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Abstract 

Assembly lines are flow-oriented production systems that are of great importance in the industrial 

production of standard, high-volume products and even more recently, they have become commonplace 

in producing low-volume custom products. The main goal of designers of these lines is to increase the 

efficiency of the system and therefore, the assembly line balancing to achieve an optimal system is one 

of the most important steps that have to be considered in the design of assembly lines. The purpose of 

the assembly line balancing is to assign tasks to the workstation called the station, so that prerequisite 

relationships, cycle times, and other assembly line constraints to be met and a number of line 

performance criteria to be optimized. In this study, considering the social responsibility related objective 

function, a mathematical model is proposed for scheduling and balancing the cost-oriented assembly 

line that has resource constraints with cost uncertainty. The box set robust optimization is applied and 

the obtained model is solved with the augmented epsilon constraint in the GAMS and some test 

problems and their results are presented. Finally, the cost parameter has been changed in a robust 

optimization approach and the obtained results have been analyzed for different costs. 
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1. Introduction 
 

Nowadays, a large percentage of products have at least one assembly stage. Therefore, it is 

necessary to pay attention to the assembly phase in production planning and scheduling. 

Generally, efficient production and high productivity are possible when there is saving time 

and cost and paying attention to quality at all stages of production. The assembly stage is also 

one of the stages of production where with the proper scheduling of jobs to enter the stage, the 
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appropriate allocating of job and operator to the machines, considering ability and availability 

of machines and so on can take full advantage of available resources and time. Usually, the 

scheduling of workpieces manufacturing and planning for assembly operations has been 

studied, independently (Hosseini 2019), which does not lead to ideal results for the all-inclusive 

production system. Therefore, in recent research, considering these two stations simultaneously 

in scheduling problem is more interesting (Allahverdi and Al-Anzi 2009). 

In this study, a mathematical model is proposed for scheduling and balancing the cost-oriented 

assembly line that has resource constraints with cost uncertainty. In the developed model, an 

objective function of social responsibility has been added and the uncertain cost parameter is 

considered. As a robust optimization approach, here, the box uncertainty set is used. Finally, 

the model was solved using the augmented epsilon constraint approach. 

The paper is further organized as follows. In section 2, we review the related papers. Section 3 

is dedicated to the problem statement and mathematical model. Section 4 is assigned to 

proposing the augmented epsilon constraint approach for solving the bi-objective model. 

Numerical results are presented in Section 5. Finally, section 5 concludes the paper and 

suggests some potential features for future studies. 

 

2. Literature review 
 

The first study on assembly scheduling issues has been conducted by Lee et al. (1993). They 

studied a two-station assembly flowshop scheduling problem with the objective of minimizing 

the makespan which in this simple problem each product is made by assembling two types of 

pieces. The first part of each product on the first machine and the second part on the second 

machine is processed, and finally, the third machine assembles the two parts into the final 

product. They proposed a branch and bound and approximate algorithms. Potts et al. (1995), 

extended the model of Lee et al. (1993) with several machines so that there were m machines 

in the first stage and one machine in the second stage and proposed a heuristic algorithm to 

minimize the makespan. Hariri and Potts (1997) have independently proved that the assembly 

flowshop problem even with two machines is an NP-Hard problem. They have considered a 

similar problem as a previous one and presented a branch and bound algorithm. Cheng and 

Wang (1999) considered minimizing the makespan in a two-machine flowshop scheduling with 

a specific structure and obtained optimal solutions for several specific cases. Song and John 

(2009) studied a two-station assembly scheduling problem with an objective of minimizing 

makespan, in which there are n jobs, each job consists of two components, and one of the two 

components is being made with delivery time limit. Yokoyama (2001) and Yokoyama and 

Santos (2005) investigated a hybrid scheduling for manufacturing systems including machining 

workpieces and assembly operations, and developed a branch and bound algorithm. In this 

study, several products of different types are ordered that make the required workpieces for 

these products in a flowshop and each product is produced hierarchically by assembly 

operations. The workpieces are assembled into the first subassembly and several more 

workpieces and the first subassembly are assembled into the second subassembly. This 

assembly operation continues until the last subassembly that is the final product is produced. 

Allahverdi and Al-Anzi (2009) investigated a two-station assembly scheduling problem with 

m machines in the first stage and one assembly machine in the second stage with considering 

setup times independent of processing times. They presented a dominant rule and three 

heuristic algorithms, namely hybrid Tabu Search algorithm and self-adaptive differential 

evolution algorithm, and a new evolutionary differential algorithm. Zhang et al. (2008) also 

presented a multi-objective model for assembly line balancing, where operators with different 

levels of experience are employed. This model assumes that each operator is capable of 

performing all assembly tasks and the cost of wages varies depending on the level of experience 
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of the operators. Recently, Cantos Lopes et al. (2019) considered balancing task-station 

assignments and sequencing/scheduling different product models in a cyclical manner. They 

proposed a mixed-integer linear model to optimize the steady-state of these lines. Özcan (2019) 

introduced the problem of balancing and scheduling tasks in parallel assembly lines with 

sequence-dependent setup times. For this problem, the author proposed a binary linear 

mathematical programming model and a simulated annealing algorithm. 

Based on the reviewed papers, it can be concluded that for the first time an objective function 

of social responsibility has been added to scheduling and cost-oriented assembly line balancing 

model as a bi-objective problem. Cost uncertainty has also been added to the study, to make 

the situation more realistic. 

 

3. Problem statement and mathematical model 
 

In this study, considering the social responsibility related objective function, a model is 

proposed for scheduling and balancing the cost-oriented assembly line that has resource 

constraints with cost uncertainty. In the base model of this research (Ramezanian et al. 2013), 

the objective function is to assign jobs to work centers and schedule them so that the constraints 

on the problem are not violated and assembly system costs are minimized. The problem allows 

for efficient deployment of parallel stations in situations where time to do some jobs may be 

longer than the cycle time. An operator at each station uses different tools and equipment to 

perform jobs, in which case if more than one job is assigned to a station, there is an in-station 

setup time between jobs that is modeled as the sequence-dependent setup time. One of the 

important features of the base model is the consideration of resource constraints. This means 

that there are a number of inline equipment that can perform various assembly jobs, and the 

assignment to a station is only possible if the equipment at the station is available and not 

deficient. There are also conditions for assigning compatible and incompatible jobs in the 

model (Ramezanian et al. 2013). One of the practical applications of the considered problem is 

boiler production process modeling (Peng and Jiang 2013). In the boiler manufacturing 

process, the integrated scheduling of production and assembly line are difficult problems. Other 

practice examples are aeronautical (Borreguero et al. 2015) and automotive (Zhou and He 

2020) industries. 

The following assumptions are considered in the proposed model: 

 The precedence constraints and the setup time between assembly tasks are pre-

determined and independent of the station in which tasks are performed. 

 There is more than one equipment allowed to locate at each station. 

 The processing time of each job by types of equipment that can perform them is the 

same and independent of the work center where the equipment is located. 

 Sharing a set of tasks that are performed with a specific resource is null. 

 The equipment required for each job is clear and there are no different parts for the 

assembly process. 

 Production cost has uncertainty. 

In the developed model it is determined how to allocate jobs and equipment to work centers, 

job scheduling, and the optimal number of parallel stations for designing a system with 

minimum investment and operational costs. 
 

3.1. Model indices 

𝑖. 𝑘 : Index of jobs. 

𝑗 : Index of work centers. 

𝑒 : Index of equipment. 
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3.2. Model parameters 
 

𝑡𝑖 : time of job i 

𝑠𝑗 : Maximum number of scheduling positions in work center j 

𝑃𝑚𝑎𝑥 : Maximum number of stations per workstation 

𝑡𝑠𝑢𝑖𝑘 : Setup time from job i to job k 

𝑊𝑟𝑖 : Wage rate of job i 

𝐹𝐶. 𝐸𝐶𝑒 : Cost of equipment e, fixed cost per workstation, respectively 

𝐼𝑗 : Set of assignable jobs to work center j 

𝐼𝑒𝑗 : Set of assignable jobs to work center j and processable by equipment e 

𝑝𝑖𝑘 : A set of all ordered pairs whose job i is before k. 

𝑃𝑇𝑖 : A set of all pre-i jobs, except pre- jobs 

𝑒𝑖 : The first work center that job i can be assigned to. 

𝑙𝑖 : The last work center that job i can be assigned to. 

𝑧𝑐−. 𝑧𝑐+ : A set of pairs of jobs are compatible and incompatible, respectively 
 

3.3. Decision variables 
 

𝑥𝑖𝑗 : Binary variable; equals 1 if job i is assigned to workstation j and 0 otherwise. 

𝑥𝑖𝑗𝑝𝑠 : Binary variable; equals 1 if job i is assigned to workstation j with p station and to 

position s and 0 otherwise. 

𝑦𝑗 : Binary variable; equals 1 if work center j is used and 0 otherwise. 

𝑧𝑝𝑗 : Binary variable; equals 1 if p parallel workstation is assigned to work center j and 0 

otherwise. 

𝑤𝑖𝑗 : Binary variable; equals 1 if job i is assigned to the last scheduling position in 

workstation j and 0 otherwise. 

𝑁𝑖𝑘𝑗 : Binary variable; equals 1 if job k is performed immediately after job i at work center 

j in the same cycle or next cycle and 0 otherwise. 

𝐸𝑒𝑗 : Binary variable; equals 1 if equipment e is at the center of work j and 0 otherwise. 

 

3.4. Mathematical modeling 

 

The proposed mathematical model is as follows. 

 

𝑀𝑖𝑛 𝐹1 = ∑ ( ∑ 𝑝 ∙ 𝑧𝑝𝑗 ∙ (
𝑐 ∙ ∑ 𝑥𝑖𝑗𝑡𝑖𝑊𝑟𝑖

𝑛
𝑖=1

𝜀 + ∑ 𝑥𝑖𝑗𝑡𝑖
𝑛
𝑖=1

)

𝑝𝑚𝑎𝑥

𝑝=1

)

𝑚𝑚𝑎𝑥

𝑗=1

+ ∑ ∑ 𝑝 ∙ 𝑧𝑝𝑗

𝑝𝑚𝑎𝑥

𝑝=1

∑ 𝐸𝑒𝑗 ∙ 𝐸𝐶𝑒

𝐸

𝑒=1

+

𝑚𝑚𝑎𝑥

𝑗=1

∑ ∑ 𝑝 ∙ 𝑧𝑝𝑗

𝑝𝑚𝑎𝑥

𝑝=1

∙ 𝐹𝐶

𝑚𝑚𝑎𝑥

𝑗=1

 

(1)  

𝑠. 𝑡:  

∑ ∑ ∑ 𝑥𝑖𝑗𝑝𝑠

𝑠𝑗

𝑠=1

= 1   

𝑙𝑖

𝑗=𝑒𝑖

                                                       ∀ 𝑖 = 1. … . 𝑛

𝑝𝑚𝑎𝑥

𝑝=1

 

(2)  

∑ 𝑥𝑖𝑗 = 1                                                                           ∀ 𝑖 = 1. … . 𝑛

𝑚𝑚𝑎𝑥

𝑝=1

 

(3)  

∑ ∑ 𝑥𝑖𝑗𝑝𝑠

𝑖∈𝐼𝑗

≤ 1                                                                 ∀ 𝑗; 𝑠 = 1. … . 𝑠𝑗

𝑝𝑚𝑎𝑥

𝑝=1

 

(4)  
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∑ ∑ 𝑥𝑖𝑗𝑝𝑠

𝑠𝑗

𝑠=1

𝑝𝑚𝑎𝑥

𝑝=1

= 𝑥𝑖𝑗                                                              ∀ 𝑗; 𝑖 ∈ 𝐼𝑗 

(5)  

∑ 𝑧𝑝𝑗

𝑝𝑚𝑎𝑥

𝑝=1

= 𝑦𝑗                                                                          ∀ 𝑗 = 1. … . 𝑚𝑚𝑎𝑥 

(6)  

∑ ∑ 𝑥𝑖𝑗𝑝𝑠+1

𝑖∈𝐼𝑗

≤ ∑ ∑ 𝑥𝑖𝑗𝑝𝑠

𝑖∈𝐼𝑗

𝑝𝑚𝑎𝑥

𝑝=1

                                     ∀ 𝑗; 𝑠 = 1. … . 𝑠𝑗 − 1

𝑝𝑚𝑎𝑥

𝑝=1

 

(7)  

𝑀𝑧𝑝𝑗 − ∑ ∑ 𝑥𝑖𝑗𝑝𝑠

𝑖=𝐼𝑗

𝑠𝑗

𝑠=1

≥ 0                                                  ∀ 𝑗 = 1. … . 𝑝𝑚𝑎𝑥 

(8)  

∑ ∑ ∑ max 𝑠𝑗    𝑗 − 1 + 𝑠  𝑥𝑖𝑗𝑝𝑠   ≤

𝑠𝑗

𝑠=1

𝑙𝑖

𝑗=𝑒𝑖

𝑝𝑚𝑎𝑥

𝑝=1

∑ ∑ ∑ max 𝑠𝑗    𝑗 − 1 + 𝑠  𝑥𝑘𝑗𝑝𝑠       ∀ (𝑖. 𝑘)

𝑠𝑗

𝑠=1

𝑙𝑘

𝑗=𝑒𝑘

𝑝𝑚𝑎𝑥

𝑝=1

∈ 𝑃𝑖𝑘 

(9)  

∑ ∑ ∑ 𝑡𝑖𝑥𝑖𝑗𝑝𝑠

𝑠𝑗

𝑠=1

+

𝑙𝑖

𝑗=𝑒𝑖

 ∑ 𝑡𝑠𝑢𝑖𝑘𝑁𝑖𝑘𝑗

∀(𝑖.𝑘)|(𝑖≠𝑘)∧(𝑖.𝑘∈𝐼𝑗)

≤ 𝑐 ∙ ∑ 𝑝𝑧𝑝𝑗              ∀ 𝑗 = 1. … . 𝑚𝑚𝑎𝑥

𝑝𝑚𝑎𝑥

𝑝=1

𝑝𝑚𝑎𝑥

𝑝=1

 

(10)  

∑ (𝑥𝑖𝑗𝑝𝑠 + 𝑥𝑖𝑗𝑝𝑠+1)

𝑝𝑚𝑎𝑥

𝑝=1

≤ 1 + 𝑁𝑖𝑘𝑗         ∀ 𝑗; 𝑠 = 1. … . 𝑠𝑗 − 1 ; ∀(𝑖. 𝑘)|(𝑖 ≠ 𝑘) ∧ (𝑖. 𝑘 ∈ 𝐼𝑗) ∧ 𝑘

∉ 𝑃𝑇𝑖 

(11)  

𝑥𝑖𝑗𝑝𝑠 −  ∑ 𝑥𝑘𝑗𝑝𝑠+1

𝑘∈𝐼𝑗|(𝑖≠𝑘)∧(𝑘∉𝑃𝑇𝑖)

≤  𝑊𝑖𝑗                          ∀ 𝑗;  𝑝;  𝑖 ∈ 𝐼𝑗;  𝑠 = 1. … . 𝑠𝑗 − 1 
(12)  

𝑊𝑖𝑗 + ∑ 𝑥𝑘𝑗𝑝1

𝑝𝑚𝑎𝑥

𝑝=1

≤ 1 + 𝑁𝑖𝑘𝑗                                              ∀ 𝑗; (𝑖. 𝑘)|(𝑖 ≠ 𝑘) ∧ (𝑖. 𝑘 ∈ 𝐼𝑗) ∧ 𝑖

∉ 𝑃𝑇𝑘 

(13)  

∑ 𝑥𝑖𝑗 − ‖𝐼𝑒𝑗‖

𝑖∈𝐼𝑒𝑗

𝐸𝑒𝑗 ≤ 0                                                      ∀ 𝑗; 𝑒 = 1. … . 𝑁𝐸 
(14)  

∑ 𝑥𝑖𝑗 − ‖𝐼𝑗‖

𝑖∈𝐼𝑗

𝑦𝑗 ≤ 0                                                            ∀ 𝑗 = 1. … . 𝑚𝑚𝑎𝑥 
(15)  

𝑥𝑎𝑗 − 𝑥𝑏𝑗 = 0                                                                        ∀ 𝑗; (𝑎. 𝑏) ∈ 𝑧𝑐+ (16)  

𝑥𝑎𝑗 + 𝑥𝑏𝑗 ≤ 1                                                                        ∀ 𝑗; (𝑎. 𝑏) ∈ 𝑧𝑐− (17)  

 

Relation (1) represents the first objective function. The first part of this function calculates the 

variable cost of manpower (wages) based on the weighted average of the wage rate of jobs for 

the whole line, the second part is related to the variable cost of tools and required equipment, 

and the third part calculates the summation of fixed costs of stations. Constraints (2) and (3) 

make each job assigned only to one work center, a scheduling position, and a specified number 

of parallel stations. Constraint (4) ensures that in each work center only one job can be assigned 

to any scheduling position within it. Relation (5) shows that if a job is assigned to a work center, 

then only one scheduling position and a certain number of parallel stations can exist for that 

job at that work center. Constraint (6) ensures that only a certain number of parallel stations 

can be active for each work center. Constraint (7) indicates that at each work center, jobs must 

be allocated to scheduling positions in an increasing trend. Constraint (8) states that all jobs 

assigned to a work center must have the same number of parallel stations. Constraint (9) states 

the prerequisite relationship between jobs. Constraint (10) ensures that the sum of processing 
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time and setup time between jobs in each work center is less than the expected cycle time. 

Relations (11)-(13) define the relationship between the model variables. Relations (14) and 

(15) relate to resource constraints and assigned work centers. Relations (16) and (17) also 

reflect, respectively the constraints of the assignment of compatible and incompatible jobs 

(Ramezanian et al. 2013). 

The second objective function states social responsibility. According to ISO 26000, 

International Standard of Social Responsibility Management, community participation and 

development is one of the key aspects of SR. There are two main ways to calculate the SR 

aspect: 

 Creating jobs 

 Regional development 

In our proposed model, setting up a workstation can lead to community participation and 

development. In this model, we have considered job opportunities arising from setting up a 

workstation (Roni et al. 2017, Zhalechian et al. 2017). Social value is calculated using the 

number of job opportunities created (Shaker Ardakani et al.  2020). By adding this objective 

function to the proposed model, the model is converted to an MODM model, which will be 

used in the next section to the epsilon constraint method to solve that. 

𝑀𝑎𝑥 𝑓2 = (∑(𝐽𝑂𝑗). 𝑦𝑗

𝑗

)      

(18) 

where the used parameters of social responsibility objective function are defined as follows. 
 

𝐽𝑂𝑗 : Number of fixed jobs created per workstation 

𝑦𝑗 : 0-1 variable; equals 1 if workstation j is set up and 0 otherwise.  

 

4. Solving approaches 
 

4.1. Multi-objective optimization models 
 

Various approaches have been proposed to solve multi-objective optimization (MODM) 

problems, such as weighted sum method (WSM), epsilon constraint (EC), augmented epsilon 

constraint (AEC), goal programming (GP), lexicographic (Lex) and so on (Marler and Arora 

2004). In addition to the aforementioned methods, to solve complex MODM problems or large-

scale problems, meta-heuristic solving methods have also been developed, including the 

genetic algorithm-based Inferior Sorting (NSGAII) method (Coello et al. 2007). In any of the 

MODM problem-solving methods, whether exact methods such as AEC or meta-heuristic 

methods like NSGAII, we are looking for sets of efficient solutions that have non-dominated 

values and are placed on the Pareto front (Matthias 2005). In this study, the AEC method is 

used as an exact problem-solving method. 

 

4.2. AEC approach 
 

The general form of an MODM problem is as follows:  

𝑀𝑖𝑛 ( 𝑓1(𝑥). 𝑓2(𝑥) … . 𝑓𝑛(𝑥))
𝑥 ∈ 𝑋

 
(19) 

Suppose the first objective is considered as the primary objective and other objectives are 

limited to the upper bound of epsilon and applied to problem constraints. Thus, the EC method 

will be applied and the following single-objective model will be obtained: 
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𝑀𝑖𝑛  𝑓1(𝑥)

𝑓𝑖(𝑥) ≤ 𝑒𝑖    𝑖 = 2.3. … . 𝑛
𝑥 ∈ 𝑋

 

(20) 

in which the first objective is considered as the main objective and the second to n objectives 

are limited to the maximum value of 𝑒𝑖. It is necessary to explain, if one of the objectives is 

maximizing (e.g., 𝑓𝑘(𝑥)), then by definition of 𝑓𝑖
′(𝑥) = 𝑓𝑖(𝑥) and its substitution as objective 

k, the above general form is used again. Another solution is that the constraint for this purpose 

is as follows: 

𝑓𝑘(𝑥) ≥ 𝑒𝑘 (21) 

As mentioned, in the EC method, by varying values of the epsilons, different solutions are 

obtained that are either efficient or at least poor efficient. With minor modifications, one can 

always obtain an efficient solution; this method is known as the AEC method (Mavrotas 2009). 

For better implementation of the AEC method, the appropriate interval of epsilons (𝑒𝑖) can be 

obtained first with the Lex method (Aghaei et al. 2011). The AEC method must first determine 

the appropriate interval of epsilon variations and then obtain the Pareto front for different 

amounts of epsilons. The two main steps followed in the AEC method are: (i) determining the 

range of the values of the epsilons, and (ii) programming with the AEC model (Samadi 

Gazijahani et al. 2020). 

 

4.3. Robust optimization approach 

One approach to optimization under conditions of uncertainty is “robust optimization”. 

Depending on the definition of robustness and the uncertainty type in the dataset, the methods 

of robust optimization are distinguished (Farughi et al. 2019). One of the methods of robust 

optimization is the interval method of Ben-Tal et al. (2009), which is the development of the 

Soyster method (Soyster 1973). Accordingly, for each of the uncertain parameter of the 

problem, a finite interval boundary of uncertainty is considered so that the robust solution in 

the most cases it is feasible for dataset to be within their corresponding intervals. In order to 

clarify the above method, consider the following uncertain optimization problem in which 

𝑎𝑖𝑗 ∈ [𝑎𝑖𝑗
𝐿 . 𝑎𝑖𝑗

𝑈 ] and 𝑏𝑖 ∈ [𝑏𝑖
𝐿 . 𝑏𝑖

𝑈] for 𝑖 = 1.2. … . 𝑚. 

 

min 𝑧 = ∑ 𝑎0𝑗

𝑗

𝑥𝑗 + 𝑏0 

𝑠. 𝑡.: 

∑ 𝑎𝑖𝑗𝑥𝑗

𝑗

≤ 𝑏𝑖                   ∀𝑖 = 1.2. … . 𝑚 

(22) 

where 𝑎𝑖𝑗  and 𝑏𝑖 are the nominal values of the dataset so that 

𝑎𝑖𝑗 = 𝑎𝑖𝑗 + 𝜉𝑖𝑗𝑎𝑖𝑗    

𝑏𝑖 = 𝑏𝑖 + 𝜉𝑖𝑏𝑖 . 
 

(23) 

The maximum deviations of each data from the nominal value are defined as follows: 

𝑎𝑖𝑗 =
𝑎𝑖𝑗

𝐿 + 𝑎𝑖𝑗
𝑈

2
 . 𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝑎𝑖𝑗

𝐿   

𝑏𝑖 =
𝑏𝑖

𝐿 + 𝑏𝑖
𝑈

2
 . 𝑏𝑖 = 𝑏𝑖 − 𝑏𝑖

𝐿 

(24) 
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According to the above definitions, it can be easily shown that the changes in each parameter 

in (22) in the corresponding interval are equivalent to the change in the value of the 

corresponding ξ in the [-1.1]. After normalizing the uncertainty interval, model (22) can be 

rewritten as follows in which 𝜉𝑖 and 𝜉𝑖.𝑗 are in [-1.1]. 

 

𝑀𝑖𝑛 𝑧 = ∑ 𝑎0𝑗𝑥𝑗 + 𝑏0 + ∑ 𝜉𝑗𝑎0𝑗𝑥𝑗 + 𝜉0𝑏0

𝑗𝑗

 

 𝑠. 𝑡.:    

∑ 𝑎𝑖𝑗𝑥𝑗 + ∑ 𝜉𝑖𝑗𝑎𝑖𝑗𝑥𝑗

𝑗𝑗

≤ 𝑏𝑖 + 𝜉𝑖𝑏𝑖              ∀𝑖 = 1.2. … . 𝑚 

(25) 

 

After normalization, in Ben-Tal et al. (2009) in the interval method, the following model is 

introduced as the robust counterpart of the model (25): 

 

𝑚𝑖𝑛𝑧 = max
𝜉𝑗.𝜉0

(∑ 𝑎0𝑗𝑥𝑗 + 𝑏0 + ∑ 𝜉𝑗𝑎0𝑗𝑥𝑗 + 𝜉0𝑏0

𝑗𝑗

) 

𝑠. 𝑡.:    

∑ 𝑎𝑖𝑗𝑥𝑗 + Θ𝑖 max
𝜉𝑖𝑗.𝜉𝑖

(∑ 𝜉𝑖𝑗𝑎𝑖𝑗𝑥𝑗 − 𝜉𝑖𝑏𝑖

𝑗

)

𝑗

≤ 𝑏𝑖              ∀𝑖 = 1.2. … . 𝑚 

(26) 

where Θ
𝑖
is the uncertainty level control parameter in each constraint. 

 

4.4. Box uncertainty set 

If in the objective function and in each of the constraints of the model (26), the 𝜉s change 

independently of each other in [-1, 1], then the problem will have “box” uncertainty and a 

robust counterpart with the following model is equivalent (Jia and Bai 2018). 

 

min 𝑧 

𝑠. 𝑡.: 

𝑧 ≥ ∑ 𝑎0𝑗

𝑗

𝑥𝑗 + 𝑏0 + 𝜓0 (∑ 𝑎0𝑗|𝑥𝑗|

𝑗

+ 𝑏0)        

∑ 𝑎𝑖𝑗

𝑗

𝑥𝑗 + 𝜓𝑖 ∑ 𝑎𝑖𝑗

𝑗

|𝑥𝑗| ≤ 𝑏𝑖 − 𝜓𝑖𝑏𝑖                  ∀𝑖 = 1.2. … . 𝑚 

 

(27) 

which is linearized as follows: 

 

min 𝑧 

𝑠. 𝑡.: 

𝑧 ≥ ∑ 𝑎0𝑗

𝑗

𝑥𝑗 + 𝑏0 + 𝜓0 (∑ 𝑎0𝑗𝑢𝑗

𝑗

+ 𝑏0)      

∑ 𝑎𝑖𝑗

𝑗

𝑥𝑗 + 𝜓𝑖 ∑ 𝑎𝑖𝑗

𝑗

𝑢𝑗 ≤ 𝑏𝑖 − 𝜓𝑖𝑏𝑖                  ∀𝑖 = 1.2. … . 𝑚 

−𝑢𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗  

(28) 
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𝑢𝑗 ≥ 0 

 

where 𝜓 is a controller for uncertainty, and when it is zero, the model is equivalent to a definite 

state. 
 

5. Numerical results 
 

After coding the mathematical model in GAMS, and implementing the AEC method, the Pareto 

front is derived from two objectives as follows. As the Table 1 and Figure 1 show, the more 

the objective function related to social responsibility increases, we should cost more. Note that, 

the measurement units of the vertical and horizontal axes are the number of fixed jobs created 

by workstations and assembly system costs, respectively. Since, the model is multi-objective 

and we don’t have an optimal solution and the Pareto layer is considered, the Pareto layer 

obtained are as follows that the decision-maker can choose a solution from it. 

 
Table 1. Values of Object Functions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Relationship between the first and second objective functions 

 

As mentioned in the proposed model, we considered the uncertain cost parameter and 

performed a sensitivity analysis using the Box uncertainty set. ψ is the uncertainty control 

action, which is when it is equal to zero it is equal to the state of a certain state. As the value 

increases from zero to one, the value of the cost objective function also increases as discussed 

in Table 2 and Figure 2. To provide more complete results, we have given different values to 

the parameter 𝜓 and obtained the objective function values. As can be seen, the value of the 

second objective function is constant because the cost only exists in the first objective function. 

 The first objective function The second objective function Epsilon 

1 617557.6 18.283 18.283 

2 615557.6 18.401 19.574 

3 477335.6 20.306 20.865 

4 447335.6 22.126 22.156 

5 395557.6 23.187 23.446 

6 395557.6 23.187 24.737 

7 357335.6 24.788 26.028 

8 336335.6 27.019 27.319 

9 336335.6 27.019 28.609 

10 254557.6 29.9 29.9 
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Table 2. The values of the objective functions for different 𝝍 

Ψ =0 Ψ =0.2 Ψ =0.5 Ψ =0.7 Ψ =1 

obj1 obj2 obj1 obj2 obj1 obj2 obj1 obj2 obj1 obj2 

617557.6 18.283 621557.6 18.283 627557.6 18.283 631557.6 18.283 637557.6 18.283 

615557.6 18.401 619557.6 18.401 625557.6 18.401 629557.6 18.401 635557.6 18.401 

477335.6 20.306 481335.6 20.306 487335.6 20.306 491335.6 20.306 497335.6 20.306 

447335.6 22.126 451335.6 22.126 457335.6 22.126 461335.6 22.126 467335.6 22.126 

395557.6 23.187 399557.6 23.187 405557.6 23.187 409557.6 23.187 415557.6 23.187 

395557.6 23.187 399557.6 23.187 405557.6 23.187 409557.6 23.187 415557.6 23.187 

357335.6 24.788 361335.6 24.788 367335.6 24.788 371335.6 24.788 377335.6 24.788 

336335.6 27.019 340335.6 27.019 346335.6 27.019 350335.6 27.019 356335.6 27.019 

336335.6 27.019 340335.6 27.019 346335.6 27.019 350335.6 27.019 356335.6 27.019 

254557.6 29.9 258557.6 29.9 264557.6 29.9 268557.6 29.9 274557.6 29.9 

 
 

Figure 2. Diagram of Box Method 

  

Here, several test problems have also been solved using GAMS and the obtained results are 

shown in Table 3. As shown, the running time increases with increasing the problem size so 

that in large-scale problems, using the heuristic and meta-heuristic algorithms can reduce this 

time (Yurtkuran et al. 2018). It is important to note, however, that in the solving of these 

instances, 𝜓 is set to 1. Since, we will have a Pareto front for each example, it is not possible 

to report all of them and only upper and lower bound of each objective function are reported.  

 
 

 

 

 

 

 

 

 



Multi-objective scheduling and assembly line balancing with resource constraint … 

 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol.7, No.1  Page 230 

 

Table 3. Time elapsed to solve examples with different sizes 

NO. i*j*e*p*s 
obj1 obj2 

time 
min max min max 

1 8*5*2*2*2 65486.31 82672.02 24.008 35.998 12(s) 

2 10*5*8*3*5 112027.9 141023.7 13.69 25.333 17(s) 

3 10*7*2*2*2 91618.21 110691.2 32.307 39.287 21(s) 

4 12*9*3*2*2 140381.3 153789.9 41.603 51.488 39(s) 

5 14*11*5*3*3 286096 314076.2 36.824 47.584 149(s) 

6 20*14*5*3*3 343062.3 385607.2 72.008 81.16 406(s) 

7 25*17*7*4*4 381581.8 439393.8 77.905 92.12 705(s) 

 

6. Conclusion and future research 
 

In this research, a multi-objective model based on an integer non-linear programming was 

proposed for the cost-oriented assembly line balancing where it is possible to parallelize 

stations, scheduling jobs and synchronize resources. In this study by adding a social 

responsibility objective function to a multi-objective model, and on the other hand, the 

uncertain cost parameter, attempts have been made to make the situation closer to the real-

world. After using the box uncertainty set as a robust optimization approach, the model was 

solved by the augmented epsilon constraint method to obtain the Pareto layer. Also, the cost 

parameter of different 𝜓s was changed using in the box set, and the obtained values of the 

objective functions were analyzed. In this analysis, the managers with high risk can use lower 

values of 𝜓 and, on the contrary, cautious managers can use lower values for 𝜓. Finally, several 

instances as test problems were solved with different sizes. For future research, adding more 

objective functions, and examining model performance in the case studies and more complex 

examples can be pointed out. Using the metaheuristic algorithm is another direction for future 

research. 
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