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Abstract 

This study proposed a new model for cellular manufacturing systems to group parts and machines in 

dedicated cells using a part-machine incidence matrix to minimize the voids. After identifying the 

exceptional elements, the machines required for processing the remained operations of corresponding 

parts which are not processed in the dedicated cells are specified. This results in a new matrix called part 

family-machine. Then, by clustering the part family-machine incidence matrix, the part families that 

should be assigned to a specific cell to achieve the highest similarity can be determined. The similarity 

can be translated to sharing machines required for completing the processes and form new cells called 

shared cells to minimize the number of exceptional elements and voids. Unlike previous models in which 

the similarity is considered only in the dedicated cells, here, the similarity would be observed in the 

entire production process. Due to the model NP-hardness, two meta-heuristics including artificial 

immune system (AIS) and simulated annealing (SA) are proposed. The efficiency of the algorithms is 

compared to that of exact solutions. Also, the algorithms are compared regarding the quality of solutions. 

Finally, according to grouping efficacy measure, SA has a superior performance in comparison with AIS 

by spending less CPU time. 
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1. Introduction 

Cellular manufacturing (CM) is one of the well-known production methods used in most major 

manufacturing centers with high product diversity and multi-purpose facilities as a suitable 

production approach. In CM, every cell consists of several production machines and equipment 

and is capable to process a group of parts called family with similar production processes 

(Ayough et al., 2015; Golpîra and Tirkolaee, 2019). Main advantages of CM reported by 

previous conducted studies include, but are not limited to, reducing the setup and production 
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time and material handling cost and increasing the quality level and inventory control (Heragu, 

1994; Wemmerlöv and Hyer, 1989). One of the main problems in cellular manufacturing 

systems is cell formation problem (CFP) which is mainly the determination of parts and 

machine layout in the dedicated cells. The main objectives of the cell formation problem are to 

minimize the exceptional elements and voids. Binary part-machine incidence matrix is one of 

the commonly used tools to display how parts require the machines. The number of rows and 

the number of columns in the incidence matrix are equal to the number of parts and the number 

of machines, respectively. If the element related to a specific row and column is 1, then the part 

associated with that row requires the related machine in the corresponding column and if it is 

0, then the machine associated with the corresponding machine is not required for processing 

the part associated with the corresponding row. In this study, part-machine incidence matrix 

(Mahdavi et al., 2012) and part family-machine incidence matrix are used.  

In fact, different kinds of assignments can be established by displacing the columns and rows 

using block diagonal form in which the zeroes inside the block represent the voids and ones 

outside the blocks are exceptional elements that impose intercellular movements. In an ideal 

layout, there should be no voids or exceptional elements. Practically, it is desirable to minimize 

the number of voids and exceptional elements. This is because the voids inside the cell mean 

the absence of a link between the machine and the part and the exceptional elements translate 

to intercellular movements. In other words, voids are undesirable because all machines in a cell 

should be dedicated to the assigned parts and the number of exceptional elements should be 

minimized because the production operations of a part should be done inside its cell as far as 

possible. Figure 1 presents different configurations for a problem. Figure 1(A) has eleven 

exceptional elements without voids, Figure 1(B) has nine exceptional elements and four voids 

and Figure 1(C) has fifteen exceptional elements and four voids. Therefore, layout (A) is 

preferred to other configurations in terms of machines and intercellular parts. 
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Figure 1. Different kinds of diagonal form of part-machine assignment 

 

An initial layout of machines within the cells is needed in cellular manufacturing systems due 

to the costs of machine reconfiguration inside the cells and impossibility of displacement. One 

of the ways to prevent machine duplicate in cellular manufacturing systems is the movement of 

parts to do operation outside their dedicated cells. By emerging the movement concept in 

cellular manufacturing systems, parts for which operation is not done in their dedicated cells 

are moved to other cells that process completely different parts. In the classic cell formation in 

the literature review, the similarity of part operations is used to cluster the dedicated cells. Our 

technique in this study is to realize the similarity by the end of the operation parts as far as 

possible. For this reason, dedicated cells are formed by a part-machine incidence matrix to 

minimize the number of voids. After identifying the exceptional elements, a new matrix is 

formed based on the part families’ operation requirements that call for their movements among 

machines. The matrix is called part family-machine incidence matrix. Part family-machine 

incidence matrix is a binary matrix in which 1 means a part family needs a bottle-neck machine 

(a machine to process exceptional elements). The part family-machine incidence matrix is 
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introduced for the first time in this study. In addition, through clustering of part family-machine 

matrix, an accurate planning is performed to deal with the parts whose operations are not done 

in their dedicated cells. This can lead to the determination of the part families which are assigned 

to a cell and therefore, the highest similarity in term of need for shared machines to complete 

their process and form some cells called shared cells is achieved. For example, the final 

configuration of dedicated cells related is shown in Figure 2(A). Also, part family-machine 

incidence matrix of this example is according to Figure 2(B). By clustering this matrix, one 

shared cell is formed and is shown in Figure 2(C). The objective function of the proposed model 

for this example is 3; in other words, this example has zero voids related to dedicated cells and 

2 voids and an exceptional element for third part family related to the shared cells. 
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Figure 2. Illustration of dedicated cells, part family-machine incidence matrix, and formed shared cell 
 

CFP is an NP-hard problem (Ballakur and Steudel, 1987). Several methods have been 

introduced to solve this problem. The methods include both heuristics and meta-heuristics. In 

this study, we formulated a mathematical model to form the part family-machine incidence 

matrix and cluster it to establish shared cells. In addition, artificial immune system and 

simulated annealing algorithms are utilized to minimize the number of voids in the dedicated 

cells and number of voids and exceptional elements in the shared cells.  

Organization of other sections is as follows. Section 2 represents the literature review. Section 

3 explains the problem formulation. Section 4 is to provide validation of the model. The 

proposed algorithms are presented in sections 5 and 6. In section 7, the parameters of algorithms 

are adjusted. Numerical experiments and analyses are presented in section 8 and finally, Section 

9 concludes the paper. 

2. Literature Review 

Many studies have been conducted in the field of cell formation in classic cellular 

manufacturing. The approaches followed by these researches include but are not confined to 

the some categories such as method of coding and classification, production flow analysis, the 

similarity coefficient, methods based on fuzzy set and graph theory, array method, mathematical 

programming, and heuristic and meta-heuristic methods. 

In the last decades of research, many approaches have mainly adopted part-machine incidence 

matrix as the input data for the cell formation problem. Classification and summarizing of them 

can be seen in some of studies (Papaioannou and Wilson, 2010; Yin and Yasuda, 2006). In this 

study, some recent researches that have addressed the CFP as a binary part-machine incidence 

matrix are reviewed. Chen and Cheng (1995) used a neural network algorithm to determine the 

formation of cells. They used adaptive resonance theory and neural network in cellular 

manufacturing systems. Cheng et al. (1998) formulated a cell formation problem as Traveling 

Salesman Problem (TSP) and proposed a solution methodology based on genetic algorithms. 

Onwubolu and Mutingi (2001) proposed a genetic algorithm to determine cell formation in 

cellular manufacturing systems. Gonçalves and Resende (2004) presented an approach to 

determine family of productions and machine cells. Their method was a combination of 
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heuristic local research and genetic algorithm. Albadawi et al. (2005) presented a mathematical 

model to form manufacturing cells. Their approach includes two steps: in the first step, machine 

cell is determined using a similarity coefficient matrix factor and in the second step, an integer 

mathematical model is used to assign parts to cells. In order to solve the CFP, James et al. (2007) 

proposed a hybrid genetic grouping algorithm which combines a local research algorithm with 

a standard genetic algorithm. Computational results were established with grouping efficiency 

standard by a set of data related to cell formation problem gathered through literature review. 

Hybrid approach of genetic algorithm had a better objective function value compared to that of 

standard genetic algorithm.  

Mahdavi et al. (2009) proposed a mathematical model to solve CFP based on cell application 

concept in cellular manufacturing systems. The purpose of their model was to minimize the 

number of exceptional elements and intercellular voids. Also, they proposed an efficient genetic 

algorithm to solve the mathematical model. Anvari et al. (2010) developed a particle swarm 

optimization algorithm to determine the part families using similarity coefficient and to form 

machine groups to minimize the number of voids and exceptional elements. Pailla et al. (2010) 

applied two algorithms to solve CFP. Firstly, an evolutionary algorithm was suggested that 

improves the efficiency of the standard genetic algorithm by considering cooperation with a 

local search around some of the solutions it visits. Secondly, a simulated annealing algorithm 

was implemented that uses the same representation scheme of a feasible solution. Paydar et al. 

(2011) formulated a model for simultaneous determination of part families and machine groups 

in CFP to minimize the exceptional elements and the number of voids in cells. One of the 

advantages of their model is that the number of manufacturing cells are considered as a decision 

variable whose value is determined by the model. Elbenani et al. (2012) proposed a local 

research method to solve cell formation problem assuming that at least a part and a machine 

should be located in any cell. Their proposed method used resonance strategy to improve the 

local solution and utilized destruction strategy to create a new solution according to previously 

obtained solution. By solving 35 problems brought from the literature and comparing the 

solutions of the proposed method with the best-obtained solution, they demonstrated the 

efficiency of their method in terms of grouping efficacy. Banerjee et al. (2012) proposed 

predator-prey genetic algorithm to solve grouping technology and cellular manufacturing 

problems. Their algorithm is focused on local search strategy to maintain balance between 

hunting and hunter avoiding premature convergence. Paydar and Saidi-Mehrabad (2013) 

proposed a hybrid genetic-neighborhood research algorithm to solve the CFP to minimize the 

exceptional elements and voids. They compared their computational results with grouping 

efficacy of 35 various methods proposed in the literature and justified the performance 

superiority of their hybrid method. 

Brown (2015) in a study developed mathematical models to obtain a strategic long-term layout 

for the cells in a CMS to minimize the exceptional elements to reduce costs in terms of 

intercellular movement, machine duplication and subcontracting while taking machine 

capacities into account to avoid capacity violations require a specific machine. Kia et al. (2015) 

proposed a mixed-integer mathematical model to incorporate some new features such as: (i) 

manufacturing cells with variable numbers and shapes, (ii) machine depot for keeping idle 

machines, (iii) machines of unequal areas and (iv) manufacturing cells with regular rectangular 

shapes set on the continuous shop floor and in the design and configuration of the dynamic 

CMS. Erenay et al. (2015) in a study compared different methods of layer designing of a cellular 

manufacturing system. In their study, three kinds of cells, i.e., dedicate, shared and remainder 

cells are introduced and it is explained that each part family has a dedicated cell and if needed 

has a shared cell and a remainder cell to perform the required operations which are not done in 

the corresponding dedicated cell. Two part families with similar operations form a shared cell 

and three part families and most of form a remainder cell. Martins et al. (2015) proposed a new 
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approach for solving the cell formation problem using the group efficacy objective function. 

Their method was based on the iterated local search meta-heuristic coupled with a variant of 

the variable neighborhood descent method. Bootaki et al. (2015) presented a dynamic CFP with 

a robust design approach and objective function of minimizing the total intercellular movement 

and maximizing the machine and worker utilization. Buruk Sahin and Alpay (2016) proposed 

a genetic algorithm for the problem of part-machine-worker cell formation. The performance 

of their proposed GA on all of the test problems was satisfying. Mehdizadeh and Rahimi (2016) 

presented an integrated mathematical model to solve the dynamic cell formation problem 

considering operator assignment and inter/intra cell layouts problems with machine duplication. 

Due to NP-hardness of the problem, they proposed two meta-heuristics as solution methods: 

multi-objective simulated annealing (MOSA) and multi-objective vibration damping 

optimization (MOVDO).  

Finally, Table 1 is provided to compare this work with other mentioned researches. Using this 

table, the research gaps can be identified. These researches are compared in terms of several 

model assumptions, type of solution method, and data sets for parameters. 
 

Table 1. A brief review of related works to find research gaps 
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(Onwubolu and Mutingi, 2001) × × ×     ×  ×   × 

(Gonçalves and Resende, 2004) × × ×     × × ×   × 

(Albadawi et al., 2005) × × ×     ×   ×  × 

(James et al., 2007) × × ×     × × ×  ×  

(Duran et al., 2008) × × ×     ×  ×   × 

(Wu et al., 2008) × × ×     ×  ×   × 

(Mahdavi et al., 2009) × × ×   × × ×  ×  ×  

(Anvari et al., 2010) × × ×   × × ×  ×   × 

(Pailla et al., 2010) × × ×     ×  ×  ×  

(Noktehdan et al., 2010) × × ×     ×  ×   × 

(Paydar et al., 2011) × × ×   × × × ×  × ×  

(Elbenani et al., 2012) × × ×  ×   ×   ×  × 

(Mahdavi et al., 2012) × × ×   × × ×   ×  × 

(Banerjee and Das, 2012) × × ×     ×  ×   × 

(Paydar and S. Mehrabad, 2013) × × ×   × × ×  ×   × 

(Jouzdani et al., 2014) × × ×  ×   ×  ×  ×  

(Brown, 2015) × × ×   ×  ×   ×  × 

(Erenay et al., 2015) × × × ×    × ×  ×  × 

(Martins et al., 2015) × × ×     ×  ×  ×  

(Bootaki et al., 2015) × × ×  ×   ×   ×  × 

(Niakan et al., 2016) × × ×  ×   ×  ×   × 

(Mehdizadeh et al., 2016) × × ×  ×   ×  ×   × 

(Alimoradi et al., 2016) × × ×     ×   ×  × 

(Buruk Sahin and Alpay, 2016) × × ×     ×  ×   × 

(Mehdizadeh and Rahimi, 2016) × × ×  ×   ×  ×   × 

(Goli et al., 2019) × ×       ×  ×  × 

(Farughi et al., 2019) × × ×     ×   × ×  

(Bouaziz et al., 2020) × × ×  ×   ×  × ×  × 

This research × × × × × × × × × × ×  × 

UBC: Upper Bound for Components          ExE: Exceptional Elements        CFP: Cell Formation Problem                     

PFC: Part Family Clustering                       ShC: Shared Cell                         MtH: Meta-Heuristic 
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This table shows that shared cell is applied only in 3.5% of these 28 selected papers. Also, upper 

bound for components is considered only in 25% of these research. Besides, the exceptional 

elements and voids are used in 21% and 18% of these works, respectively. Also, part family 

clustering is noted only in 18% of these papers. On the other hand, considering these five 

mentioned assumptions have not been conducted in a single study simultaneously. Moreover, 

other information can be seen in this table such as type of solution method, and data sets for 

parameters. 
In this study, after grouping parts and machines and forming dedicated cells to minimize 

number of voids, part family-machine incidence matrix is formed through identifying the 

exceptional elements. By clustering this new matrix, some cells, called shared cells, are formed. 

In fact, the required operations that are not done in the dedicated cells and have similar process 

to other part families are done in their shared cell. Therefore, a new cell formation is established 

to minimize the number of voids and exceptional elements. Here, shared cells concept of Erenay 

et al. (2015) is adopted to cluster part family-machine incidence matrix. Unlike their research 

in which machines are purchased based on the number of dedicated, shared and remained cells, 

in this study, bottle-neck machines are duplicated only once again. The technique in this study 

is to realize the similarity through the operations in whole part processes as far as possible. It is 

noteworthy than, if bottle-neck machines are purchased initially and the shared cells are not 

established and dedicated cells are formed, then, the similarity is reduced and efficient cells are 

not formed. Figure 1 illustrates an example that clarifies the concept. In this figure, if machines 

2, 3, 4 and 5 located in part family-machine incidence matrix related to Figure 2(B) are 

purchased initially, the number of voids is increased to 18. In this study, first, a mathematical 

model is developed to form dedicated cells and clustering of part family-machine incidence 

matrix to establish shared cells. Then, the proposed algorithms are analyzed using numerical 

experiments.  

3. Problem formulation 

In this section, the problem is formulated as a mixed non-linear mathematical model to solve 

CFP by clustering part family-machine incidence matrix. The proposed model deals with the 

minimization of voids in dedicated cells and voids and exceptional elements in shared cells. 

The assumptions are:  

 The main cells are already known. 

 Machine duplication is allowed. 

 The number of shared cells is considered as a variable and is determined by the model.  

 Each part has only one dedicated cell. 

 Upper and lower limits of the number of machines in dedicated and shared cells are 

known. 

 At least two parts families are in each shared cell. 

 Machine requirements of parts are expressed as a binary part-machine incidence matrix. 

 The main focus of research is to form dedicated cells and shared cells are to maximize the 

similarity in the part process. 

Sets: 
I Number of part types 

J Number of machine types 

K Number of dedicated cells 

C Number of shared cells 

Indices: 
i  Index for part type (i=1, 2, …, I) 

j  Index for machine type (j=1, 2, …, J) 

k, k’   Index for dedicated cell (k, k’ =1, 2, …, K) 
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c  Index for shared cell (c=1, 2, …, C) 

 

Input parameters: 
rij 1 if part type 𝑖 needs machine type j; =0 otherwise 

Lk Minimum number of machine types for cell k 

Uk Maximum number of machine types for cell k 

Lfk Minimum number of part types for cell k 

Lcc Minimum number of machine types for cell c 

A        The sufficiently large positive number 

Decision variables: 
Zik       1 if part 𝑖 is assigned to dedicated cell k; =0 otherwise 

yjk       1 if machine 𝑗 is assigned to dedicated cell k; =0 otherwise 

vjc       1 if machine 𝑗 is assigned to shared cell c; =0 otherwise 

xkc       1 if part family 𝑘 is assigned to shared cell c; =0 otherwise 

Mc       1 if shared cell 𝑐 is opened; =0 otherwise 

PFkj       1 if part family 𝑘 needs machine j; =0 otherwise 

Qk       1 if part family 𝑘 is selected for part family-machine incidence matrix; =0 otherwise 

fm (i, k)     The number of operations needed to be performed on part i in dedicated cell k 

fmax (i)      The Maximum needed operations to be performed on part i in a dedicated cell 

 

Objective function:  
Min Z= 

1 i 1 j 1 1 1 1 1 1 1 1 1 1 1 1 1
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The first term of the objective function is to minimize the number of voids in the dedicated cells 

and the three next terms are to minimize the number of exceptional elements and voids in shared 

cells. Equation (2) guarantees that each part is assigned to only one dedicated cell. Equation (3) 

ensures that each machine is assigned to only one dedicated cell. Constraints (4) and (5) impose 

upper and lower limits for the number of machines in dedicated cells. Equation (6) shows the 

lower limit of dedicated cells in term of number of parts. Constraints (7), (8) and (9) determine 

the dedicated cell of each part; i.e., the cell in which the largest number of part operations are 

done. Constraints (10) and (11) form part family-machine matrix for which the part families 

that continue their process outside their dedicated cell and the corresponding required machines 

should be determined. In this step, all exceptional elements that cause the movements are 

identified. Constraints (12) and (13) determine the part family to enter the part family-machine 

matrix. For example, if part family 1 needs to be processed in a cell other than its dedicated cell, 

we have Q1=1. Equation (14) expresses the fact that each part family is assigned to only a single 

shared cell in the part family-machine matrix. Constraints (15) and (16) are related to opening 

shared cells. Equation (17) specifies the upper limit for the number of machines in shared cells. 

Constraints (18) and (19) determine the machine to enter the part family-machine matrix. 

Equation (20) expresses the fact that each machine is assigned to a single shared cell in the part 
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family-machine matrix. Equation (21) states that to shared cells, only two part families can be 

assigned and finally equation (22) express that decision variables of the problem are binary. 

3.1. Linearization 

The proposed model is a non-linear integer programming model due to non-linear terms that 

include multiplication of binary variables in all terms of objective function and constraints (8), 

(9), (10), (11), (15), (16), (18) and (19). For linearization, five auxiliary binary variables are 

defined as 𝐹𝑖𝑗𝑘 = 𝑍𝑖𝑘 × 𝑦
𝑗𝑘

, 𝐸𝑘𝑗𝑐 = 𝑥𝑘𝑐 × 𝑣𝑗𝑐 × 𝑃𝐹𝑘𝑗, 𝐵𝑘𝑗𝑐 = 𝑥𝑘𝑐 × 𝑣𝑗𝑐,  𝐺𝑘𝑗𝑐 = 𝑥𝑘𝑐 × 𝑃𝐹𝑘𝑗, and 

𝐷𝑖𝑗𝑘𝑘́ = 𝑍𝑖𝑘 × 𝑦𝑗𝑘́. Regarding these variables, below constraints should be added to 

mathematical model:  

1.5 0   , ,ijk ik jkF z y i j k        (23) 

1.5 0   , ,ijk ik jkF z y i j k        (24) 

2.5 0   , ,kjc kc jc kjE x v PF k j c         (25) 

2.5 0   , ,kjc kc jc kjE x v PF k j c         (26) 

1.5 0   , ,kjc kc jcB x v k j c        (27) 

1.5 0   , ,kjc kc jcB x v k j c        (28) 

1.5 0   , ,kjc kj kcG PF x k j c        (29) 

1.5 0   , ,kjc kj kcG PF x k j c        (30) 

1.5 0   , , ,ijkk ik jkD z y i j k k 
        (31) 

1.5 0   , , ,ijkk ik jkD z y i j k k 
        (32) 

( , ) ( , )    , , ,m m ikkf i k f i k M W k k i k k
        (33) 

( , ) ( , ) ( 1 )    , , ,m m ikkf i k f i k W M k k i k k
          (34) 

( 1) ( , )   i,kikk

k k

W K Z i k



       (35) 

3.2. Linearized Model 

Linearized model is provided as in what follows.  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

min   - - -
K I J I J K J K C J C k J K J

ijk ijk ij kj kjc kjc kjc

k i j i j k j k c j c k j k j

z F F r PF E B E
              

     
        

     
         

(36) 

Subject to: 

 (2)-( 7( و )12)-( 14( و )17( و )20)-( 22( و )23)-( 35)

' 1 1
'

   ,
K I

ijkk ij kj

k i
k k

D r PF k K j J

 


        (37) 

' 1 1
'

   ,
K I

ijkk ij kj

k i
k k

D r A PF k K j J

 


         (38) 

1 1

      
J K

c kjc

j k

M B c C
 

      (39) 
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1 1

         
J K

c kjc

j k

A M B c C
 

       (40) 

1

  ,
K

jc kjc

k

v G j J c C


       (41) 

1

   ,   
K

jc kjc

k

A v G j J c C


        (42) 

, ,  ,  ,  ,  ,  , , , , ,

,    , , , ,

ik jk jc kc c kj k ijk kjc kjc kjc

ijkk ikk

z y v x M PF Q F E B G

D W i I j J k k K c C 
     

 (43) 

4. Solution approaches 

Here, two solution approaches include SA and AIS was described. 

4.1. The proposed simulated annealing Algorithm  

The idea that formed original SA was introduced by Metropolis et al. (1953). Thirty years later, 

Kirkpatrick et al. (1983) developed the idea proposed by Metropolis as a technique to search 

feasible solutions in optimization problems. Unlike the gradient methods and other accurate 

searching methods, simulated annealing algorithm is designed to avoid being trapped in local 

minima. In fact, simulated annealing algorithm is a searching method that uses Markov chain 

to converge transfer possibility function suitably. In other word, simulated annealing is a 

random searching technique to solve optimization methods inspired by solid crystal production 

process and the cooling of the molten material. Slower decrease of the temperature of the molten 

material results in formation of larger and arranged solid crystals. By the increasing of the 

cooling rate for liquid, crystals form slower and more organized. As a result, the produced solid 

has less porosity and more shock resistance. 

So, annealing process includes the control of temperature and strain rate. The application of this 

algorithm can be seen in some of studies to solve cell formation problems (Paydar et al., 2010; 

Xambre and Vilarinho, 2003). The procedure of simulated annealing algorithm implemented 

for the problem is shown in Figure 3.  

 

 

1- Defining objectives and adjusting the parameters of the algorithm. 

Defining primary temperature T0 and primary value x0 

Defining final temperature Tf 

Defining value of temperature drop α 

Initially, n=1, T=T0, x=x0,  x=x* 

2- When n=1, T=Tf 

Random displacing to new location (some changing in current solution for 

random searching) 

Xn+1=xn+rand 

Calculating Δf=fn+1(xn+1)-fn(xn)  

3- If new solution is better, so it is accepted 

Otherwise 

A random number r is produced  

If p=exp[-Δf/T]>r , new solution is accepted  

End 

Updating x* and f* 

n=n+1 

End 
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Figure 3. The pseudo-code of the proposed simulated annealing algorithm 
 

 

 

Parameters of SA include: 

x0= The initial solution 

x*= Best known solution 

f(x)= Value of objective function at point x 

xn= Solution in iteration n 

n= Counter of algorithm iteration 

T0= Initial temperature 

Tf= Final temperature 

p= Probability of acceptance of xn when it is not better than xn-1 (transfer possible) 

α=Rate of temperature decrease 
 

Basic concepts of the proposed simulated annealing algorithm are explained as below: 
 

a) Coding the Solution 

Coding the solution in the problem is in the way that each solution should be a combination of 

machine layouts and parts in the dedicated cells and is shown in Table 2; so that, number of 

rows in each matrix is the same as number of dedicated cells and each matrix has two columns. 

The first column represents machines and the second column represents the parts available in 

each dedicated cell. For example, if six parts, six machines and three cells are taken, a structural 

matrix is as follows. Table 2 represents a solution to the problem. The first row represents that 

machines number 4 and 5 and parts numbers 1 and 3 are located in the first dedicated cell. Also, 

machines numbers 1 and 6 and parts numbers 2 and 4 are located in the second cell and 

machines numbers 2 and 3 and parts numbers 5 and 6 are located in the third cell.  
 

Table 2. The numerical example of solution representation 

Part Machine 

C
el

l
 

[1,3] [4,5] 

[2,4] [1,6] 

[5,6] [2,3] 
 

b) Neighborhood-Move 

Neighborhood-move mechanism is of high importance in SA method. In this problem, mutation 

function selects two dedicated cells per each solution taken to mutation function. For each pair 

of selected cells, a machine is selected randomly from one cell and replaced by other selected 

machine from the other cell. Therefore, layout of machines in cells is completely changed and 

as a result and the layout of dedicated cells should be changed. According to new layout of 

machines, dedicated cells are relocated. The output of this function, there is one new solution 

and one new layout of parts and machines. In the conducted mutation in Table 3, the first and 

second cells are selected randomly and machine number 4 from the first cell is replaced by 

machine number 6 of the second cell (swap operator). Similarly, for parts, this swap operator is 

done and all swapped numbers are bold. 
 

Table 3. The numerical example of the neighborhood- move of the proposed SA algorithm 

Part Machine 

C
el

l
 

[1,2] [6,5] 

[3,4] [1,4] 

[5,6] [2,3]  

Part Machine 

C
el

l
 

[1,3] [4,5] 

[2,4] [1,6] 

[5,6] [2,3] 

 
 

c) Solution Evaluation Function in SA 
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Functions of performance evaluation of a solution are used to compare the solutions to select 

the best one. Therefore, the objective function of the problem is used as a function to evaluate 

the performance of solutions; i.e., the smaller the objective function for a solution, the better 

the solution. In this problem, after determining the initial solution, the number of voids in 

dedicated cell and the number of voids and exceptional elements in shared cells are achieved 

by the objective function. 

 

d) Acceptance of a Solution 

In local optimization algorithms, the new solution is accepted only when the solution is 

improved according to the objective function while in SA, not only better solutions are accepted 

and the solutions are improved regarding the objective function value, but also worse solutions 

are also likely to be accepted. There is a criterion for acceptance probability of these solutions 

(P), which is dependent on temperature, in simulation annealing algorithm is given in equation 

(44). 

P(Accept)
  

exp
f

T




    (44) 
Δf Represents changes of objective function. Also, T∈R+ represents degree of temperature for 

each iteration.  
 

e) Stopping Criterion of SA Algorithm  

The proposed algorithm stops when the temperature reaches its final value, i.e., the final 

temperature. 

4.2. The proposed artificial immune system algorithm 

In this section, an artificial immune system (AIS) algorithm is proposed to solve the problem. 

This algorithm is inspired by the function of immune system of human body. AIS examines a 

set of solutions simultaneously; therefore, it can search different points of solution space 

simultaneously and this increases the ability of the algorithm to achieve a global optimal 

solution and also enables the algorithm to avoid local optimal.  

The procedure of artificial immune system is presented as what follows:  
 

1) Form the initial population of antibodies (solutions) randomly. 

2) Calculate the affinity between each pair of antibodies and their objective function values. 

3) Sort antibodies based on affinity function and select a certain number of best ones in terms 

of affinity to run the cloning phase. 

4) Conduct the cloning phase for the antibodies selected from the previous stage based on their 

affinity. 

5) Apply the mutation operator on the cloned antibodies based on their affinity. 

6) Evaluate the mutant results by affinity function. 

7) Replace a certain number of best solutions produced the worst results of the current society. 

8) Check the stopping criterion. If the stopping condition is not met, go to step 2. 
 

Basic concepts of artificial immune system algorithm are as follows: 
 

a) Coding the Solution 

How to display the solution in artificial immune algorithm is similar to that of simulated 

annealing algorithm. Therefore, it is not explained in details in this section and the reader is 

referred to sub-section (4.1). 
 

b) Initial Population 

Initial population is the same for the two algorithms with searching method based on population. 

The initial populations with a certain number of solutions are produced randomly.  
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c) Affinity Function 

Affinity function in artificial immune algorithm is a criterion to evaluate the quality of solutions 

in the algorithm. The larger the value of the affinity function, the better the solutions. Affinity 

function in this study is defined as the inverse of the objective function expressed as (1/objective 

function). 
 

d) Cloning phase 

In the AIS algorithm, nc antibodies with the highest affinity values are selected for cloning step. 

The cloned number of each 𝑛𝑐 selected antibodies is calculated by (nc-k+1), where k denotes 

the antibody with the kth highest affinity function value in the antibody population (Lin and 

Ying, 2013). Therefore, the antibodies with higher affinity values have a higher number of 

clones.  

 

e) Mutation phase 

Mutation is performed to produce neighborhood-move in artificial immune system algorithm. 

Mutation is a relatively small change in a part of the solution. Mutation operator in artificial 

immune system algorithm is applied to all the cloned solutions in cloning step. The mutation 

used for the problem is similar to that performed in neighborhood-move in simulated annealing 

algorithm. Therefore, in this section, it is not explained in details (please read sub-section (4.1)). 

 

f) Stopping Criterion 

Stopping criterion in the proposed AIS is specified as a certain iteration number determined by 

trial and error and examining convergence diagrams. The pseudo-code of AIS algorithm is 

shown in Figure 4. 

 

 
Figure 4. The pseudo-code of AIS algorithm  

5. Model validation 

In this section, three valid numerical examples are provided to demonstrate the performance of 

the proposed model coded and solved by GAMS software on a desktop computer equipped with 

6 GB of RAM and an Intel® Core™ i7 @2.20 GHz CPU. 
 

Artificial immune system algorithm: 

1. Input: define rij matrix, number of Dedicated cell and number of shared cell, upper bound and lower 

bound of part in each dedicated cell 

2. Select the first combination of parts and machines as initial solution (s0). 

3. For all part and machine combinations 

4. Generate the 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 of the s0 permutation randomly as initial population, determine the 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

value according to size of s0; 

5. Calculate the affinity function of these antibodies; 

6. For max gen 

7. Select the best nc of the antibodies; 

8. Make (nc-k+1) copies of each antibodies (clone); 

9. Mutate all of the cloned antibodies; 

10. Calculate the affinity function value for all of the mutated antibodies; 

11. The nc of the worse antibodies in current population are replaced by the nc of the best mutated 

antibodies; 

12. End for 

13. Store the obtained best affinity function value; 

14. End for 
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Example 1: In this example, 6 parts and 6 machines, for which the part-machine incidence 

matrix is shown in Table 4 (Chen and Cheng, 1995), are considered. This example has three 

dedicated cells. After solving the proposed model, final cell formation in Table 5 and also a 

shared cell is formed. All the exceptional elements belong to part families 2 and 3. The 

operations of the parts in these part families are done in the formed shared cell as shown in 

Table 6. Value of objective function is 3. If machines 1, 3 and 6 are purchased initially and 

dedicated cells are formed without machine duplication, the value of the objective function is 6 

and no shared cell is formed.  

 
Table 4. Part-machine incidence matrix related to example 1 

  Machine 

  1 2 3 4 5 6 

P
a

rt
 

1 0 0 0 1 1 0 

2 1 0 1 0 0 1 

3 0 0 0 1 1 0 

4 1 0 0 0 0 1 

5 0 1 1 0 0 1 

6 1 1 1 0 0 0 

Lk 2 

Uk 10 

Lfk 2 

Lcc 4 

 
Table 5. Final configuration of dedicated cell related to example 1 

  Machine 

  4 5 1 6 2 3 

P
a

rt
 

1 1 1 0 0 0 0 

3 1 1 0 0 0 0 

2 0 0 1 1 0 1 

4 0 0 1 1 0 0 

5 0 0 0 1 1 1 

6 0 0 1 0 1 1 

 
Table 6. Part family- machine incidence matrix related to example 1 

Part Family   

3PF 2PF   

1 0 1 

M
a

ch
in

e
 

0 1 3 

1 0 6 

 

Example 2: A problem with 10 parts and 10 machines is presented in this example. The part-

machine incidence matrix is shown in Table 7 (Chen and Cheng, 1995). By solving the proposed 

model with three dedicated cells, final dedicated cell formation related is obtained as shown in 

Table 8. Also, for this example, a shared cell is formed and all exceptional elements are related 

to part families 2 and 3 that are processed in shared cells as depicted in Table 9. In addition, 

machines 9 and 10 are purchased. The objective function value for this example is 6. If machines 

9 and 10 with similar situations are purchased initially and dedicated cells are formed, the value 



Simulated Annealing and Artificial Immune System Algorithms for Cell Formation … 

 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol.7, No.1  Page 205 

of the objective function is 20 and this shows the benefits of the proposed model over the ones 

previously proposed.  
 

 

 

 
Table 7. Part-machine incidence matrix related to example 2 

  Machine 

  1 2 3 4 5 6 7 8 9 10 

P
a

rt
 

 

1 1 1 1 0 0 0 0 0 1 1 

2 1 0 0 0 0 0 0 0 1 1 

3 0 0 0 1 1 0 0 0 1 1 

4 0 0 0 0 0 1 1 1 1 0 

5 0 0 0 0 0 0 1 1 0 0 

6 1 0 1 0 0 0 0 0 1 1 

7 0 0 0 1 0 0 0 0 1 0 

8 0 0 0 1 1 0 0 0 0 1 

9 0 0 0 0 0 1 1 1 1 0 

10 0 0 0 0 0 0 1 1 0 0 

Lk 2 

Uk 6 

Lfk 2 

Lcc 4 

 
Table 8. Final configuration of dedicated cell related to example 2 

  Machine 

  1 2 3 9 10 6 7 8 4 5 

P
a

rt
 

 

1 1 1 1 1 1 0 0 0 0 0 

2 1 0 0 1 1 0 0 0 0 0 

6 1 0 1 1 1 0 0 0 0 0 

4 0 0 0 1 0 1 1 1 0 0 

5 0 0 0 0 0 0 1 1 0 0 

9 0 0 0 1 0 1 1 1 0 0 

10 0 0 0 0 0 0 1 1 0 0 

3 0 0 0 1 1 0 0 0 1 1 

7 0 0 0 1 0 0 0 0 1 0 

8 0 0 0 0 1 0 0 0 1 1 

 
Table 9. Part family- machine incidence matrix related to example 2 

Part Family   

3PF 2PF   

1 1 9 
Machine 

1 0 10 

 

Example 3: This example deals with 20 parts and 8 machines. The part-machine incidence 

matrix is shown in Table 10 (Chandrasekharan and Rajagopalan, 1986a). Also, for this example, 

a shared cell is formed for which the exceptional elements are related to part families 1, 2 and 

3 whose operations are performed in shared cells as shown in Table 11. By solving the proposed 
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model with three dedicated cells, final cell formation of dedicated cells is obtained as shown in 

Table12. Also, machines 1, 2, 4, 5, 6 and 8 are purchased. The objective function value for this 

example is 11. If the same kinds of machines with similar situation are purchased at first and 

dedicated cells are formed, the value of the objective function is increased to 80. This 

demonstrates the advantage of the proposed model.  

 
Table 10. Part-machine incidence matrix related to example 3 
  Machine 

  1 2 3 4 5 6 7 8 
P

a
rt

 

1 1 0 0 0 1 1 0 1 

2 0 1 0 0 1 1 0 1 

3 1 1 0 1 1 0 0 1 

4 1 1 0 1 0 0 0 1 

5 0 0 1 0 0 1 1 1 

6 0 1 1 0 1 0 1 0 

7 0 1 1 1 0 1 1 0 

8 0 0 1 1 0 1 1 1 

9 1 1 0 1 0 0 0 1 

10 1 0 0 1 1 1 0 1 

11 0 1 1 0 0 1 1 0 

12 0 0 1 0 1 1 1 0 

13 0 0 1 1 1 0 1 1 

14 1 0 0 1 0 1 0 1 

15 1 0 0 1 1 1 0 0 

16 1 0 1 0 1 1 1 1 

17 0 0 1 1 1 0 1 1 

18 1 1 0 1 0 1 0 0 

19 1 0 1 1 1 1 1 0 

20 0 1 1 1 1 0 1 0 

Lk 1 

Uk 10 

Lfk 1 

Lcc 10 

 
Table 11. Part family- machine incidence matrix related to example 3 

Part Family   

1PF 3PF  2PF    

1 1 0 1 

M
a

ch
in

e
 

0 1 1 2 

0 1 0 4 

0 1 1 5 

0 1 1 6 

1 0 0 8 

 

The results of model validation for four problems brought from the literature (Chandrasekharan 

and Rajagopalan, 1986a; Chen and Cheng, 1995; Stanfel, 1985) are shown in Table 13. For the 

first three problems, by using GAMS software, the optimal solutions are obtained. A solution 

could not be found for the fourth problem after running the solver for more than twenty-four 

hours. This is due to the complexity of the problem and limitations of exact methods utilized 

by GMAS software; therefore, a meta-heuristic algorithm should be developed for solving the 
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large-sized problems. For this purpose, two algorithms of simulated annealing and artificial 

immune system are presented and described in the following sections. 

 

 

 

 

 
Table 12. Final configuration of dedicated cell related to example 3 

  Machine 

  2 5 6 1 4 8 3 7 

P
a

rt
 

1 0 1 1 1 0 1 0 0 

2 1 1 1 0 0 1 0 0 

3 1 1 0 1 1 1 0 0 

4 1 0 0 1 1 1 0 0 

9 1 0 0 1 1 1 0 0 

10 0 1 1 1 1 1 0 0 

14 0 0 1 1 1 1 0 0 

15 0 1 1 1 1 0 0 0 

18 1 0 1 1 1 0 0 0 

5 0 0 1 0 0 1 1 1 

6 1 1 0 0 0 0 1 1 

7 1 0 1 0 1 0 1 1 

8 0 0 1 0 1 1 1 1 

11 1 0 1 0 0 0 1 1 

12 0 1 1 0 0 0 1 1 

13 0 1 0 0 1 1 1 1 

16 0 1 1 1 0 1 1 1 

17 0 1 0 0 1 1 1 1 

19 0 1 1 1 1 0 1 1 

20 1 1 0 0 1 0 1 1 

 
Table 13. The results of the linearized model solved by GAMS 

Article/ attributes 

No. of component types 

CPU time 

(s) 

Solution 

status 

P
ar

t 

M
ac

h
in

e 
 

D
ed

ic
at

ed
 c

el
ls

 

S
h

ar
ed

 c
el

ls
 

V
ar

ia
b

le
 

C
o

n
st

ra
in

t 
 

O
b

je
ct

iv
e 

(Chen and Cheng, 1995) 6 6 3 1 738 1425 3 24.656 Global opt. 

(Chen and Cheng, 1995) 10 10 3 1 3906 7643 7 62.246 Global opt. 

(Chandrasekharan and 

Rajagopalan, 1986a) 
20 8 3 1 2466 4803 11 1120.791 Global opt. 

(Stanfel, 1985) 24 14 7 N/A 21314 42147 N/A N/A N/A 
 

6. Adjusting parameter of algorithms 

Parameters may influence on the algorithm performance. Considering the effect of parameters, 

in recent years the algorithm configuration is attracted wide attention. There are many ways to 

design experiments but the most frequently used approach is Taguchi method. 

6.1. Adjusting parameter of SA algorithm 

SA method is known to be more parameter-sensitive and the parameter values may affect the 

efficiency and efficacy of solutions. These parameters include: 
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Initial temperature: to find a proper initial temperature (T0), the available data of problem is 

used. Specifically, if max(Δf) shows the highest value that the objective function may have (the 

objective of problem is minimization), equation (45) represents a proper primary temperature  

 

0

0

max( )

ln

f
T

p


    (45) 

In the above equation, P0 is a pre-determined probability and is usually set to 0.95 according to 

previous researches (Kia et al., 2012). Here, the primary temperature is obtained for each 

problem using parameter adjusting by Taguchi method and equation (45) is used as an 

approximate value of (T0). 
 

Final temperature: in theory, the final temperature should be zero so that no worse solution is 

accepted. Otherwise, if Tf →0 some of evaluations are useless. In practice, a very small number 

is selected as the final temperature which varies between 10-5 and 10-10 (Tf=10-10~10-5) and is 

selected depending on quality of needed solution and time limit. In this research, the final 

temperature is also optimized by using Taguchi method.  
 

Cooling Coefficient: Other important matter that should be taken into account is how to control 

the gradual reduction of temperature of cooling process. There are several methods to control 

cooling or temperature drop. In this study, geometric cooling schedule decreases the 

temperature using a cooling coefficient of 0<α<1; for this purpose, equation (46) is used to 

calculate temperature in each iteration. 
 

0( )    ,   1,2,...,t

fT t T t t      (46) 
 

The advantage of this equation is that, when T moves toward zero, the temperature approaches 

zero. In practice, usually α=0.7~0.9 is used to as an approximation to determine the accurate 

value by Taguchi method.  

There are various methods to adjust the parameters in an algorithm. In this study, one of the 

common methods, known as Taguchi multi-factorial experiment, is utilized (Taguchi, 1986). 

MINITAB 14 software is used in order to analyze. The manner of Taguchi method include: 

1. Determining the effective parameters of the algorithm. 

2. Allocating the amount of tasting levels for every parameter. 

3. Allocating one of the Taguchi's orthogonal arrays tables to the parameters. 

4. Analyzing of data by following equation: S/N ratio=-10×Log10(objective function)2 
 

The process to adjust the parameters for simulated annealing algorithm is presented by three 

examples brought from the literature review.  

1. The small-sized problem, brought from reference (Cheng et al., 1998), with 6 parts, 6 

machines, 3 dedicated cells and 3 candidate shared cells. 

2. The medium-sized problem, brought from reference (Chen et al., 1995), with 20 parts, 

8 machines, 3 dedicated cells and 3 candidate shared cells. 

3. The large-sized problem, brought from reference (Chen et al., 1995), with 40 parts, 24 

machines, 7 dedicated cells and 3 candidate shared cells. 

In average S/N ratio table, for each parameter in different levels, rank is the smallest S/N ratio. 

Given various experiments, the problem with small dimensions shows no significant sensitivity 

to the parameters of SA in this study. To adjust the parameter in problem with medium size 

using Taguchi method, three levels, according to Table 14, are considered for cooling 

coefficient α, final temperature Tf and initial temperature T0. Table of orthogonal arrays of 

Taguchi method for all factors and three levels ( 9L ) are shown in Table 15. 

 



Simulated Annealing and Artificial Immune System Algorithms for Cell Formation … 

 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol.7, No.1  Page 209 

Table 14. SA algorithm factors and their levels for medium size 

Parameters A B C 

Name α Tf T0 

 

Levels 

0.85 10-8 500 

0.985 10-9 526 

0.99 10-10 550 

 
Table 15. The orthogonal array L9 

Experiment 

# 

Parameters  

A B C 

1 1 1 1 

2 1 2 2 

3 1 3 3 

4 2 1 2 

5 2 2 3 

6 2 3 1 

7 3 1 3 

8 3 2 1 

9 3 3 2 
 

The problem is solved twenty-five times for each experiment in Table 15. Then, the ratios of 

S/N are obtained as shown in Table 16 by calculating the average of solutions and average of 

computational times and result analysis. According to S/N ratio diagram related to each 

parameter in Figure 5, the best value for parameters α, Tf and T0 are 0.99, 10-9 and 550, 

respectively.  
 

Table 16. Average S/N ratio table of SA algorithm for medium size 

Level A B C 

1 -19.00 -18.63 -12.93 

2 -21.29 -26.06 -24.56 

3 -25.49 -20.40 -25.19 

Delta 6.49 7.43 12.26 

Rank 3 2 3 

 

 
Figure 5. The mean S/N ratio plot for each level of SA factors for medium size 

 

To adjust the parameter in the large-sized problem using Taguchi method, three levels according 

to Table 17 are considered for cooling coefficient α, final temperature Tf and initial temperature 

T0. Table of orthogonal arrays of Taguchi method for all factors and three levels ( 9L ) are shown 

in Table 15.  
Table 17. SA algorithm factors and their levels for large size 

Parameters A B C 

Name Α Tf T0 

 0.90 10-8 2690 
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Levels 0.985 10-9 3000 

0.99 10-10 3099 

 

The problem is solved twenty-five times for each experiment in Table 15. Then, the ratios of 

S/N are obtained as shown in Table 18 by calculating the average of responses and average of 

computational times and result analysis. According to S/N ratio diagram related to each 

parameter in Figure 6, the best value for parameters α, and T0 are 0.90, 10-8 and 3000, 

respectively.  

 
Table 18. Average S/N ratio table of SA algorithm for large size 

Level A B C 

1 -34.09 -28.08 -23.88 

2 -21.78 -21.84 -25.88 

3 -19.05 -26.61 -25.86 

Delta 15.03 6.25 2.00 

Rank 1 1 2 

 

 
Figure 6. The mean S/N ratio plot for each level of SA factors for large size 

6.2. Adjusting Parameter of AIS Algorithms 

Artificial immune system algorithm has three controlling parameters including number of 

iterations (maxgen), initial population (Popsize) and number of mutant population (nc). Three 

levels according to Table 19 are considered for each one of controlling parameters. The 

parameter levels are defined through trial and error. Orthogonal arrays table of Taguchi method 

for three factors and three levels ( 9L ) are shown in Table 15.  

 
Table 19. AIS algorithm factors and their levels 

Parameters A B C 

Name Maxgen Popsize nc 

 

Levels 

100 50 Popsize/2 

120 60 Popsize/3 

150 70 Popsize/4 

 

The problem is solved twenty-five times for each experiment in Table 15. Then, the ratios of 

S/N are obtained as shown in Table 20 by calculating the average of responses and average of 

computational times and result analysis. According to S/N ratio diagram related to each 

parameter in Figure 7, the best value for parameters maxgen, Popsize and nc are 100, 50 and 

Popsize/3, respectively. 
 

Table 20. Average S/N ratio table of AIS algorithm 

Level A B C 
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1 -21.41 -23.42 -19.40 

2 -18.40 -15.39 -21.41 

3 -18.40 -15.39 -18.40 

Delta 3.01 8.03 3.01 

Rank 1 1 2 

 

 
Figure 7. The mean S/N ratio plot for each level of AIS factors 

 
Furthermore, since similar behavior was observed by AIS in medium and large dimensions, to 

avoid increasing the size of the paper, their reporting has been ignored. So, the best value for 

parameters maxgen, Popsize and nc are 100, 50 and Popsize/3, respectively per all three 

dimensions. 
 

7. Performance Analysis of the Algorithms  

The performance of the algorithms with the optimized levels of parameters can be compared to 

that of exact solutions methods. In this study, 21 benchmark problems brought from the 

literature (Boctor, 1991; Carrie, 1973; Chan and Milner, 1982) are used to compare the 

performance of artificial immune system algorithm and simulated annealing algorithm. To 

cover different sizes, problems with small size (e.g. 5×7), medium size (e.g. 10×15, 14×24) and 

large size (e.g. 24×40) are selected. The number of candidate shared cells is 3 for all examples. 

The data related to examples are in Table 21. 

There are several evaluation measures to examine the quality of solutions to the problems 

mentioned in the literature (Boulif and Atif, 2006; Chandrasekharan and Rajagopalan, 1986b). 

Two known measure include grouping efficiency and grouping efficacy. Kumar and 

Chandrasekharan (1990) proposed a grouping efficacy measure which can be calculated as: 
 

0

v

e e

e e






 

(47) 

 

In equation (47), e is the total number of 1s in the given part-machine incidence matrix, ev is 

the number of voids and e0 is the number of exceptional elements. Grouping efficacy values 

related to Figure 1-A, Figure 1-B and Figure 1-C are 0.52, 0.51 and 0.29, respectively. 
 

The examples in Table 21 are solved using GAMS software, SA and AIS algorithms and the 

computational results are summarized in Table 22 that shows the grouping efficacy of the 

solutions obtained by the proposed algorithms and the exact method. Given the obtained results, 

SA algorithm solves the small and medium-size problems efficiently and optimal solutions are 

resulted for small size problems. According to grouping efficacy measure in SA and AIS 
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algorithms in Table 22, SA, as a single-solution-based search algorithm has a superior 

performance in comparison with AIS as a population-based algorithm. This table shows the 

total number of opened shared cells per 21 problems are equal to 32 and 35 for SA and AIS, 

respectively. This concept implies that AIS has a superior performance in comparison with SA. 

 

 
Table 21. The values of different parameters in the tested problems 

No. of 
Problem Source NO. 

Cells  Parts Machines 

2 7 5 Fig. 4a in (Waghodekar and Sahu, 1984) 1 

3 6 6 (Chen and Cheng, 1995) 2 

2 18 5 (Seifoddini, 1989) 3 

2 8 6 (Kusiak and Cho, 1992) 4 

5 11 7 (Kusiak and Heragu, 1987) 5 

4 11 7 (Boctor, 1991) 6 

3 20 8 (Chandrasekharan and Rajagopalan, 1986a) 7 

2 20 8 (Chandrasekharan and Rajagopalan, 1986b) 8 

5 10 10 (Mosier and Taube, 1985) 9 

3 10 10 (Chen and Cheng, 1995) 10 

3 15 10 (Chan and Milner, 1982) 11 

7 24 14 (Stanfel, 1985) 12 

7 43 16 (King, 1980) 13 

5 20 20 (Mosier and Taube, 1985) 14 

5 35 20 (Carrie, 1973) 15 

7 40 24 Data set 1 in (Chandrasekharan and Rajagopalan, 1989) 16 

7 40 24 Data set 2 in (Chandrasekharan and Rajagopalan, 1989) 17 

7 40 24 Data set 3 in (Chandrasekharan and Rajagopalan, 1989) 18 

10 40 24 Data set 5 in (Chandrasekharan and Rajagopalan, 1989) 19 

12 40 24 Data set 6 in (Chandrasekharan and Rajagopalan, 1989) 20 

12 40 24 Data set 7 in (Chandrasekharan and Rajagopalan, 1989) 21 

 

To better demonstrate this superiority, three figures are drawn. As is shown in Table 22, 

although the GAMS has the highest CPU time, it has reached global optimum solutions and it 

was only able to answer the first eleven problems. This matter shows that this problem is subset 

of NP-hard, especially in large dimensions examples. Moreover, the comparison between two 

algorithms includes SA and AIS in terms of CPU time is illustrated in Figure 8. This figure 

shows that SA has less CPU time than AIS. Besides, Figure 9 illustrates the comparison between 

SA and AIS in terms of max grouping efficacy of dedicated cell. The results show that SA has 

a superior performance in comparison with AIS. 
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Figure 8. Comparison between two algorithms in terms of CPU time  

 

 
Table 22. Performance of the proposed algorithms compared to GAMS 

Max. Grouping 

efficacy of shared cell 

Max. Grouping 

efficacy of dedicated 

cell 

CPU (sec) 
Number of opened 

shared cell Size No. 

AIS SA GAMS AIS SA GAMS AIS SA GAMS AIS SA GAMS 

100 100 100 73.68 73.68 73.68 53.65 1.63 2.809 1 1 1 5×7 1 

50 50 50 80 80 80 34.23 0.31 4.656 1 1 1 6×6 2 

100 100 100 79.59 79.59 79.59 52.98 2.21 2.376 1 1 1 5×18 3 

100 100 100 76.92 76.92 68 38.91 1.63 1.369 1 1 2 6×8 4 

53.33 58.33 100 56 56.52 56 64.94 7.79 1000.4 1 1 3 7×11 5 

50 50 100 65.38 66.66 70.83 60.13 5.46 178.74 1 1 2 7×11 6 

55.55 55.55 55.55 66.9 71.31 71.31 69.16 13.16 1120.7 1 1 1 8×20 7 

50 45.83 45.83 69.82 77.04 77.04 43.60 11.62 70.214 1 1 1 8×20 8 

71.42 75 72.72 42.50 52.23 52.77 51.89 9.45 1000.4 2 1 3 10×10 9 

75 75 75 69.23 69.23 69.23 45.943 0.902 62.246 1 1 1 10×10 10 

100 - - 74.54 92 92 44.67 9 75.08 1 0 0 10×15 11 

55.55 70.58 N/A 65.26 69.8 N/A 79.82 17.86 N/A 3 1 N/A 14×24 12 

46.42 54.28 N/A 48.88 59.62 N/A 113.84 30.49 N/A 3 2 N/A 16×43 13 

67.74 100 N/A 35.40 47.51 N/A 64.3 20.66 N/A 1 3 N/A 20×20 14 

40 100 N/A 58.49 73.91 N/A 86.40 26.14 N/A 1 2 N/A 20×35 15 

- - N/A 100 100 N/A 134.83 17.40 N/A 0 0 N/A 24×40 16 

30.43 47.72 N/A 60.19 89.69 N/A 145.32 21.87 N/A 3 2 N/A 24×40 17 

60.71 63.63 N/A 51.77 78.51 N/A 175.81 24.29 N/A 3 3 N/A 24×40 18 

52.94 53.52 N/A 43.61 57.88 N/A 232.51 30.90 N/A 3 3 N/A 24×40 19 

47.91 90 N/A 40.86 48.95 N/A 258.01 30.21 N/A 3 3 N/A 24×40 20 

52.50 58.49 N/A 38.79 45.87 N/A 218.35 30.19 N/A 3 3 N/A 24×40 21 

 

0

50

100

150

200

250

300

1 5 9 13 17 21

S
ec

o
n
d

Problem number

AIS SA



S. Firouzian, I. Mahdavi, M.M. Paydar, M. Saadat 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol.7, No.1  Page 214 

 

Figure 9. Comparison between two algorithms in terms of max grouping efficacy of dedicated cell 

 

Moreover, Figure 10 demonstrates the comparison between SA and AIS in terms of max 

grouping efficacy of shared cell. The results show that SA has a superior performance in 

comparison with AIS. 

Finally, based on obtained results it is found that the GAMS cannot be able to solve this 

proposed model in large dimensions examples, and it also takes a lot of time for small and 

medium-size examples. It shows that this problem is subset of NP-hard, especially in large 

dimensions examples. On the other hand, the results prove that the SA algorithm has a superior 

performance in comparison with AIS in term of CPU time, max grouping efficacy of shared 

cell, and max grouping efficacy of dedicated cell. These results can be useful for some industries 

that use cellular manufacturing to produce parts. 

 

Figure 10. Comparison between two algorithms in terms of max grouping efficacy of shared cell 

 

8. Conclusion 

In this study, a new concept called part family-machine matrix and its clustering was introduced 

to form shared cells to remove exceptional elements and increase the similarity. A model was 

introduced by clustering part family-machine matrix to reach the cell formation problem which 

is the considering of similarity concept in the whole manufacturing process both dedicated cells 

and shared cells. Shared cells are established when the required budget is provided. Otherwise, 

they assumed virtually. In this model, dedicated cells were formed to minimize the number of 

voids and increase the similarity. After identifying the exceptional elements, shared cells were 

formed to minimize number of exceptional elements and voids. Two exact and meta-heuristic 
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methods were used to solve the model. GAMS Software was utilized for finding exact solutions. 

Due to the computational complexity of the problem, two meta-heuristic approaches of artificial 

immune system and simulated annealing were proposed to solve the problem. These approaches 

utilized according to their satisfying results in solving optimization problems. In this study, SA 

algorithm had superior performance in comparison with the AIS algorithm in terms of CPU 

time, max grouping efficacy of shared cell, and max grouping efficacy of dedicated cell. These 

results can be useful for some industries that use cellular manufacturing to produce parts. 

Furthermore, considering dedicated cell, shared cell, and part family clustering caused the 

model be close to real-world and it means that these assumptions make the model flexible and 

the managers of the organizations can be able to have a proper framework. Given the conducted 

studies and the literature review, some suggestions for future researches are as follows:  
 Considering multiple optimization criteria that may be significant in production systems. 

 The algorithms used in this study are relatively new meta-heuristic approaches that have 

shown a high potential for solving complex problems. Therefore, the use of a combination 

of approaches could be considered. 

 Considering the uncertainty in the demand for manufacturing parts and proposing a model 

with fuzzy and/or stochastic parameters. 

 Proposing a two-stage model instead of a model that considers the objective functions 

simultaneously. 

 Incorporating the scheduling concepts into the cell formation and machine layout problems. 

 Considering the dynamics of the problem. 
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