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Abstract 

Non-uniform distribution of customers in a region and variation of their maximum willingness to pay 

at distinct areas make regional pricing a practical method to maximize the profit of the distribution 

system. By subtracting the classic objective function, which minimizes operational costs from revenue 

function, profit maximization is aimed. A distribution network is designed by determining the number 

of trucks to each established distribution center, allocating customers in routes, and inventory levels of 

customers. Also, environmental impacts, including fuel consumption and CO2 emission, aimed to be 

minimized. So, a new quadratic mixed-integer programming model is presented for the Green 

Transportation Location-Inventory-Routing Problem integrated with dynamic regional pricing problem 

(GTLIRP+DRP). The model is applied to the real case study, to show its competent application. To 

tackle this problem, a Hybrid Bees Algorithm (HBA) is developed and verified by the genetic algorithm. 

Finally, managers suggested using HBA that achieves better solutions in the less computational time. 

Keywords: transportation location-inventory-routing problem; dynamic pricing; regional pricing; 

green objectives; metaheuristic algorithms. 
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1. Introduction 
Even though, in designing a distribution system, which is a small part of supply chain, the main 

goal is to minimize operational costs of the system (such as fixed cost for operating distribution 

centers, vehicle routing costs, inventory holding costs at retailers, etc.) traditionally, it is not 

the only way to obtain more profit. It is implicated from the simple formulation of profit (i.e., 

profit = revenue – costs). Therefore, the other way to increase the profit of the system is to 

maximize the revenue of the company. This will not be achieved except through demand 

management methods. Mostly the amount of product's demand except core products depends 

on its price. Therefore, pricing techniques as one of the demand management tools are an 

excellent means to achieve this goal. Managing the price in a way that enhances the product 

demands could cause gaining more revenue and net profit increasing. 
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Since the city traffic regulations for heavy transportation fleets like trucks avoid them to link 

planet to its customers directly (Martínez-Salazaret al., 2014)  the plant needs to locate some 

facilities called Distribution Centers (DCs) in the border of the cities in order to facilitate 

distribution process. To complete the chain, customers spread in different zones of the city 

need to be allocated to DCs. In the next level, the sequence of customers in the routes of 

vehicles will be determined by routing decisions. Also, the number of delivered products to 

each customer specifies the inventory level of each customer at the end of each period with 

regards to inventory holding cost. In conclusion, in the current study, three decision levels 

should be decided.  

Decision levels in supply chain design involve strategic, tactical, and operational levels 

(Prodhon and Prins 2014). This study addresses a facility location problem (FLP) for DCs, in 

strategic level, inventory control problem for customers, in tactical level, and vehicle routing 

problem (VRP), at the operational level. A holistic perspective achieves optimal decisions and 

integrates these three decision levels. As a result, the location-inventory-routing problem 

(LIRP) was introduced as a combination of the three mentioned problems (Nekooghadirli et 

al., 2014). The genesis of LIRP refers to the study of Ahmadi Javid and Azad (2010). One of 

the integration reasons is that solving them separately may cause sub-optimal solutions 

(Ghorbani and Akbari Jokar, 2016). Since the number of trucks from plant to operated DCs 

should be determined in the first stage, a new extension of LIRP called the transportation 

location-inventory-routing problem (TLIRP) is developed. 

The spread of customers in different areas of the city by different economic conditions and 

different maximum willingness to pay (MWP) result in maximizing the revenue of the 

company using regional pricing techniques. Regional pricing is one of the price differentiation 

techniques (Philips, 2005), and the other is seasonal pricing, which is applicable for goods like 

ice cream, apparel, etc. (Etebari and Dabiri, 2016). Based on various MWP of different regions, 

the pricing mechanism may offer different prices, which may cause different demand levels. 

So, the location, routing, and especially inventory decisions got influenced (Etebari and Dabiri,  

2016). As such, regional pricing is integrated by TLIRP in this study. Solving two problems 

simultaneously increases the profitability of the supply chain (Etebari and Dabiri, 2016). To 

the best of our knowledge, it is the first time that a TLIRP problem is solved simultaneously 

with a dynamic regional pricing problem (DRP) in the literature. 

Intensifying the global warming phenomenon attracts social concerns about the environment 

more and more (Govindan et al., 2014). Never the less by maximizing the company's profit, 

designers will obtain the primary goal of designing a distribution system, but it is not sufficient 

in this century. Nowadays, the interest of other stakeholders such as customers, the community 

must be taken into account to design a sustainable distribution network (Eskandarpour et al., 

2015). There are environmental regulations such as ISO 14000 (environmental management), 

ISO 50001 (energy management) forcing companies to pay attention to the impact of 

distribution activities on the environment (Rabbani ret al., 2018). Also, Navazi et al. (2019) 

claimed that these days end-consumers prefer to buy products with a lower carbon emission on 

their carbon footprint (CFP) label. So, they added a green objective function to their problem. 

Accordingly, in this study, a green objective is added to the model. This objective seeks to 

minimize the fuel consumption of vehicles in the transportation and routing phase to palliate 

the energy consumption. Hence, it tries to deduct the CO2 emission costs, which is one of the 

greenhouse gasses and the main reason for global warming (Bektas and Laporte 2011).  

To handle the aforementioned needs, a comprehensive problem is modeled in this study. In the 

proposed model, regional pricing, which is one of the demand management methods is 

integrated with a location-inventory-routing problem that is one of the main contributions of 

this study. Since the problem is multi-period, the other contribution is that the regional pricing 

is dynamic as well. Adding transportation stage from plant to the LIRP is another contribution 
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of this study. Furthermore, a new green TLIRP model is solved using a developed hybrid meta-

heuristic algorithm in this study for the first time. Because of the NP-hard nature of the 

location-inventory-routing problem (Ahmadi Javid and Azad, 2010), the proposed model in 

this paper, which is a combination of LIRP with regional pricing problem will be NP-hard, too. 

Since combinations of the location-inventory-routing problem and regional pricing problem 

make it even more complicated.  

The remainder of this paper is organized as follows: In the next section, the close literature to 

this paper is reviewed. Then, the problem is described, and the mathematical formulation is 

presented. Section 4 includes the explanation of metaheuristic approaches that are used for 

solving the problem. The results are reported in section 5, and in section 6, the application of 

the model is shown in a case study from the real world, which results in some managerial 

insights. Finally, there are conclusions and future research in the last section. 
 

2. Literature review 
The lack of papers maximizing profit using differentiation pricing makes us review the 

location-inventory-routing problem (LIRP) at the beginning of this section. As aforementioned, 

LIRP is introduced by Ahmadi Javid and Azad (2010).  It is the outcome of incorporating 

location, routing, and inventory problems (Gholamian, M.R., Heydari,  2017). In their problem, 

the demand has a normal distribution, and the DCs maintain the determined amount of safety 

stock (SS). Both exact and heuristic methods were used to solve the problem. The heuristic 

method was the hybridization of Tabu Search (TS) and Simulated Annealing Algorithm (SA). 

In fact, LIRP is a comprehensive view of the Location-Routing, Location-Inventory, and 

Inventory Routing problems. For instance, A location routing problem (LRP) locates the DCs 

in the outskirt of city and determines the order of customers at each vehicle’s route (Navazi et 

al., 2019), a location-inventory problem (LIP) decides about the location of ambulance stations 

and the quantity of ordered perishable drug (Navazi et al., 2018) and an inventory routing 

problem specifies the permutation of customer in routes and inventory levels of them (Crama 

et al., 2018), but none of them considered the location, inventory, and routing decisions 

simultaneously like LRIP. A customized LRIP for perishable products with a shelf life is 

proposed by Hiassat and Diabat (2011). GAMS software is used for solving small size 

problems in their study. Later, a genetic algorithm (GA) with customized chromosome is 

developed for the LRIP for perishable products by Hiassat et al. (2017). The multi-source 

version of LRIP is investigated by Taylor et al., Seddighi (2013) in which a depot could supply 

from more than one plant. A heuristic approach is used to solve this problem. Guerrero et al. 

(2013) focused on a two-echelon LIRP with deterministic demand, which was multi-depot and 

also, multi-retailer. In their model, both depots and retailers are able to keep inventory, and the 

stock-out situation is not allowed (W. j. Guerrero et al. 2013). Since an exact method has 

excessively long computational time, they improved it by a heuristic method and proposed a 

mat heuristic method for solving the problem (W. j. Guerrero et al., 2013). A heuristic method 

named relax and the price is formed by combining the set of exact methods, including column 

generation, Lagrangian relaxation, and local search is developed for the problem (W. J. 

Guerrero et al., 2015). Nekooghadirli et al., (2014) extend the LIRP problem to multi-product 

model with probabilistic travel times. The complexity of this problem is tackled by four 

metaheuristic algorithms, such as Multi-Objective Imperialist Competitive Algorithm 

(MOICA) (Nekooghadirli et al., 2014). The shortage situation has also studied in LIRP models. 

The multi-product LIRP by fuzzy demands with the allowable lost sales, which is a kind of 

shortage is modeled by Tavakkoli-moghaddam and Raziei (2016). The fuzzy mathematical 

programming proposed by Lin (2012) is used to solve the problem. Also, the other kind of 

shortage, namely back-ordering, in a multi-resource multi-product, LIRP is overhauled 

(Ghorbani and Akbari Jokar, 2016). The backlog could not exceed 
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a predefined fraction of demand. To solve the problem, a new hybrid heuristic algorithm based 

on the imperialist competitive algorithm and SA is developed. Moreover, the hybrid 

metaheuristics for  LIRP models are reviewed by (Zhang et al., 2014). A LRP for perishable 

products solved by Lagrangian Relaxation Method in a stochastic environment by Rafie-Majd 

et al. (2018). Also, location, inventory, and routing problems are optimized in supply chain 

network design level using the Generalized Benders Decomposition (GBD) method (Zheng, 

Yin and Zhang, 2019). Additionally, LIRP is used for designing a closed-loop network on a 

stochastic possibilistic environment (Zhalechian et al., 2016). In addition to fuel consumption 

and CO2 emission, they try to minimize wasted energy by DCs as another environmental 

factor. In the future directions of this study, challenges such as pricing decisions in the 

designing supply chain network recognized as an interesting topic. 

There are few papers in the literature which have considered pricing problem in their models. 

A closed-loop location inventory problem is studied by Ahmadzadeh and Vahdani (2017) in a 

three-level supply chain by the correlated demand of regions assumption. Besides determining 

the price of new products to maximize revenue, the incentive price of returned products should 

be specified in their study. Finally, three metaheuristic algorithms are compared for problem 

optimization, containing: GA, ICA, and firefly algorithm (FA).  

Leastways, the appearance of pricing in IRP problems dates back to the study by Liu and Chen 

(2011). They relinquished some common assumptions such as known demand and ignoring the 

impact of price on the volume of demand by considering a price response demand function. 

They proposed a non-linear model for the problem and expanded a heuristic approach based 

on a TS adopting different neighborhood search. Also, an inventory routing problem 

considering regional pricing is solved using a heuristic method with simulated annealing 

framework by Etebari and Dabiri (2016). They applied a dynamic pricing approach instead of 

static pricing, which was used before by Liu and Chen (2011). This is the most similar article 

to the current study, but the idea of Rabbani et al. (2016) in constructing multiple middle depots 

is used here. Therefore, locating some distribution centers in the boundary of the city is 

considered in this study. Plus, regional pricing, the effect of supplying demand of a region in 

different periods is incorporated into this study. 

Since global warming is one of the significant challenges of the current century (Farrokhi-Asl 

et al., 2018). Adding green objectives besides economic objectives to the conventional 

problems like the inventory routing problem (IRP) is a new aspect, which tries to design cleaner 

distribution system for having a greener environment. Due to the environmental consideration 

in this study, interested readers can refer to Lin et al. (2014) as a survey on green vehicle routing 

problems. Cheng et al. (2017) developed a green IRP with heterogeneous fleets. To the best of 

our knowledge, this study is one of the rare green LIRP papers. The aim of this paper is making 

several necessary decisions about the number and location of distribution centers required to 

be operated by renting the existing regional DCs, the number of trucks, which deliver products 

from plant to each operated DC due to the capacity limitation of trucks, allocating customers 

to operated DCs, their optimal permutation in the routing phase, the inventory level at them 

and the offering price at each customer area, periodically.  

All in all, the main noticeable contributions of this study versus the others are as follows: 

 Considering a transportation stage in addition to the location-inventory-routing 

problem. 

 Considering the regional pricing problem in LIRP for the first time, to the best of our 

knowledge.  

 Considering the location of multi DCs problem like multi-depot problems. 

 Considering the routing problem with heterogeneous vehicles by different capacities.
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 Minimizing environmental side effects as a social objective function. Since it maintains 

not only the interest of the company but also the interest of other stakeholders, including 

customers, surrender population, etc. 

 Tailoring powerful and efficient evolutionary algorithm for the problem by customized 

solution representation. 

 
Table 1.  Significant features of this study in the opposite of other related articles 

Articles 

Significant features 

Transportation 
Locating 

DCs 

Inventory 

routing 
Pricing 

Heterogeneous 

vehicles 

Multi-

objective 

Green objectives 

FC CO2 E 

(Etebari and Dabiri 2016)         

(Ahmadzadeh and Vahdani 2017)   Just I
1
      

(Zhalechian et al. 2016)         
(Ghorbani and Akbari Jokar 2016)         

(Martínez-Salazar et al. 2014)   Just R
2
      

(Tavakkoli-moghaddam and Raziei 2016)         
(Nekooghadirli et al. 2014)         
(W. j. Guerrero et al. 2013)         

(Cheng et al. 2017)         
(Navazi et al., 2019)   Just R      

This study         

 

3. Problem description and mathematical formulation 
In this section, the mathematical formulation for a two-stage distribution system is presented.  

Because of traffic regulation for cities, which avoids entrance of heavy trucks to the city 

(Khalili-Damghani, Abtahi, and Ghasemi 2015), some intermediate facilities need to be 

established among a set of potential places for distribution centers, which receive the product 

from the plant and deliver them to customers. Due to different land acquisition and its capacity, 

these potential DCs have different operating costs. Identical trucks by limited capacity are 

utilized to deliver products from a plant to the operated DCs, which creates a transportation 

problem in the first stage. After the location problem, customers, which are distributed in 

different geographical areas of a region (i.e., different cities of a state), should be allocated to 

the operated DCs. A routing problem should determine the optimal sequence of customers in 

created routes of heterogeneous vehicles. It should be noted that vehicles should return to their 

departing DC, periodically. The model also finds the optimal inventory level of each customer 

at the end of each period due to the limited holding capacity.  

Regarding the price dependent nature of the product’s demand, a linear price-response function 

is applied to show the relationship between price and demand of customers at each period 

(i.e. 𝐷𝑖 = 𝛼𝑖−𝛽𝑖𝑝𝑖
 
). If the price in an area increases, the corresponding demand of area will 

plunge by the specific slope (𝛽𝑖). The model efforts to find the optimal regional price in a way 

that the total revenue of the company is maximized during all periods. Because of that, the first 

objective function, which is used to maximize the profit of the company is quadratic, and the 

implementation costs of the distribution system are subtracted to calculate net profit. The 

implementation costs involve customer’s inventory holding cost, the heterogeneous fleet rental 

cost for visiting all customers in the second stage, and traveling cost for the traveled distance 

between nodes, as well as truck transportation costs in the first stage. The green objective 

function minimizes the energy consumption and CO2 emission of trucks and vehicles. The cost 

                                                           
1 I: Inventory problem 
2 R: Routing problem 
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of fuel consumption is calculated by having the Fuel Consumption Rate (FCR) at 100 

kilometers of each transportation commodity, which is expressed in vehicle characteristics.  

A sample solution for the transportation problem of the first stage associated with the vehicle 

routing inventory problem in the second stage through a facility location problem for DCs is 

shown in Figure. 1. The following notations are applied in presenting the mathematical 

formulation of TLIRP+DRP. 

 

Figure 1. A sample solution for the problem 

3.1. Assumptions 

 The capacity of the supplier is infinitive, and the plant could supply all demands. 

 According to the budget limitation of the organization for operating the distribution 

centers and limitation in the number of available workforces, there could be open just a 

maximum number of DCs at each period. 

 DCs are not holding inventory; they just have the product distribution duty. 

 Each customer could be assigned to just one DC. 

 Demand leakage is not going to happen (reach population regions will not buy their 

needs from poor population regions with the lower maximum willingness to pay.). 

 The demands of different customers from various areas are independent. 

 Inventory shortage in customer’s place is not allowed. 
 

3.2. Notations 

Sets: 

M Set of potential distribution centers {1,2,…,m} 

N Set of customers {1,2,…,n} 

K Set of possible vehicles for rent {1,2,…,k} 

T Set of Different time periods {1,2,…,TT} 

p A plant {1} 

Parameters: 

fmt Cost of operating distribution center m in period t 
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qdcm Capacity of distribution center m 

nm Maximum number of  distribution centers to open 

qt Capacity of truck 

Ccm Cost of traveling from plant to DC m per truck 

qk Capacity of vehicle k 

gkt Fix cost for renting vehicle k which is used in period t 

cij Cost of traveling from customer i to customer j 

Dit Total amount of potential demand for customer i in period t 

sit Absolute value of the slope of demand function of customer i in period t 

capi Capacity of customer i 

hi Holding cost of each product unit in customer i in each period  

Ai Ordering cost of each turn in customer i in each period 

Rm Distance from plant to potential DC m 

rij Distance from customer/DC i to DC/customer j 

ff Fixed cost of 1-liter fuel 

Ce CO2 emission cost of 1 liter fuel consumption 

FCRk Fuel consumption rate of vehicle k in 1 kilometer 

FCRt Fuel consumption rate of the truck in 1 kilometer 

BM A very big number 

Variables: 

𝑥𝑖𝑗𝑡
𝑘

 = {
1 If vehicle 𝑘 goes directly from customer/DC 𝑖 to DC/customer 𝑗 at period 𝑡
0 Otherwise                                                                                                                           

 

𝑦𝑖𝑗𝑡
𝑘

 
The quantity of the product on vehicle k that goes directly from customer/DC i to customer 

j at period t 

𝑝𝑖𝑡  The product offering price in customer i at period t 

𝐼𝑖𝑡  Inventory level in customer i at the end of period t 

𝑧𝑚𝑡  = {
1 If distribution center 𝑚 is operated in period 𝑡
0 Otherwise                                                                      

 

𝑢𝑚𝑖𝑡  = {
1 If customer 𝑖 assigned to distribution center 𝑚 in period 𝑡 
0 Otherwise                                                                                             

 

ntmt Number of trucks sent from plant  to DC m in period t 

vdmt Amount of product sent from plant to DC m in period t 
 

3.3. Mathematical formulation 

Objective Functions: 

1. Economic objectives 

Max 𝑂1 = ∑(

𝑇𝑇

𝑡=1

∑ 𝑝𝑖𝑡(𝐷𝑖𝑡 − 𝑠𝑖𝑡

𝑛

𝑖=1

𝑝𝑖𝑡) − ∑ 𝐶𝑐𝑚 𝑛𝑡𝑚𝑡

𝑚

𝑚=1

− ∑ ∑ ∑ 𝑔𝑘𝑡𝑥𝑖𝑗𝑡
𝑘

𝑘

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

− ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑡
𝑘

𝑘

𝑘=1

𝑚+𝑛

𝑗=1

𝑚+𝑛

𝑖=1
𝑖≠𝑗

− ∑ 𝑓𝑚𝑡𝑧𝑚𝑡

𝑚

𝑚=1

) − ∑
ℎ𝑖

2⁄ 𝐼𝑖𝑡

𝑛

𝑖=1

) 

 

(1) 

2. Green objectives 

Min 𝑂2 = ∑(

𝑇𝑇

𝑡=1

∑ 𝐹𝐶𝑅𝑡(𝑓𝑓 + 𝐶𝑒)2𝑅𝑚𝑛𝑡𝑚𝑡

𝑚

𝑚=1

+ ∑ ∑ ∑(𝐹𝐶𝑅𝑘(𝑓𝑓 + 𝐶𝑒)𝑟𝑖𝑗

𝑘

𝑘=1

𝑚+𝑛

𝑗=1

𝑥𝑖𝑗𝑡
𝑘

𝑚+𝑛

𝑖=1

) (2) 
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Constraints: 

𝑛𝑡𝑚𝑡 ≥
𝑣𝑑𝑚𝑡

𝑞𝑡
 ∀𝑡 ∈ 𝑇, ∀𝑚 ∈M (3) 

𝑣𝑑𝑚𝑡 ≤ 𝑧𝑚𝑡𝑞𝑑𝑐𝑚 
 ∀𝑡 ∈ 𝑇, ∀𝑚 ∈M (4) 

𝑣𝑑𝑚𝑡 = ∑(𝐷𝑖𝑡 − 𝑝𝑖𝑡𝑠𝑖𝑡)𝑢𝑚𝑖𝑡

𝑛

𝑖=1

 ∀𝑡 ∈ 𝑇, ∀𝑚 ∈M (5) 

∑ 𝑥𝑖𝑗𝑡
𝑘 =

𝑛+𝑚

𝑗=1
𝑖≠𝑗

∑ 𝑥𝑙𝑖𝑡
𝑘

𝑛+𝑚

𝑙=1
𝑙≠𝑖

 ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇, ∀𝑘 ∈k (6) 

∑ 𝑥𝑖𝑗𝑡
𝑘

𝑛+𝑚

𝑗=1
𝑖≠𝑗

≤ 1 ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇, ∀𝑘 ∈k (7) 

∑ 𝑢𝑙𝑖𝑡

𝑚

𝑙=1

= 1 ∀𝑡 ∈ 𝑇, ∀𝑖 ∈N (8) 

𝑦𝑖𝑗𝑡
𝑘 ≤ 𝑥𝑖𝑗𝑡

𝑘 𝑞𝑘 
∀𝑖 ∈ 𝑉, ∀𝑗 ∈ 𝑉 

∀𝑡 ∈ 𝑇, ∀𝑘 ∈k 
(9) 

∑ 𝑦𝑙𝑖𝑡
𝑘

𝑚+𝑛

𝑙=1
𝑙≠𝑖

≥ ∑ 𝑦𝑖𝑗𝑡
𝑘

𝑚+𝑛

𝑗=1
𝑗≠𝑖

 ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇, ∀𝑘 ∈k (10) 

∑ ∑  

𝑛

𝑗=1

𝑥𝑖𝑗𝑡
𝑘

𝑚

𝑖=1 

≤ 1 ∀𝑡 ∈ 𝑇, ∀𝑘 ∈k (11) 

∑  

𝑛

𝑙=1

𝑥𝑗𝑙𝑡
𝑘 + ∑  

𝑛

𝑙=1
𝑙∈𝑣−{𝑖}

𝑥𝑙𝑖𝑡
𝑘 ≤ 1 + 𝑢𝑚𝑖𝑡 ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑀 

∀𝑡 ∈ 𝑇, ∀𝑘 ∈k 
(12) 

∑ ∑  

𝑘

𝑘=1

𝑥𝑖𝑗𝑡
𝑘

𝑚+𝑛

𝑗=1
𝑖≠𝑗

= 1 ∀𝑡 ∈ 𝑇, ∀𝑖 ∈N (13) 

𝐼𝑖𝑡−1 − 𝐼𝑖𝑡 + ∑(

𝑘

𝑘=1

∑ 𝑦𝑙𝑖𝑡
𝑘

𝑚+𝑛

𝑙=1
𝑙≠𝑖

− ∑ 𝑦𝑖𝑗𝑡
𝑘

𝑚+𝑛

𝑗=1
𝑗≠𝑖

) = 𝐷𝑖𝑡 − 𝑠𝑖𝑡𝑝𝑖𝑡 ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝑁 (14) 

𝐼𝑖𝑡 ≤ 𝑐𝑎𝑝𝑖 ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝑁 (15) 

∑ 𝑢𝑚𝑖𝑡 ≤ 𝐵𝑀𝑧𝑚𝑡

𝑛

𝑖=1

 ∀𝑡 ∈ 𝑇, ∀𝑚 ∈M (16) 

∑  

𝑚

𝑙=1

𝑧𝑙𝑡 ≤ 𝑛𝑚 ∀𝑡 ∈ 𝑇 (17) 

𝐼𝑖𝑡 ≥ 0 ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝑁 (18) 

𝑝𝑖𝑡 ≥ 0 ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝑁 (19) 

𝑣𝑑𝑚𝑡 ≥ 0 ∀𝑡 ∈ 𝑇, ∀𝑚 ∈ 𝑀 (20) 

𝑦𝑖𝑗𝑡
𝑘 ≥ 0 

∀𝑖 ∈ 𝑉, ∀𝑗 ∈ 𝑁 

∀𝑡 ∈ 𝑇, ∀𝑘 ∈k 
(21) 

𝑛𝑡𝑚𝑡 ∈ 𝑍+ ∀𝑡 ∈ 𝑇, ∀𝑚 ∈M (22) 

𝑥𝑖𝑗𝑡
𝑘 ∈ {0,1} 

∀𝑖 ∈ 𝑉, ∀𝑗 ∈ 𝑉 

∀𝑡 ∈ 𝑇, ∀𝑘 ∈k 
(23) 

𝑢𝑚𝑖𝑡 ∈ {0,1} ∀𝑖 ∈ 𝑁, ∀𝑚 ∈ 𝑀, ∀𝑡 ∈ 𝑇 (24) 
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𝑧𝑚𝑡 ∈ {0,1} ∀𝑡 ∈ 𝑇, ∀𝑚 ∈M (25) 

 

The first objective function aims to maximize the profit; it is the minus of operational costs 

from the selling revenue. The quadratic concave nature of revenue function is leading to a 

convex maximization problem. The first cost term is the truck transportation cost; the second 

one is the cost of renting the heterogeneous vehicles, the traveling cost is calculated by third 

cost term, and the next one is the fixed cost of operating DCs; the last one is the inventory 

holding cost for each customer. The green objective optimizes energy consumption and 

environmental impacts by minimizing the cost of fuel consumption and CO2 emission. The 

first term measures the fuel consumption and CO2 emission of trucks from plant to DCs and 

the second one for vehicles in the routes. The first constraints evaluate the optimal number of 

trucks from plant to operated DC. The violation of DC's capacity is prohibited by constraints 

(4). Equations (5) illustrate the amount of assigned demand to each DC. Constraints (6) ensure 

the continuity of vehicle routes to each node. Constraints (7) guarantee that less than one route 

can be chosen between two nodes by each vehicle. Constraints (8) ensure that each customer 

supplied from just one DC. The observance of the limited capacity of heterogeneous vehicles 

is guaranteed by Constraints (9). Constraints (10) indicate that output freight from node i must 

be less than the input freight to customer i. Constraints (11) guarantee that each vehicle being 

used at each period just once, and assigned to at most one DC. Constraints (12) ensure that a 

customer could be assigned to a DC only if there is a route linking the DC to the customer and 

also cause the sub-tours elimination. Visiting all customers is ascertained by Constraint (13). 

Balancing the inventory levels of customers between periods is the duty of Constraint (14). 

Constraints (15) keep the capacity limitation of customer i. The fact that the allocation of 

customers is just allowed to open DCs is stated by constraints (16). The maximum number of 

DCs which could be operated is determined by constraints (17). Finally, constraints (18-25) 

specify the types of variables. 

 

4. Methodology 
Since the cost of CO2 emission and fuel consumption is calculated, the nature of the green 

objective function is the same as the first objective. By adding the second objective function to 

the first one and deducting costs from the revenue, a single objective problem should be solved, 

which maximizes the profit of the company. Because it takes much time to solve the problem 

with BARON solver of GAMS software, especially for larger instances, the need for an 

approximation algorithm to solve the problem in a reasonable time becomes clear. So, the 

metaheuristic algorithm is developed in the next section.  

 

4.1. Developing metaheuristic  

Two powerful evolutionary algorithms are developed to cope with the NP-hard complexity of 

the presented model for finding optimal solutions at an acceptable time. Since in the presented 

model regional pricing is integrated with LIRP and according to (Ahmadi Javid and Azad, 

2010) LIRP has NP-hard complexity; our model is Np-hard too. Plus, the high reported solving 

time of exact method in subsections 5.1 and 5.3 proves the NP-hard complexity of the model. 

In the next sections these algorithms are described briefly. 

 

4.1.1. Solution representation 

Solution representation is the most important part of proposing an evolutionary algorithm 

because of its effect on finding near-optimum solutions and the duration of computing time. 

The solution representation of the proposed model includes two steps. In the first step, a matrix 

which every row is filled by permutation of integer numbers between 1 to N+M-1 is generated 
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that is shown for N=9 and M=3 in Figure. 2. The rows of the matrix show planning horizons 

and the columns of matrix illustrate the minus one of the sum of customers and distribution 

centers. In the second step, according to the elements of the matrix, the customers are assigned 

to DC for each period that is shown in Figure. 3. 

 

 
Figure 2. First step of solution representation 

 
Figure 3. Second step of solution representation 

4.1.2. Genetic Algorithm 

Genetic Algorithm (GA) is the population-based well-known algorithm that can find the best 

solutions in a reasonable time developed by Gen and Cheng (1997) for the first time. GA 

generates a random initial population and improved them by crossover, mutation, and selection 

operators during the iterations (Deb et al., 2002). Since this well-known algorithm widely used 

for LIRP in the literature (Saif-Eddine et al., 2019) chosen here as a base meta-heuristic 

algorithm. The steps of this algorithm are shown in Figure. 4.  

 
1. Generate initial individual  and evaluate fitness function 

For (Iteration=1: Max-iteration) do  

     2. Select two individuals as parents by Tournament selection function and c=1 

     3. Use the crossover operator to generate two new children 

      4. Evaluate fitness function and c=c+1 

         If c=Cr*npop  go to 5 otherwise go 2 

      5. Select a random individual  and m=1 

       5.1) Use mutation operator to generate new individual, evaluate fitness function and    m=m+1 

          If m=mr* npop  go to 6 otherwise go to 5 

     6.  Merge individuals of c, m, and npop and evaluate fitness function 

     7. Sort populations then truncate the first member of them as best Solution 

End  

Figure 4. Pseudocode of the GA 

Since the initial matrix is filled by integer numbers, single-point crossover, which is proper for 

individuals with integer numbers is used here. For each period, which has a row in the initial 

matrix |𝑇| × | 𝑁 + 𝑀 − 1|, a single point crossover is applied on the 1 × | 𝑁 + 𝑀 − 1| matrix.
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In a single-point crossover, a random point is selected, and the tails of its two parents are 

swapped to generate two new children. The single point crossover mechanism for T=1 is shown 

in Figure. 5.  

 

Figure 5. Single point crossover operator 

Also, inversion mutation, which is appropriate for individuals with integer numbers, is used for 

1 × | 𝑁 + 𝑀 − 1| matrix of each period in this study. In the inversion mutation, a subset of 

genes is selected, and the selected string is inverted to generate muted individual. The inversion 

mutation mechanism on the 1 × | 𝑁 + 𝑀 − 1| matrix is shown in Figure. 6. 

 

Figure 6. Inversion mutation operator 

4.1.3. Hybrid Bees Algorithm 

The bees algorithm (BA) is a nearly new evolutionary algorithm developed by Pham et al. 

(2006) inspired by honey bees. BA is a proper algorithm for problems with permutation-based 

solution representation (Nemmich et al., (2019). This population-based algorithm could be put 

in swarm intelligence algorithms category since the information exchange is happening 

between scout bees and worker bees. The operation of BA is based on food source foraging 

behavior of swarms of honey bees. At first, scout bees are sent from hive to selected sites for 

evaluating the conditions of the food source on that site. It is equivalent to the function 

evaluation in metaheuristic algorithm. After data gathering, they will return to the hive and 

exchange gathered information on the dance floor directly by the mechanism of waggle dance 

with other bees. Then the elite sites are chosen among the selected sites. In the next turn, the 

number of bees to each elite and the none-elite site is determined. When they fly to the food 

sources because of misinterpretation from the observed waggle dance, the neighborhood 

solutions are produced. Bees with new positions are generated in this step of the algorithm. 

After reevaluating, the bees with better objective function value (OFV) become responsible for 

next execution of waggle dance. This cycle for food source foraging would continue until the 

stop criterion is achieved.
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The parameters of the algorithm include: number of scout bees, number of selected sites, 

number of elite selected sites, number of bees assign to elite selected sites, number of bees 

assign to selected sites. The steps of this algorithm are shown in the pseudo-code of Figure. 7.  

For bee colony initialization, the presented solution representation in section 4.1.1 is used. So, 

Bees are generated by |𝑇| × | 𝑁 + 𝑀 − 1| matrix, which a feasible solution could extract from 

it by proposed representation in section 4.1.1. Each of the bees is a structure that has a position 

and OFV. 

As mentioned before, the most important operator of the BA is waggle dance, which causes 

producing neighborhoods. Typically, in continuous problems, two kinds of operators are used 

for waggle dance, including the uniform and the normal distribution for bees. However, 

because of the discrete nature of this problem, they could not be used directly. The contribution 

of the proposed hybrid bee algorithm (HBA) is the bees dancing function that has a new 

approach to generate neighborhood solutions. So, the uniform distribution is combined with an 

interchanging mutation in this HBA algorithm that hybrids one of the GA operators with BA. 

In interchanging mutation, the parent is the previous bee, and the child is the newly generated 

bee in the neighborhood. In the interchanging mutation, two random positions of the string are 

chosen, and the genes corresponding to those positions are interchanged. The mechanism of 

interchanging mutation is illustrated in Figure. 8. 

 
1. Initialize random individual  and evaluate fitness function 

For (Iteration=1: Max-iteration) do  

2. Select sites and assign bees to them and evaluate fitness function 

3.Return bees to hive and dance 

4.Assign  more bees to the best site according to the dancing of bee 

5. Select the fittest bee from each site 

6. Assign remaining bees to a random site and evaluate fitness function 

7. Store and return the best solution 

End 

Figure 7. Pseudocode of the HBA 

 
Figure 8. Interchanging Mutation operator 

4.2. Parameters tuning 

The efficiency and quality of evolutionary algorithms depend on the values of algorithms’ 

parameters. Therefore, tuning the parameters is a vital part of the proposed algorithms. In this 

paper, the Taguchi method is used to tune the parameters of GA and HBA. Because Taguchi 

design achieves the most substantial information by generating the least number of 

experiments. The Medium-sized problem and three levels of parameters are considered for the 

Taguchi method in Minitab 17 software that is illustrated in Table 2. The number of parameters 

in different levels is taken from the literature.  The results of Minitab for the Taguchi Design 

of Experiment (DOE) method based on the mean of means are shown in Figure. 9. and Figure. 

10. for GA, and HBA algorithm, respectively. The level of parameter which has minimum 

mean of means is a desirable level. The desirable levels of both algorithms’ parameters are 

reported in Table 3 and set for the rest of study.
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Table 2. The levels of parameters 

Parameters Level 1 Level 2 Level 3 

GA 

Number of population 50 70 100 

Rate of Crossover 0.3 0.5 0.8 

Rate of  Mutation 0.2 0.5 0.7 

Iteration 100 150 200 

HBA 

Number of scout bees 30 50 80 

Number of selected sites 

based on the percentage of 

scout bees 

0.5 0.6 0.7 

Number of elite selected 

sites based on the 

percentage of selected site 

bees 

0.4 0.5 0.6 

Number of bees assign to 

selected sites based on the 

percentage of scout bees 

0.3 0.5 0.7 

Iteration 50 100 150 

    

      

 
Figure 9. The result of Taguchi design for GA 

 

 
Figure 10. The result of Taguchi design for HBA 
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Table 3. GA and HBA parameters settings 

Algorithm Parameters Value 

GA Number of population 50 

Rate of Crossover 0.8 

Rate of  Mutation 0.5 

Iteration 150 

HBA Number of scout bees 30 

Number of selected sites 18 

Number of elite selected sites 18 

Number of bees assign to selected 

sites 
10 

  Iteration 50 

5. Computational results 
For comparison, some test problems are needed. The initial data which is used for generating 

test problems is shown in Table 4. No benchmark is found for the proposed model because it 

is the first time that a LIRP is considered by regional pricing. So, test problems are generated 

randomly in two categories: small-sized problems and large-sized problems. The small-sized 

problems are used to compare metaheuristic algorithms with the results of BARON solver of 

GAMS, which used exact methods.  

 
Table 4. Random input data for test problems 

Parameter Characteristic 

Maximum demands of customers U(200,400) 

Coordinate of nodes U(1,100) 

Operating cost of the distribution center U(10,100) 

Cost of renting a vehicle U (50,75) 

Depending on the capacity 

Collection time in nodes U(1,10) 

Capacity of vehicles U(300,700) 

Capacity of trucks 1000 

Holding cost U(20,35) 

Slope of the demand pattern  U(0.3,0.8) 

Fixed cost of 1-liter fuel 1 

CO2 emission cost of 1-liter fuel consumption* 46 

Fuel consumption rate of vehicle k in 1 

kilometer* 

0.06 

Fuel consumption rate of the truck in 1 

kilometer* 

0.1 

*(Rabbani et al., 2018) 

 

5.1. Results for small-sized test problems  

Some small-sized test problems are solved by BARON solver of GAMS 23.6 software, which 

gains the exact solution for the problem to validate the developed model. The performance of 

two proposed evolutionary algorithms (GA and HBA) are verified by comparison with GAMS 

results in small-sized test problems. Table 5 shows the comparison between evolutionary 

algorithms solutions and GAMS solution in 6 small-sized problems by using GAP formulation 

for maximization problems that is calculated as [(𝑆𝐺𝐴𝑀𝑆 − 𝑆𝐴𝑙𝑔) 𝑆𝐴𝑙𝑔⁄ ], where 𝑆𝐺𝐴𝑀𝑆 and 𝑆𝐴𝑙𝑔 
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are the objective function value of the exact method and proposed evolutionary algorithms, 

respectively. Also, the CPU time of the exact method and metaheuristic algorithms for the 

small-sized problem is reported in Table 5, which shows a faster speed of metaheuristic 

algorithms in achieving solutions. According to Table 5, the average GAP of HBA and GA are 

0.00, 0.1, respectively. Figure 11 illustrates the HBA and GA algorithm GAP with exact 

method for 6 small-sized problems. The graph shows that the HBA has lower GAP with exact 

method in comparison with GA. So, HBA performs more efficient for small-sized problems in 

a shorter time. 

 
Table 5. GAP and CPU time of exact method, HBA and GA for small-sized problem 

Data set Exact method HBA GA 

Problem T M N OFV 
CPU 

Time 
OFV 

CPU 

Time 
Gap OFV 

CPU 

Time 
Gap 

1 2 3 3 311110.88 2780.39 311017.58 5.79 0.00 284812.11 10.50 0.09 

2 2 3 4 312324.69 2840.93 312293.46 6.35 0.00 291548.11 11.37 0.07 

3 2 3 5 427607.82 2850.49 427180.64 6.91 0.00 372400.87 11.84 0.15 

4 2 4 5 447865.68 2894.10 445637.49 7.35 0.01 399071.51 11.93 0.12 

5 2 4 6 488166.90 3104.44 485255.36 7.88 0.01 426192.04 12.47 0.15 

6 2 5 8 595068.52 3170.75 590345.76 9.59 0.01 573794.56 13.61 0.04 

 

 

Figure 11. GAP of HBA and GA from the exact method for small-sized problems 

5.2. Results for large-sized test problems  

In this subsection, the validation and verification of proposed algorithms are considered by 

applying the 24 more test problems with random input data. In addition, verification and 

validation of HBA in the large-sized problem is evaluated by GA that is a well-known 

algorithm. Table 6 shows the CPU time, objective function, and comparison between HBA and 

GA in large-sized test problems. GAP formulation for comprising metaheuristic algorithms is 

computed as [(SHBA − SGA) SGA⁄ ], where SHBA and SGA are the function value. The numbers 

in Table 6 are visualized by Figures. 12 to 14. Figure. 12 shows that on average the HBA 

reaches higher values of the objective function compared to GA for 30 test problems including 

both small-sized and large-sized. When the problem size increases, the difference between 

HBA and GA objective function values becomes considerable. While it was negligible for 

small-sized test problems. 
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Also, Figure 13 depicted the GAP between HBA and GA in medium-sized and large-sized 

problems, which increased for the last three large-sized test problems. Since GA is a well-

known algorithm in the literature, it is used for comparison with HBA to show the acceptable 

performance of the HBA. Due to Figure. 14, the HBA running times are always shorter than 

GA running times on average. So, HBA is able to achieve almost better solutions faster than 

GA. Therefore, the results show a better performance of HBA for the proposed model.  

The abstract of the comparison between HBA and GA were shown in Figure 12 and Figure 14 

Regarding the results of test problems, the proposed evolutionary HBA algorithm is an efficient 

algorithm for this model. 
Table 6. GAP and CPU time of HBA and GA for large-sized problem 

Data set HBA  GA 

Problem T M N OFV 
CPU 

Time 
Gap OFV 

CPU 

Time 

7 3 6 12 1529274.738 14.73123 0.03810355 1473143 26.72974 

8 3 7 15 2001399.066 17.51200 0.09424125 1829029 24.38200 

9 3 8 20 2390654.500 22.46485 0.03076171 2319309 27.65898 

10 3 10 25 3017951.484 27.57603 -0.00067960 3020004 32.84964 

11 3 12 30 3926917.154 32.97998 0.06807380 3676635 38.28098 

12 3 15 40 4753841.351 47.38511 0.04053587 4568647 56.39860 

13 4 10 20 3301283.765 27.68130 0.04635164 3155042 35.30448 

14 4 12 25 3674255.749 35.10435 0.07812043 3408020 42.30712 

15 4 15 30 4584909.089 41.99993 0.01020060 4538613 52.15363 

16 4 20 35 5330473.036 46.24068 0.03545136 5147970 57.29503 

17 4 22 40 5840361.328 52.89107 -0.11520820 6600831 65.15497 

18 4 25 45 6569028.056 59.72699 0.01559218 6468175 96.66310 

19 4 30 48 7261584.624 59.46454 0.04874280 6924085 74.48354 

20 4 35 50 7876606.073 61.30844 0.06473959 7397683 80.20215 

21 5 10 25 4787289.110 44.77122 0.01754207 4704758 53.33714 

22 5 15 30 5913837.944 49.47102 0.01396860 5832368 62.72381 

23 5 15 35 6646983.280 66.43678 0.02418939 6489994 72.06998 

24 5 20 40 7087446.907 69.25433 0.02553933 6910946 82.41973 

25 5 20 45 7654590.994 80.72320 0.03496709 7395975 95.08637 

26 5 22 50 9139035.116 91.24870 0.14635250 7972273 109.3908 

27 5 25 60 10237432.460 112.37275 0.05038361 9746375 141.81990 

28 6 30 50 7562405.115 97.17279 0.68473521 4488780 131.38350 

29 6 35 50 7579582.725 91.10928 1.01382291 3763778 113.93360 

30 6 30 65 10091295.100 141.89625 0.87265002 5388778 178.31890 
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Figure 12. Objective function value of HBA and GA 

 

 

Figure 13. GAP between GA and HBA for large-sized problem 

 

Figure 14. CPU time of HBA and GA 
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5.3. Application and Model verification by a small-sized case study 

With solving a small-sized case taken from the real world using BARON solver as a powerful 

solver in solving Mixed Integer None-Linear Problems (MINLP) by GAMS software version 

23.6, the model is validated, and its application is shown. The following section explains the 

features of the case study. 

 

5.3.1 Case study explanation 

Since the observed real-world problem inspires the proposed problem, in this part, the real case 

study is introduced. A company in the Semnan province of the Islamic Republic of Iran wants 

to decide about renting and operating, which DC is economical for the company. Also, 

determining the number of product trucks to each operated DC, allocating customers to them 

in the routing decisions, and inventory levels of each customer, periodically, are the goals of 

designing distribution system for this company. Minimization of the environmental impacts, 

including fuel consumption and CO2 emission, besides maximizing the company's profit by 

specification the optimal product price for customers from different regions is considered. The 

geographical position of Semnan province on the map of the Islamic Republic of Iran is shown 

in Figure. 15.  

The characteristics of the small case study (P1 problem) is presented in Table 7. The detailed 

parameters of the P0 problem, which is also used for validating the model with GAMS 23.6 

are available at https://www.dropbox.com/s/dakzkmskhq00nfe/fn2e.xlsx?dl=0. Because the 

solving time for software lasts more than one hour, a relative gap is set equal to 0.001, and the 

maximum time limit for running is set equal to 2700 seconds. After this time limitation, GAMS 

23.6 achieve a solution with a relative gap equal to 0.04478. The value of the objective function 

is 397272.940. The results of GAMS 23.6, including the number of trucks, opened DCs, and 

second stage routes are reported here in Table 8. The GAMS 23.6 solution is marked by green 

and blue color in Figure 15 and 16, respectively.  

 
Table 7. Features of P0 problem 

Name P DC N T 

P0 1 4 5 2 

    

Table 8. The summary results of GAMS for P0 problem 

Period factory NT Distribution centers Order of customers in routs 

1 1 

 1 - 

 2 - 

2 3(opened) 3»5›7›8›9›6»3 

 4 - 

2 1 

 1 - 

 2 - 

2 3(opened) 3»9›7›8›5›6»3 

 4 - 

https://www.dropbox.com/s/dakzkmskhq00nfe/fn2e.xlsx?dl=0
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Figure 15. The position of Semnan province in the country and the GAMS solution for period 1

 

Figure 16. The GAMS solution for period 2 
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The results of metaheuristic algorithms for the case study are shown in Figure.17, Figure. 18. 

The metaheuristic results are compared with exact method results for the case study in Table 

9. Although the case study is in a small category, as mentioned previously, the exact method 

takes 45 minutes to find a solution with 0.04478 relative gaps. This is a long time, which is not 

acceptable in real situations. However, as can be seen in Table 9, both developed metaheuristic 

algorithms break the computation time to a few seconds with tiny tolerable gaps from the 

GAMS solution. Here is a suitable reason for developing metaheuristic algorithms for this 

problem. By ignoring the tiny gap from the GAMS solution, it can be observed that the HBA 

algorithm decreases running time by a factor of approximately 230.26, and the GA algorithm 

shortens it almost 395.95 times.  

As managerial insights, it is better to use metaheuristic algorithms because they are more 

applicable in the real world with an ignorable gap and proper computation time. Since the value 

of the metaheuristic's objective function has little gaps with the value of GAMS objective 

function, the performance accuracy of metaheuristic algorithms is verified as a result. 
 

Table 9. The comparison between GAMS and metaheuristic algorithms for the case study 

 

 

 

Figure 17. The GA process for the case study 

 

Figure 18. The HBA process for the case study 

6. Conclusions and future research 
In this study, the paradigm of designing a distribution network, which always has tried to 

minimize the operational costs, has been changed. Herein, the endeavor was maximizing the 

company's profit, by maximizing its revenue employing specifying regional prices for 

customers at different geographical areas with different economic conditions and also 

variations in their maximum willingness to pay for the product, then subtracting operational 

GAMS HBA GA 

Objective 

function value 

Objective 

function value 
Gap Time  

Objective 

function value 
Gap Time 

397272.940 397154.866 0.0003 11.726 
 

396367.8398 0.002 6.819 
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costs from the revenue. The questions of this study during consecutive periods were: which 

DCs to operate, the number of trucks to each operated DC, in which order allocating customers 

to routes and the second stage vehicles, inventory levels at each customer, and optimal prices. 

This distribution system was designed in a way that environmental impacts, including fuel 

consumption and CO2 emission, are minimized as well. A quadratic mixed-integer 

programming model was presented for the green transportation location-inventory-routing 

problem integrated with dynamic regional pricing problem (GTLIRP+DRP) for a single 

product in this paper. Because solving the problem will take much time for the larger cases, 

two metaheuristic algorithms were customized for the problem, involving the genetic algorithm 

and the Hybrid Bees algorithm. According to the comparison of algorithms to GAMS result, 

the proposed HBA is more efficient than GA. Also, the CPU time of GA is greater than HBA, 

so the results showed that HBA is more powerful to find near-optimal solutions.  

After that, by solving the case study from the real world by GAMS software, the application 

of the model was shown. However, since GAMS had long execution time even in the small 

size problem, distribution system managers are suggested that even in small real cases utilize 

customized metaheuristic algorithms which have significantly shorter running time without any 

remarkable difference in the objective function values. Some directions for further research 

could be considering other types of price response demand functions except linear price 

response demand function such as exponential price response demand function (𝐷 = 𝛼𝑃−𝛽) 

for customers. 

References 
Phillips, R. L. (2005). Pricing and revenue optimization. Stanford University Press. 

Ahmadi Javid, A. and Azad, N., (2010). "Incorporating location, routing and inventory decisions in 

supply chain network design", Transportation Research Part E: Logistics and Transportation Review, 

Elsevier Ltd, Vol. 46, No. 5, pp. 582–597, DOI: 10.1016/j.tre.2009.06.005. 

Ahmadzadeh, E. and Vahdani, B., (2017). "A location-inventory-pricing model in a closed loop supply 

chain network with correlated demands and shortages under a periodic review system", Computers and 

Chemical Engineering, Elsevier Ltd, Vol., 101, pp. 148–166. 

Bektas, T. and Laporte, G., (2011). "The Pollution-Routing Problem", Transportation Research Part B, 

Vol. 45, pp. 1232–1250, DOI: 10.1016/j.trb.2011.02.004. 

Cheng, C., Yang, P., Qi, M., and Rousseau, L. M., (2017). "Modeling a green inventory routing problem 

with a heterogeneous fleet", Transportation Research Part E: Logistics and Transportation 

Review, Vol. 97, pp. 97-112. 

Crama, Y., Rezaei, M., Savelsbergh, M., and Woensel, T. V., (2018). Stochastic inventory routing for 

perishable products. Transportation Science, Vol. 52, No. 3, pp. 526-546. 

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. A. M. T., (2002). "A fast and elitist multiobjective 

genetic algorithm: NSGA-II", IEEE transactions on evolutionary computation, Vol. 6, No. 2, pp. 182-

197. 

Eskandarpour, M., Dejax, P., Miemczyk, J., and Péton, O., (2015). "Sustainable supply chain network 

design: An optimization-oriented review", Omega (United Kingdom), Elsevier, pp. 11–32. DOI: 

10.1016/j.omega.2015.01.006. 

Etebari, F. and Dabiri, N., (2016). "A hybrid heuristic for the inventory routing problem under dynamic 

regional pricing", Computers and Chemical Engineering, Elsevier Ltd, Vol. 95, pp. 231–239, DOI: 

10.1016/j.compchemeng.2016.09.018.



A green transportation location-inventory-routing problem by dynamic regional pricing 

 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol.7, No.1  Page 56 

Farrokhi-Asl, H., Makui, A., Jabbarzadeh, A., and Barzinpour, F., (2018). "Solving a multi-objective 

sustainable waste collection problem considering a new collection network’, Operational Research, pp. 

1–39. doi: 10.1007/s12351-018-0415-0. 

Gen, M. and Cheng, R., (1997). Genetic Algorithms and Engineering Design.pdf. wiley. 

Gholamian, M.R., Heydari, M., (2017). "An inventory model with METRIC approach in location ‐ 

routing ‐ inventory problem", Advances in Production Engineering & Management. 

Ghorbani, A. and Akbari Jokar, M. R. (2016). "A hybrid imperialist competitive-simulated annealing 

algorithm for a multisource multi-product location-routing-inventory problem", Computers & 

Industrial Engineering, Vol. 101, pp. 116–127, DOI: 10.1016/j.cie.2016.08.027. 

Govindan, K., Jafarian, A., Khodaverdi, R., and Devika, K., (2014). "Two-echelon multiple-vehicle 

location-routing problem with time windows for optimization of sustainable supply chain network of 

perishable food", International Journal of Production Economics, Vol. 152, pp. 9–28, DOI: 

10.1016/j.ijpe.2013.12.028. 

Guerrero, W. J., Prodhon, C., Velasco, N., and Amaya, C. A., (2013). "hybrid heuristic for the inventory 

location-routing problem with deterministic demand", Intern. Journal of Production Economics, Vol. 

146, pp. 359–370. 

Guerrero, W. J., Prodhon, C., Velasco, N., and Amaya, C. A., (2015). "A relax-and-price heuristic for 

the inventory-location-routing problem", International Transactions in Operational Research, Vol. 22, 

No. 1, DOI: 10.1111/itor.12091. 

Hiassat, A. and Diabat, A., (2011). "A location-inventory-routing-problem with perishable products", 

in 41st International Conference on Computers and Industrial Engineering 2011. 

Hiassat, A., Diabat, A. and Rahwan, I., (2017). "A genetic algorithm approach for location-inventory-

routing problem with perishable products", Journal of Manufacturing Systems, The Society of 

Manufacturing Engineers, Vol. 42, pp. 93–103. doi: 10.1016/j.jmsy.2016.10.004. 

Khalili-Damghani, K., Abtahi, A.-R. and Ghasemi, A., (2015). "A New Bi-objective Location-routing 

Problem for Distribution of Perishable Products: Evolutionary Computation Approach", Journal of 

Mathematical Modelling and Algorithms in Operations Research, Vol. 14, No. 3, DOI: 

10.1007/s10852-015-9274-3. 

Lin, C., Choy, K. L., Ho, G. T., Chung, S. H., and Lam, H. Y., (2014). "Survey of Green Vehicle 

Routing Problem : Past and future trends", Expert Systems with Applications, Vol. 41, pp. 1118–1138, 

DOI: 10.1016/j.eswa.2013.07.107. 

Lin, R. H., (2012). "An integrated model for supplier selection under a fuzzy situation", International 

Journal of Production Economics, Vol. 138, No. 1, pp. 55–61. 

Liu, S. and Chen, J., (2011). "A heuristic method for the inventory routing and pricing problem in a 

supply chain", Expert Systems With Applications, Elsevier Ltd, Vol. 38, No. 3, pp. 1447–1456, DOI: 

10.1016/j.eswa.2010.07.051. 

Martínez-Salazar, I. A., Molina, J., Ángel-Bello, F., Gómez, T., and Caballero, R., (2014). "Solving a 

bi-objective transportation location routing problem by metaheuristic algorithms", European Journal 

of Operational Research, Vol. 234, No. 1, DOI: 10.1016/j.ejor.2013.09.008.



M. Rabbani, F. Navazi, N. Eskandari, H. Farrokhi-Asl 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol.7, No.1  Page 57 

Navazi, F., Tavakkoli-Moghaddam, R., Sazvar, Z., and Memari, P., (2019). "Sustainable Design for a 

Bi-level Transportation-Location-Vehicle Routing Scheduling Problem in a Perishable Product Supply 

Chain’, in Borangiu, T. et al. (eds) Service Orientation in Holonic and Multi-Agent Manufacturing. 

Cham: Springer International Publishing, pp. 308–321. 

Navazi, F., Tavakkoli-Moghaddam, R. and Sazvar, Z., (2018). "A Multi-Period Location-Allocation-

Inventory Problem for Ambulance and Helicopter Ambulance Stations: Robust Possibilistic Approach", 

IFAC-PapersOnLine, Elsevier B.V., Vol. 51, No. 11, pp. 322–327, DOI: 10.1016/j.ifacol.2018.08.303. 

Nekooghadirli, N., Tavakkoli-Moghaddam, R., Ghezavati, V. R., and Javanmard, A. S., (2014). 

"Solving a new bi-objective location-routing-inventory problem in a distribution network by meta-

heuristics", Computers & Industrial Engineering, Vol. 76, pp. 204–221, DOI: 

10.1016/j.cie.2014.08.004. 

Nemmich, M. A., Debbat, F., and Slimane, M., (2019). "A Permutation-Based Bees Algorithm for 

Solving Resource-Constrained Project Scheduling Problem", International Journal of Swarm 

Intelligence Research (IJSIR), Vol. 10, No. 4, pp.1-24, DOI:10.4018/IJSIR.2019100101. 

Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., and Zaidi, M.  (2011). "The Bees 

Algorithm – A Novel Tool for Complex Optimisation Problems", Paper presented at the Intelligent 

Production Machines and Systems-2nd I* PROMS Virtual International Conference (3-14 July 2006). 

Prodhon, C., and Prins, C., (2014). "A survey of recent research on location-routing problems", 

European Journal of Operational Research, Elsevier B.V., Vol. 238, No. 1, pp. 1–17, DOI: 

10.1016/j.ejor.2014.01.005. 

Rabbani, M., Navazi, F., Farrokhi-Asl, H., and Balali, M., (2018). "A sustainable transportation-

location-routing problem with soft time windows for distribution systems", Uncertain Supply Chain 

Management, Vol. 6, No. 3, pp. 229–254, DOI: 10.5267/j.uscm.2017.12.002. 

Rabbani, M., Farshbaf-geranmayeh, A., and Haghjoo, N., (2016). "Vehicle routing problem with 

considering multi-middle depots for perishable food delivery", Uncertain Supply Chain Management, 

4, pp. 171–182, DOI: 10.5267/j.uscm.2016.3.001. 

Rafie-Majd, Z., Pasandideh, S. H. R. and Naderi, B., (2018). "Modelling and solving the integrated 

inventory-location-routing problem in a multi-period and multi-perishable product supply chain with 

uncertainty: Lagrangian relaxation algorithm", Computers and Chemical Engineering, Elsevier Ltd, 

109, pp. 9–22. doi: 10.1016/j.compchemeng.2017.10.013. 

Saif-Eddine, A. S., El-Beheiry, M. M., and El-Kharbotly, A. K., (2019)."An improved genetic algorithm 

for optimizing total supply chain cost in inventory location routing problem", Ain Shams Engineering 

Journal, Ain Shams University, Vol. 10, No. 1, pp. 63–76, DOI: 10.1016/j.asej.2018.09.002. 

Tavakkoli-moghaddam, R., and Raziei, Z., (2016). "A New Bi-Objective Bi-Objective Location-

Routing-Inventory Problem with Fuzzy Demands", IFAC-PapersOnLine. Elsevier B.V., Vol. 49, No. 

12, pp. 1116–1121, DOI: 10.1016/j.ifacol.2016.07.646. 

Taylor, P., Ahmadi-javid, A., and Seddighi, A. H., (2013). "A location-routing-inventory model for 

designing multisource distribution networks", Engineering Optimization, (February 2013), pp. 37–41. 

Nagurney, A., Flores, E. A., and Soylu, C., (2016). "Sustainable design of a closed-loop location-

routing-inventory supply chain network under mixed uncertainty", Transportation Research Part E: 

Logistics and Transportation Review, Vol. 89, pp. 182–214, DOI: 10.1016/j.tre.2016.02.011.



A green transportation location-inventory-routing problem by dynamic regional pricing 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol.7, No.1  Page 58 

Zhang, Y., Qi, M., Miao, L., and Liu, E., (2014). "Hybrid metaheuristic solutions to inventory location 

routing problem", Transportation Research Part E: Logistics and Transportation Review, Vol. 70, pp. 

305–323, DOI: 10.1016/j.tre.2014.07.010. 

Zheng, X., Yin, M., and Zhang, Y., (2019). "Integrated optimization of location, inventory and routing 

in supply chain network design", Transportation Research Part B: Methodological, Elsevier Ltd, 121, 

pp. 1–20, DOI: 10.1016/j.trb.2019.01.003. 

 

This article can be cited: Rabbani, M., Navazi, F., Eskandari, N., Farrokhi-Asl, H., 

(2020). "A green transportation location-inventory-routing problem by dynamic regional 

pricing", Journal of Industrial Engineering and Management Studies, Vol. 7, No. 1, pp. 

35-58. 
 

 
 Copyright: Creative Commons Attribution 4.0 International License. 

 

 

 


