
| Banks | P                          | Proposed model |          | Lin & Chen's model |          |                             | Proposed model |          | Lin & Chen's model |          |
|       | ASST                       | EQTY           | DEPO     | ASST               | EQTY     | DEPO                        | LOAN           | PROF     | LOAN               | PROF     |
| 2     | 6833.854                   | 1159.259       | 5281.466 | 6617.272           | 1117.092 | 5119.522                    | 4887.497       | 167.0831 | 4782.684           | 162.2876 |
| 4     | 2699.356                   | 443.5269       | 2280.62  | 2496.008           | 408.551  | 2109.128                    | 2065.827       | 71.9906  | 1980.148           | 66.5723  |
| 6     | 2984.643                   | 692.665        | 1912.941 | 2747.486           | 626.0042 | 1777.93                     | 2350.448       | 69.2342  | 2220.816           | 62.2433  |
| 8     | 409.1027                   | 257.7952       | 182.0847 | 403.3107           | 245.406  | 186.1356                    | 398.9508       | 10.4053  | 391.2029           | 8.6938   |
| 10    | 9558.56                    | 761.3459       | 8248.126 | 8565.898           | 682.8822 | 7390.993                    | 4815.444       | 179.6554 | 4412.044           | 159.835  |
| 11    | 507.1023                   | 97.82          | 405.1641 | 506.7941           | 97.6627  | 404.9726                    | 438.8196       | 5.2691   | 438.4429           | 5.2024   |
| 12    | 374.109                    | 57.3863        | 314.2385 | 373.3876           | 57.0744  | 313.6925                    | 296.8849       | -13.414  | 296.0455           | -13.5934 |
| 13    | 730.147                    | 138.5945       | 614.449  | 718.7452           | 134.7874 | 605.155                     | 646.8699       | 19.6006  | 636.9193           | 18.2648  |
| 14    | 876.3263                   | 121.8419       | 723.199  | 875.712            | 121.7485 | 722.697                     | 724.9398       | 21.1566  | 724.6789           | 21.1254  |
| 15    | 3873.926                   | 388.0565       | 3231.567 | 3859.332           | 386.3531 | 3219.74                     | 3204.826       | 60.1916  | 3193.218           | 59.7731  |
| 16    | 2182.509                   | 266.9593       | 1709.104 | 2071.636           | 253.3934 | 1622.288                    | 1480.401       | 55.3687  | 1444.502           | 52.5598  |
| 17    | 2587.745                   | 344.9764       | 2300.374 | 2437.568           | 318.8595 | 2163.655                    | 2200.653       | 45.1771  | 2080.813           | 39.635   |
|       |                            |                |          |                    |          |                             |                |          |                    |          |

| Table 12. Improved targets | for inefficient units | provided by Lin and | Chen's model and the | proposed model |
|----------------------------|-----------------------|---------------------|----------------------|----------------|
|                            |                       |                     |                      |                |

| 18 | 510.4718 | 106.9281 | 403.0567 | 508.2422 | 106.4609 | 401.2964 | 362.2116 | 15.8594  | 361.6827 | 15.7128  |
|----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 19 | 11530.17 | 1242.47  | 9656.851 | 11299.11 | 1214.765 | 9465.86  | 5745.236 | 273.4285 | 5651.285 | 268.009  |
| 20 | 3167.718 | 405.8167 | 2546.688 | 2933.961 | 367.4686 | 2369.061 | 2680.296 | 53.3772  | 2489.353 | 45.59    |
| 21 | 724.5993 | 102.48   | 616.4587 | 722.5455 | 102.1793 | 614.7132 | 573.6631 | 17.4778  | 572.9657 | 17.3723  |
| 23 | 5947.753 | 689.233  | 4010.617 | 5892.144 | 682.2353 | 3976.109 | 3252.709 | 131.6787 | 3232.844 | 130.52   |
| 24 | 1562.795 | 206.3604 | 1206.272 | 1552.081 | 205.0158 | 1197.878 | 869.5391 | 42.0061  | 867.3114 | 41.7293  |
| 25 | 1325.591 | 168.6568 | 1159.627 | 1280.482 | 162.9441 | 1120.174 | 903.6532 | 34.7996  | 890.1801 | 33.3227  |
| 27 | 7361.692 | 1224.742 | 5093.056 | 7347.426 | 1221.764 | 5084.39  | 5618.155 | 152.6258 | 5609.497 | 152.3051 |
| 28 | 881.4456 | 144.6448 | 733.8897 | 872.186  | 142.2805 | 726.4742 | 768.0558 | 22.6014  | 760.6852 | 21.763   |
| 29 | 6306.268 | 828.2501 | 4872.077 | 6209.315 | 813.9194 | 4800.005 | 3594.536 | 155.1399 | 3556.642 | 152.8911 |
| 30 | 11117.49 | 637.755  | 5207.498 | 7838.055 | 461.3808 | 3864.926 | 4482.981 | 138.6569 | 3508.525 | 96.2883  |
| 32 | 714.0055 | 151.19   | 555.6718 | 712.0383 | 150.8746 | 554.0765 | 533.274  | 23.3927  | 532.9347 | 23.3315  |
| 33 | 8296.48  | 851.4471 | 6418.351 | 8290.827 | 850.7763 | 6414.35  | 6034.671 | 178.013  | 6030.717 | 177.8599 |
| 34 | 1571.465 | 316.8273 | 1003.714 | 1551.683 | 311.0659 | 994.3586 | 1364.418 | 37.4559  | 1350.229 | 36.4466  |
| 35 | 5705.575 | 872.8085 | 4589.198 | 5517.134 | 840.698  | 4440.241 | 3533.535 | 143.6078 | 3458.708 | 139.3407 |
| 36 | 511.6953 | 206.6401 | 298.631  | 509.4482 | 206.1848 | 296.9301 | 150.6965 | 20.5879  | 150.6726 | 20.5304  |
| 37 | 9544.164 | 971.5707 | 8340.758 | 9154.37  | 926.3216 | 7996.735 | 7146.104 | 190.7355 | 6858.962 | 180.8549 |
| 38 | 1826.062 | 323.7825 | 1493.601 | 1725.153 | 306.2472 | 1410.903 | 1273.211 | 52.348   | 1241.377 | 49.4927  |
| 39 | 7192.09  | 1388.119 | 5922.661 | 6401.541 | 1213.949 | 5278.975 | 2805.214 | 178.8193 | 2593.98  | 160.7339 |
| 40 | 603.3752 | 158.7216 | 438.8434 | 596.649  | 157.5208 | 433.532  | 438.5947 | 22.0052  | 437.66   | 21.7903  |
| 41 | 16586.16 | 1732.263 | 14142.14 | 15434.78 | 1600.563 | 13164.75 | 7765.635 | 389.6942 | 7297.072 | 362.6828 |
| 42 | 2108.36  | 226.864  | 1763.168 | 2094.683 | 224.9967 | 1752.108 | 1793.545 | -0.153   | 1781.627 | -0.5153  |
| 43 | 644.3943 | 145.5972 | 497.4311 | 638.8151 | 144.4783 | 493.0367 | 538.9084 | 20.8951  | 537.4154 | 20.6382  |
| 44 | 616.253  | 178.8509 | 398.9968 | 615.9367 | 178.6042 | 398.9506 | 582.7374 | 15.0955  | 582.3349 | 15.0379  |
| 47 | 806.7178 | 110.7147 | 689.9633 | 801.8951 | 110.0368 | 685.8403 | 630.3845 | 20.028   | 628.7614 | 19.8017  |
| 52 | 7170.236 | 1301.942 | 5845.49  | 6821.406 | 1217.42  | 5570.859 | 5832.108 | 172.0372 | 5576.113 | 162.0398 |
| 53 | 16989.77 | 2227.197 | 13957.01 | 15814.53 | 2050.354 | 13009.8  | 6892.642 | 403.5169 | 6493.494 | 376.7259 |
| 55 | 11593.55 | 1088.959 | 9942.374 | 11174.81 | 1047.08  | 9584.043 | 5670.454 | 269.1724 | 5497.787 | 259.2105 |
| 56 | 6726.225 | 578.509  | 5809.205 | 6603.553 | 567.7041 | 5703.139 | 3296.105 | 149.8845 | 3250.942 | 147.0272 |
| 57 | 4263.575 | 496.6127 | 3616.459 | 4083.508 | 473.6765 | 3464.458 | 2473.862 | 105.8998 | 2403.911 | 101.2353 |
| 58 | 1024.241 | 252.2266 | 27.9691  | 1023.128 | 251.9474 | 27.9636  | 347.5298 | 13.9444  | 347.4031 | 13.9081  |
| 59 | 3405.714 | 416.7961 | 2979.082 | 3322.783 | 405.7885 | 2906.263 | 2417.741 | 84.5865  | 2381.133 | 82.4255  |
| 61 | 402.9495 | 169.8205 | 27.4778  | 393.6935 | 165.6988 | 27.3614  | 120.97   | 10.6846  | 120.97   | 9.9117   |

It could be concluded from Table 12, both models provide the improved targets for all inefficient DMUs. Under the proposed model, the inputs and the outputs of each inefficient unit should be reduced and expanded, respectively, in order to reach the super-efficiency frontier. Hence, the proposed model the same as Lin and Chen's model can provide improved target inputs and outputs for all the inefficient units but there are variations due to having different directions in their movements towards the super-efficiency frontier. From the theoretical analysis and the above examples, it is concluded that the proposed model can deal with the data set with free in sign values and can provide improved targets for inefficient units. In addition, the proposed model takes desirable properties of monotonicity, unit and translation invariance. The model fully eliminates the infeasibility issue of the VE model and successfully addresses the shortcomings of Lin and Chen's model. More importantly, different from current DEA models handling negative data, the proposed model can provide a complete ranking order for all the DMUs via a new super-efficiency measure.

## 6. Conclusion

Conventional DEA models are introduced to evaluate units with non-negative data, while in practice there are important units with negative data and they need to be evaluated. Super-efficiency model in the presence of negative data is a relatively neglected issue in the DEA field. The existing super-efficiency models have some shortcomings in practice. In this study, by using a new non-negative direction, a novel radial DDF-based super-efficiency model is proposed to make a distinction between efficient and inefficient units. The model can provide a complete ranking order for all the DMUs via a new super-efficiency measure. The model guaranties the feasibility no matter whether the input-outputs data are non-negative or not. It addresses the infeasibility issues occur in NLS model and contains advantages such as monotonicity, unit invariance and translation invariance properties. Apart from numerical examples, an empirical study in bank sector demonstrates the reliability and superiority of the proposed model in distinguishing units.

# References

Ali, A.I., and Seiford, L.M. (1990). "Translation invariance in data envelopment analysis", Operations Research Letters, Vol. 9, pp. 403-405.

Andersen, P., and Petersen, N.C., (1993). "A procedure for ranking efficient units in data envelopment analysis", Management Science, Vol. 39, No. 10, pp. 1261–1294.

Banker, R.D., Charnes A., and Cooper W.W., (1984). "Some models for estimating technical and scale inefficiencies in data envelopment analysis", Management Science, Vol. 30, No. 9, pp. 1078-1092.

Basso, A., and Funari, S., (2014). "Constant and variable returns to scale DEA models for socially responsible investment funds", European Journal of Operational Research, 235(3), 775-783.

Briec, W., (1997). "Agraph-type extension of Farrell technical efficiency measure", Journal of Productivity Analysis, Vol. 8, No. 1, pp. 95-110.

Briec, W., and Kerstens, K., (2009). "Infeasibilities and directional distance functions with application to the determinateness of the Luenberger productivity indicator", Journal of Optimization Theory and Applications, Vol. 141, No. 1, pp. 55-73.

Chambers, R., Chung, Y., and Färe, R., (1998). "Profit, directional distance functions, and Nerlovian efficiency", Journal of Optimization Theory and Applications, Vol. 98, pp. 351–364.

Chambers, R. G., Chung, Y., and Färe, R., (1996). "Benefit and distance functions", Journal of Economic Theory, Vol. 70, pp. 407–419.

Charnes A., Cooper W. W., and Rhodes E., (1978). "Measuring the efficiency of decision making units", European Journal of Operational Research, Vol. 2, No. 6, pp. 429-444.

Chen, Y., (2005). "Measuring super-efficiency in DEA in the presence of infeasibility", European Journal of Operational Research, Vol. 61, pp. 545–551.

Chen, Y., Du, J., and Hoa, J., (2013). "Super-efficiency based on a modified directional distance function", Omega, Vol. 41, pp. 621-625.

Chen, Y., and Liang, L. (2011). "Super-efficiency DEA in the presence of infeasibility: One model approach", European Journal of Operational Research, Vol. 213, pp. 359–360.

Cheng, G., Zervopoulos, P., and Qian, Z., (2013). "A variant of radial measure capable of dealing with negative inputs and outputs in data envelopment analysis", European Journal of Operational Research, Vol. 225, No. 1, pp. 100–105.

Cook, W.D., Liang, L., Zha, Y., and Zhu, J., (2009). "A modified super-efficiency DEA model for infeasibility", Journal of Operational Research Society, Vol. 60, pp. 276–281.

Emrouznejad, A., Anouze, A.L., and Thanassoulis, E., (2010). "A semi-oriented radial measure for measuring the efficiency of decision making units with negative data, using DEA", European Journal of Operational Research, Vol. 200, No. 1, pp. 297-304.

Emrouznejad, A. and Anouze, A.L., (2010). "Data envelopment analysis with classification and regression tree - A case of banking efficiency", Expert Systems with Applications, Vol. 27, No. 4, pp. 231-246.

Hadi-Vencheh, A., and Esmaeilzadeh, A., (2013). "A new super-efficiency model in the presence of negative data", Journal of the Operational Research Society, Vol. 64, No. 3, pp. 396-401.

Kerstens, K., and Van de Woestyne, I., (2011). "Negative data in DEA: a simple proportional distance function approach", Journal of the Operational Research Society, Vol. 62, No. 7, pp. 1413-1419.

Kerstens, K., and VandeWoestyne, I., (2014). "A note on a variant of radial measure capable of dealing with negative inputs and outputs in DEA", European Journal of Operational Research, Vol. 234, No. 1, pp. 341-342.

Lee, H. S., and Zhu, J., (2012). "Super-efficiency infeasibility and zero data in DEA", European Journal of Operational Research, Vol. 216, pp. 429–433.

Lee, H. S., Chu, C. W., and Zhu, J., (2011). "Super-efficiency DEA in the presence of infeasibility", European Journal of Operational Research, Vol. 212, pp. 141–147.

Lin, R., and Chen, Z., (2015). "Super-efficiency measurement under variable return to scale: an approach based on a new directional distance function", Journal of the Operational Research Society Vol. 66, pp. 1506–1510.

Lin, R., and Chen, Z., (2017). "A directional distance based super-efficiency DEA model handling negative data", Journal of the Operational Research Society, Vol. 68, No. 11, pp. 1312-1322.

Lovell, C.A.K., (1995). "Measuring the Macroeconomic Performance of the Taiwanese Economy", International Journal of Production Economics, Vol. 39, pp. 165-178.

Lovell, C.A.K., and Pastor, J.T., (1995), "Units invariant and translation invariant DEA models", Operations Research Letters, 18(3), 147-151.

Pastor, J.T., and Aparicio, J., (2015). "Translation Invariance in Data Envelopment Analysis", In Data Envelopment Analysis, pp. 245-268.

Pastor, J.T., and Ruiz, J.L., (2007). "Variables with negative values in DEA. In Modeling data irregularities and structural complexities in data envelopment analysis, pp. 63-84.

Pastor, J.T., (1996). "Translation invariance in data envelopment analysis: A generalization", Annals of Operations Research, Vol. 66, pp. 93-102.

Pourmahmoud, J., Hatami-Marbini, A., and Babazadeh, E., (2016). "A comment on a new superefficiency model in the presence of negative data", Journal of the Operational Research Society, Vol. 67, No. 3, pp. 530-534.

Ray, S. C., (2008). "The directional distance function and measurement of super-efficiency: an application to airlines data", Journal of the Operational Research Society, Vol. 59, No. 6, pp. 788-797.

Seiford, L.M., and Zhu, J. (1999). Infeasibility of super-efficiency data envelopment analysis models, pp. 174–187.

Silva Portela, M.C.A., Thanassoulis, E., and Simpson, G., (2004). "A directional distance approach to deal with negative data in DEA: An application to bank branches", Journal of Operational Research Society, Vol. 55, No. 10, pp. 1111-1121.

Sharp, J. A., Meng, W., and Liu, W. (2007). "A modified slacks-based measure model for data envelopment analysis with 'natural' negative outputs and inputs", Journal of the Operational Research Society, Vol. 58, No. 12, pp. 1672-1677.

#### Appendix A

**Theorem 1.** Model (5) is always feasible and the following inequalities are hold:

a)  $0 < \rho^* \le 1$  for  $(x_{io}, y_{ro}) \in T_o^s$ ;

b)  $1 < \rho^* \le 2$  for  $(x_{io}, y_{ro}) \notin T_o^s$ 

**Proof.** let  $J'_o = \{i | x_i^{max} - x_{io} > 0, i = 1, 2, ..., m\}$  and  $O'_o = \{i | x_i^{max} - x_{io} = 0, i = 1, 2, ..., m\}$  for each  $o \in \{1, 2, ..., n\}$ . Thus,  $x_i^{max} - x_{io} \ge 0$  implies that  $J'_o \cup O'_o = \{r = 1, 2, ..., s\}$ . Due to convexity constraint i.e.  $\sum_{j=1}^{n} \lambda_j = 1$ , we have

$$\sum_{\substack{j=1\\j\neq o}}^{j\neq o} \lambda_j x_{ij} \le \max_{\substack{j\neq o}} \{x_{ij}\} \le \max_j \{x_{ij}\} = x_i^{max} = x_{io}, \ i \in O'_o.$$

This shows that the input constraints in model (5) satisfy for all  $i \in O'_o$ . Hence, the input constraints in model (5) are equivalent to

$$\delta \leq \frac{\sum_{j=1}^{n} \lambda_j x_{ij}}{x_i^{max} - x_{io}}, \ i \in J'_o.$$
<sup>(7)</sup>

Correspondingly, let  $J_o = \{r | y_{ro} - y_r^{min} > 0, r = 1, 2, ..., s\}$  and  $O_o = \{r | y_{ro} - y_r^{min} = 0, r = 1, 2, ..., s\}$  for each  $o \in \{1, 2, ..., n\}$ . Thus,  $y_{ro} - y_r^{min} \ge 0$  implies that  $J_o \cup O_o = \{r = 1, 2, ..., s\}$ . Due to convexity constraint, we have

$$\sum_{\substack{j=1\\j\neq o}}^{n} \lambda_j y_{rj} \ge \min_{j\neq o} \{y_{rj}\} \ge \min_j \{y_{rj}\} = y_r^{min} = y_{ro}, r \in O_o.$$

This shows that the output constraints in model (5) satisfy for all  $r \in O_o$ . Hence, the output constraints in model (5) are equivalent to

$$\delta \le \frac{\sum_{j=1}^{j} \lambda_j y_{rj} - y_{ro}}{y_{ro} - y_r^{min}}, \quad r \in J_o.$$
(8)

There are two cases as follows: Case (I) when  $(x_{io}, y_{ro}) \in T_o^s$ : We have  $\sum_{\substack{j=1\\j\neq 0}}^n \lambda_j x_{ij} \leq x_{io}$  and  $\sum_{\substack{j=1\\j\neq 0}}^n \lambda_j y_{rj} \geq y_{ro}$  for i = 1, 2, ..., m and r = 1, 2, ..., s, respectively. So,  $\frac{x_{io} - \sum_{\substack{j=1\\j\neq 0}}^n \lambda_j x_{ij}}{\frac{j\neq 0}{x_i^{max} - x_{io}}} \geq 0$ ,  $i \in J'_o$ ,  $\frac{\sum_{\substack{j=1\\j\neq 0}}^n \lambda_j y_{rj} - y_{ro}}{\frac{j\neq 0}{y_{ro} - y_r^{min}}} \geq 0$ ,  $r \in J_o$ . (10)

Inequalities of (7)-(10) result that  $\delta = 0$  is a feasible solution of model (5), and consequently  $\delta^* \ge 0$  always hold for  $o \in \{1, 2, ..., n\}$ .

Case (II) when  $(x_{io}, y_{ro}) \notin T_o^s$ : In this case  $\exists i: \sum_{\substack{j=1\\j\neq o}}^n \lambda_j x_{ij} > x_{io}$  and/or  $\exists r: \sum_{\substack{j=1\\j\neq o}}^n \lambda_j y_{rj} < y_{ro}$  which implies that  $x_{io} - \sum_{\substack{j=1\\j\neq o}}^n \lambda_j x_{ij} < 0$  and/or  $\sum_{\substack{j\neq o\\j\neq o}}^n \lambda_j y_{rj} - y_{ro} < 0$ . Due to (7) and (8), model (5) is still feasible and  $\delta^* < 0$  is the optimal solution.

In addition, according to model (5)

$$\begin{aligned} x_{i}^{min} &\leq x_{io} - (x_{i}^{max} - x_{io})\delta \leq x_{i}^{max} \\ y_{r}^{min} &\leq y_{ro} + (y_{ro} - y_{r}^{min})\delta \leq y_{r}^{max} \\ \frac{x_{io} - x_{i}^{max}}{(x_{i}^{max} - x_{io})} \leq \delta \leq \frac{x_{io} - x_{i}^{min}}{(x_{i}^{max} - x_{io})} \\ \frac{y_{r}^{min} - y_{ro}}{(y_{ro} - y_{r}^{min})} \leq \delta \leq \frac{y_{r}^{max} - y_{ro}}{(y_{ro} - y_{r}^{min})} \end{aligned}$$

Thus,

$$\begin{split} -1 &\leq \delta \leq \frac{x_{io} - x_i^{min}}{(x_i^{max} - x_{io})} \\ -1 &\leq \delta \leq \frac{y_r^{max} - y_{ro}}{(y_{ro} - y_r^{min})} \end{split}$$

Therefore,

 $-1 \leq \delta^* \leq \hat{\delta}_o$ .

(11)

It is evident that  $\hat{\delta}_o > 0$  for all units whether  $(x_{io}, y_{ro}) \in T_o^s$  or  $(x_{io}, y_{ro}) \notin T_o^s$ . When  $(x_{io}, y_{ro}) \in T_o^s$ , from (11) we have  $\delta^* \ge 0$ . Thus,  $0 \le \delta^* < \hat{\delta}_o$ . Therefore,  $0 \le \frac{\delta^*}{\delta_o} < 1$ . Consequently,  $0 < \rho^* \le 1$  for inefficient units.

Moreover, when  $(x_{io}, y_{ro}) \notin T_o^s$  from (11) we have  $-1 \le \delta^* < 0$  which implies that  $-1 \le \frac{-1}{\delta_o} \le \frac{\delta^*}{\delta_o} < 0$ . Thus,  $1 < \rho^* \le 2$  for efficient units.

#### **Appendix B**

Theorem 2. Model (5) is unit and translation invariant.

#### Proof.

(i)To show the units invariance of model (5), assume that the inputs  $x_{ij}$  and outputs  $y_{rj}$  are multiplied by the positive  $\alpha_i$  and  $\mu_r$ , respectively. Let  $\tilde{x}_{ij} = \alpha_i x_{ij}$  (i = 1, 2, ..., m; j = 1, 2, ..., n),  $\tilde{y}_{rj} = \mu_r y_{rj}$  (r = 1, 2, ..., s; j = 1, 2, ..., n),  $\tilde{x}_i^{max} = \max_{j=1,2,...,n} \{\tilde{x}_{ij}\}$  (i = 1, 2, ..., m) and  $\tilde{y}_r^{min} = \min_{j=1,2,...,n} \{\tilde{y}_{rj}\}$  (r = 1, 2, ..., s).

Hence, the model (5) using the transformed date is written as following:

This model is transformed to the model (5), in terms of the untransformed data, after substitution of  $\alpha_i x_{ij}$  for  $\tilde{x}_{ij}$  in the input constraints and  $\mu_r y_{rj}$  for  $\tilde{y}_{rj}$  in the output constraints, and cancellation of the common factors from both sides of the inequalities.

(ii) To show the translation invariance of model (5), assume that the inputs  $x_{ij}$  and outputs  $y_{rj}$  are transformed by the  $\gamma_i$  and  $\sigma_r$ , respectively. Let  $\tilde{x}_{ij} = \gamma_i + x_{ij}$  (i = 1, 2, ..., m; j = 1, 2, ..., n),  $\tilde{y}_{rj} = \sigma_r + y_{rj}$  (r = 1, 2, ..., s; j = 1, 2, ..., n),  $\tilde{x}_i^{max} = \max_{j=1,2,...,n} \{\tilde{x}_{ij}\}$  (i = 1, 2, ..., m) and  $\tilde{y}_r^{min} = \min_{j=1,2,...,n} \{\tilde{y}_{rj}\}$  (r = 1, 2, ..., s).

Hence, model (5) in terms of the transformed date is written as following:

$$\begin{array}{ll} \max \ \delta \\ s.t. \ \sum_{j=1}^{n} \lambda_j \tilde{\mathbf{x}}_{ij} \leq \tilde{\mathbf{x}}_{io} - (\tilde{x}_i^{max} - \tilde{\mathbf{x}}_{io})\delta, \quad \forall i, \\ \sum_{j=1}^{j\neq o} \lambda_j \tilde{\mathbf{y}}_{rj} \geq \tilde{\mathbf{y}}_{ro} + (\tilde{\mathbf{y}}_{ro} - \tilde{y}_r^{min})\delta, \quad \forall r, \\ \sum_{j=1}^{n} \lambda_j = 1, \\ \sum_{j\neq o} \\ \lambda_j \geq 0, \ \forall j, \ j \neq o \end{array}$$

The model is equivalent with the following problem: max  $\delta$ 

s.t. 
$$\sum_{\substack{j=1\\j\neq o}}^{n} \lambda_j \mathbf{x}_{ij} + \left(\sum_{\substack{j=1\\j\neq o}}^{n} \lambda_j\right) \gamma_i \leq \mathbf{x}_{io} + \gamma_i - (x_i^{max} - \mathbf{x}_{io})\delta, \quad \forall i,$$
$$\sum_{\substack{j=1\\j\neq o}}^{n} \lambda_j y_{rj} + \left(\sum_{\substack{j=1\\j\neq o}}^{n} \lambda_j\right) \sigma_r \geq y_{ro} + \sigma_r + (y_{ro} - y_r^{min})\delta, \quad \forall r,$$
$$\sum_{\substack{j=1\\j\neq o}}^{n} \lambda_j = 1,$$
$$\lambda_j \geq 0, \quad \forall j, \ j \neq o$$

Due to the convexity condition, this model is transformed to the model (5) in terms of the untransformed data, after cancellation of the common factors from both sides of the inequalities.

#### Appendix C

To show the monotonicity property of Model (5) suppose that the inputs and the outputs of  $DMU_o$  are reduced by  $\Delta x_{io}$  and increased by  $\Delta y_{ro}$ , respectively; and let  $x_{io} \ge 0$ , i = 1, 2, ..., m, and  $y_{ro} \ge 0$ , r = 1, 2, ..., s. Note that here  $\Delta x_{io} \ge 0$ , i = 1, 2, ..., m and  $\Delta y_{ro} \ge 0$ , r = 1, 2, ..., s. Since the input and output data of  $DMU_o$  are changed, the constants  $x_i^{max}$  and  $y_r^{min}$  should be adjusted correspondingly. However, due to the non-negativity of  $\Delta x_{io}$  and  $\Delta y_{ro}$ , the definition of  $x_i^{max}$  and  $y_r^{min}$  is not changed:

 $x_i^{max} = max\{x_{ij}, \forall j, x_{io} - \Delta x_{io}\} = \max_{j=1,2,\dots,n} \{x_{ij}\}, \ i = 1, 2, \dots, m$  and

$$y_r^{min} = min\{y_{rj}, \forall j, y_{ro} + \Delta y_{ro}\} = \min_{j=1,2,\dots,n}\{y_{rj}\}, r = 1,2,\dots,s.$$
  
Therefore, the following conclusion is made.

**Theorem 4.** If inputs (outputs) of the  $DMU_o$  are reduced (increased), the optimal value of model (5) does not increase.

Proof. If specified input reduction and output expansion happens, the direction vector is

 $(x_i^{max} - (x_{io} - \Delta x_{io}), (y_{ro} + \Delta y_{ro}) - y_r^{min})$  and the following statement is made:

$$x_i^{max} - (x_{io} - \Delta x_{io}) \ge 0, i = 1, 2, ..., m, and y_{ro} + \Delta y_{ro} - y_r^{min} \ge 0, r = 1, 2, ..., s.$$

Consequently the corresponding model (5) for the  $DMU_o$  is rewritten as

$$\max \delta$$

$$s. t. \sum_{\substack{j=1 \ j\neq o}}^{n} \lambda_j x_{ij} \leq (x_{io} - \Delta x_{io}) - (x_i^{max} - (x_{io} - \Delta x_{io}))\delta, \quad \forall i,$$

$$\sum_{\substack{j=1 \ j\neq o}}^{n} \lambda_j y_{rj} \geq (y_{ro} + \Delta y_{ro}) + ((y_{ro} + \Delta y_{ro}) - y_r^{min})\delta, \quad \forall r,$$

$$\sum_{\substack{j=1 \ j\neq o \\ \lambda_j \geq 0, \quad \forall j, \quad j \neq o}}^{n} \lambda_j = 1,$$

$$\lambda_j \geq 0, \quad \forall j, \quad j \neq o$$

$$(12)$$

Assume the optimal solution of model (12) as  $(\lambda'_j, \delta')$ . A similar derivation as that for (9) and (10), the input and output constraints of model (12) are equivalent to the following, respectively:

$$\delta' \leq \frac{\sum_{i=1}^{x_{io} - \Delta x_{io} - \sum_{i=1}^{j} \lambda_j x_{ij}}{\sum_{i=1}^{j \neq o} \lambda_i x_{io}}, \quad i \in J'_o,$$
(13)

$$\delta' \leq \frac{\sum_{j=1}^{n} \lambda'_{j} y_{rj} - (y_{ro} + \Delta y_{ro})}{y_{ro} + \Delta y_{ro} - y_{r}^{min}}, \ r \in J_{o}$$

$$(14)$$

Where  $J'_o = \{i | x_i^{max} - (x_{io} - \Delta x_{io}) > 0, i = 1, 2, ..., m\}$  and  $J_o = \{r | y_{ro} + \Delta y_{ro} - y_r^{min} > 0, r = 1, 2, ..., m\}$ . Due to deviation, the following statements are hold:  $x_i^{min} = min\{x_{ij}, \forall j, x_{io} - \Delta x_{io}\}, i = 1, 2, ..., m$ and

$$y_r^{max} = max\{y_{rj}, \forall j, y_{ro} + \Delta y_{ro}\}, r = 1, 2, ..., s.$$

Obviously,  $\mathbf{x} = -\Delta \mathbf{x} = -\Sigma^{n} = \lambda'$ 

$$\frac{x_{io} - \Delta x_{io} - \Sigma_{j=1}^{i} \lambda_{j} x_{ij}}{x_{i}^{max} - (x_{io} - \Delta x_{io})} \ge \frac{x_{io} - \Delta x_{io} - x_{i}^{max}}{x_{i}^{max} - (x_{io} - \Delta x_{io})} \ge -1, \quad i \in J'_{o},$$

$$\sum_{j=1}^{n} \lambda_{j}' y_{rj} - (y_{ro} + \Delta y_{ro})$$
(15)

$$\frac{\sum_{j\neq o}^{j\neq i} y_{ro} + \Delta y_{ro} - y_r^{min}}{y_{ro} + \Delta y_{ro} - y_r^{min}} \ge \frac{y_r^{min} - (y_{ro} + \Delta y_{ro})}{y_{ro} + \Delta y_{ro} - y_r^{min}} \ge -1, \ r \in J_o.$$
(16)

Since we maximize  $\delta$  in model (12),  $\delta' \ge -1$  always hold for  $o \in \{1, 2, ..., n\}$  due to (13), (14), (15) and (16). Then,  $1 + \delta'$  is non-negative. In this regards,

$$\begin{split} \sum_{\substack{j=1\\j\neq o}}^{n} \lambda'_{j} \mathbf{x}_{ij} &\leq (\mathbf{x}_{io} - \Delta \mathbf{x}_{io})(1 + \delta') - x_{i}^{max} \delta' \\ &\leq \mathbf{x}_{io}(1 + \delta') - x_{i}^{max} \delta' = \mathbf{x}_{io} - (x_{i}^{max} - \mathbf{x}_{io})\delta', \quad \forall i, \end{split}$$

$$\begin{aligned} \sum_{\substack{j=1\\j\neq o}}^{n} \lambda'_{j} \mathbf{y}_{rj} &\geq (\mathbf{y}_{ro} + \Delta \mathbf{y}_{ro})(1 + \delta') - y_{r}^{min} \delta' \\ &\geq \mathbf{y}_{ro}(1 + \delta') - y_{r}^{min} \delta' = \mathbf{y}_{ro} + (\mathbf{y}_{ro} - y_{r}^{min})\delta', \quad \forall r \end{aligned}$$

$$(17)$$

Therefore,  $(\lambda'_{j}, \delta')$  is a feasible solution for model (12). Maximizing of  $\delta'$  is aimed in model (5), hence  $\delta^* \ge \delta'$ .