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Abstract 

This paper introduces a Travel Demand Management (TDM) model in order to decrease the 

transportation externalities by affecting on passengers ‘travel choices. Thus, a bi-objective bi-modal 

optimization model for road pricing is developed aiming to enhance environmental and social 

sustainability by considering to minimize the air pollution and maximize the social welfare as its 

objectives. This model determines optimal prices (bus fare and car toll) and optimal bus frequency 

simultaneously in an integrated model.  The model is based on discrete choice theory and considers 

the modes’ utility functions in its formulation. The proposed model is solved by two meta-heuristic 

methods (Non-dominated Sorting Genetic Algorithm-II (NSGA-II), Multi-Objectives Harmony 

Search (MOHS)) and the numerical results of a case study in Tehran are presented. The main 

managerial insights resulted from this case study is that its results support the idea of “free public 

transportation” or subsidizing the public transport as an effective way to decrease the transport related 

air pollution. 
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1. Introduction 

Transportation is a service not a product, so it is impossible to store it for a high demand 

period (Ortuzar and Willumsen, 2011). Transportation consumption occurs at the same time 

as its production, therefore, other methods should be considered to manage transportation 

demand during peak periods. 
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Passengers are consumer of transportation and their decisions are affected by price incentives 

(Karlström and Franklin 2009). Sensitivity of passengers to the price, makes pricing as an 

effective measure for improving transportation system (Smits 2017). 

The first well-known side effect of the urban transportation is traffic congestion, therefore the 

primary goal of the pricing was to decrease the congestion. Nowadays other transportation 

externalities are as significant as transportation congestion. For example, road transportation 

vehicles are the main source of urban air pollution (Bigazzi and Mathieu Rouleau, 2017). 

Thus, due to the increased transportation externalities, mitigating them has become one of the 

main goals in pricing implementation (Wu et al. 2017).  

Pricing is used for the urban transportation planning (Börjesson, Fung and Stef Proost, 2017). 

It aims to shift transportation demand from private car (non-sustainable mode) toward public 

transportation (sustainable) modes (Cats, Susilo and Reimal, 2017). Suitable pricing schemes 

can make improvement in social welfare (Burguillo, Romero-Jordan and Sanz-Sanz, 2017). It 

can attract more passengers which makes the service provider to increase public 

transportation frequency. High frequency decreases waiting time and consequently trip time 

so it can lead to more passengers using public transportation. It can be said that suitable 

pricing can result in economies of scale (Mohring, 1972). However, if the service providers 

fail to increase frequency after a growth in demand, then overcrowding inside the vehicle 

leads to dissatisfaction of the passengers and as a result transportation demand decreases (De 

Palma, Kilani and Proost, 2015). 

Increasing number of papers in transportation pricing literature shows that authors believe the 

current transportation prices are not optimal. These prices do not reflect the transportation 

social cost precisely and there is a room for improvement in pricing scheme especially 

regarding transportation marginal social and environmental cost related to its externalities 

such as congestion, air pollution, etc. (Barth and Boriboonsomsin 2008, Johansson-Stenman 

2006, Percoco 2013, Zhang, Batterman and Dion, 2011). Thus, it can be said that it is 

possible to reform current pricing policy by the aim of welfare improvement (Proost and 

Dender, 2008). However, to the best of our knowledge, there is little research focusing on the 

optimization models for determining the best prices for road pricing strategies by considering 

the goal of decreasing the transportation air pollution. The aim of this paper is to include 

environmental cost of urban transportation in the decision making process, therefore, the air 

pollution function is included as an objective function in a bi-objective model, with the other 

considered function being social welfare. Bus fare, bus frequency and car toll are decision 

variables of the proposed optimization model.  

The rest of the paper is organized as follows: section two describes the proposed model by 

introducing all constraints and both objective functions. Section three explains a case study 

thoroughly. Section four presents two meta-heuristic algorithms for solving the numerical 

example related to the case study and their comparisons in details. Section five analyzes the 

obtained solutions from the managerial point of view, and finally in section six the 

conclusion is presented.  

2. Literature review 

Due to the spatial limitations in cities, the supply-oriented development of urban 

transportation does not consider a sustainable way to improve urban transportation (Liu et al. 

2014 (a), Liu, Wang and Meng 2014 (b)). Therefore, the policy makers follow the demand-

based developments strategies. 
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Road pricing was introduced after basic studies of Pigou (1920) and Knight (1924) and is 

widely supported by both economist and transport planners due to its advantages (Pigou, 

1920; Knight, 1924). 

Those policies which impose direct cost to road usage are called road pricing. Road pricing is 

divided into different subsections due to the pricing goals. Those schemes aim to alleviate 

traffic congestion are called congestion pricing. Congestion pricing is an effective traffic 

demand management policy (Wei and Sun 2018) which itself is divided into four different 

types: facility-based scheme, zonal scheme, cordon-based scheme and distance-based scheme 

(De Palma and Lindsey, 2011). 

It is worth noting that although there are lots of theoretical studies in congestion pricing but 

the number of implementations of congestion pricing are limited mainly due to some public 

acceptability issues and difficulties in their implementation. For practical purposes often 

simpler pricing schemes due to less implementation cost and easiness of perception by 

drivers  are preferred (May, 1992). Although there is a considerable literature in congestion 

pricing regarding its economic aspects, yet it is required to have more studies about empirical 

assessments of implemented pricing scheme (Parry, 2008). 

Additionally, sustainability concept means “to meet current needs in such a way that do not 

endanger future generation benefits. Sustainable transportation is a transportation system in 

which the three aspects of sustainability (economic, social and environmental) are 

considered. The goal of the road pricing is to internalize the external cost of the 

transportation. That means to force those users who make the externalities to pay for the 

relative costs. One of the main externalities of congestion is related to its significant 

contribution to local air pollution levels and consequently to the residents health (Simeonova 

et al., 2018). The congestion pricing models basically aimed to utilize economic measures to 

decrease the congestion. But still two other sustainability aspects (environmental and social) 

are left which shall be considered, Li et al. (2019) proposed two pricing models (cordon 

pricing and link pricing) by considering the emissions treatment cost. However, their models 

did not consider the social aspect of sustainable transport. 

Therefore, it is necessary to perform studies based on empirical cases of pricing in which 

optimal pricing is found while simultaneously considering all aspects of sustainability. 

2.1. Research gaps and contributions 

The main contribution of this paper is in modeling section and its characteristics are as 

following: 

 It is an integrated bi-objective bi-modal optimization with decision variables of price 

and public transportation design factor aiming to improve transport sustainability.  

 It tries to enhance sustainability of a pre-implemented congestion pricing (here cordon 

pricing) by re-determining car toll, bus fare and bus frequency in a way to improve 

sustainability.  

 It has two objective functions: One aims to minimize air pollution via decreasing total 

fuel consumptions which increase the environmental sustainability. The other aims to 

maximize social welfare which includes users (consumers) surplus and service 

provider surplus simultaneously and improves social sustainability. 
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 It is not only a toll optimization model but also it determines optimal prices (bus fare 

and car toll) and optimal designing factor (bus frequency) simultaneously in an 

integrated model. 

 It considers discrete choice theory by using passengers’ utility functions for both 

modes (private car and bus as public transportation). 

 It formulates a pricing problem mathematically and uses the data from a case study 

for solving the model numerically. 

3. Problem description 

In this paper, a bi-objective bi-modal optimization model is developed to increase 

sustainability of a per-implemented congestion pricing in a corridor. Therefore, the problem 

is about re-determining the amount of car toll, bus fare and frequency (of that pricing 

scheme) in a way to increase environmental and social sustainability of the transportation 

system.  

The model maximizes the social welfare resulting from the transport system with the pricing 

scheme while minimizing the relative air pollution.  

For modeling the demand, a multinomial logit model is used based on passengers’ utility 

functions of bus and private car. The equilibrium constraints are considered such that to show 

the mutual relationship between travel mode choice and travel time. 

3.1. Proposed model 

Before presenting the model, the notations (including indices, decision variables and 

parameters) are defined and then the mathematical formulation of the demand modeling 

(3.1.2), travel time (3.1.3), Transportation service provider’s cost (3.1.4), constraints (3.1.5) 

and eventually the final model (3.1.6) are presented. 

3.1.1. Notations 

Indices are: 

 ,i j : Indices of sections set {1,..., }P  

 ,m n : Indices of mode set { , }b c  

 b : Indic indicating bus 

 c : Indic indicating car 

Decision variables are:  

 bf  bus frequency in each operation period 

 c : car toll (Rial) 

 b : bus fare (Rial) 

Model inputs and parameters are: 

 P : Number of sections in the assumed corridor 

 ijD : Total demand from origin i  to destination j   

 ij

m
D

 
: Travel demand from i  to j by mode m 
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 ij

mU : Utility function related to mode m from i  to j  

 i

abt : Bus access time in section i  (hour) 

 
bh : Bus headway time (hour) 

 ij

vmt : In-vehicle time from i to j  for mode m (hour) 

 ,  : Model coefficients 

 ij

rC : Operational cost for travel from i  to j  by private car (Rials/km) 

 
rO : Private car occupation rate 

 iL : Distance between section i  and 1i  (km) 

 
0

i

mt : Travel time from i  to 1i  in free flow by mode m (hour) 

 
mK : Road capacity for mode m 

 sbt : Average stop time in bus station (hour) 

 bC : Bus cost function (Rial/bus) 

 /driver hW : Driver wage(Rial/hour) 

 
kmbFuC : Bus fuel consumption (litter/km) 

 bFu
: Gasoline price (Rial/litter) 

 bCa : Bus capacity 

 k : Designing factor 

 min max,f f : Minimum and maximum possible frequency 

 

3.1.2. Model assumptions 

In designing the proposed model, the following assumptions are considered: 

 A two way corridor with the total length of L   which is divided into P  sections as 

shown in Figure 1 is considered. 

 

 

 

Figure 1. Assumed corridor  

 Distance between sections i  and 1i  is shown as iL  and: 

1

1

P

i

i

L L




  

 Passengers can choose one of the two transportation modes (bus or private car).  

 Intermodal shift in one trip is not allowed (trips are done by using only one mode). 

 No intersection exists. 

 Only one bus station exists in each section. 

 Distance between two consecutive sections is the same for both modes. 

 Due to existence of specific lane for Bus Rapid Transit (BRT), bus and car traffics are 

separated. 

 Total demand from origin i  to destination j   shown by ij
D  ,is constant: 

𝑷 1 2 𝒊 

2 

1 
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𝐷𝑖𝑗 = ∑ 𝐷𝑚
𝑖𝑗

𝑚

= 𝐷𝑐
𝑖𝑗

+ 𝐷𝑏
𝑖𝑗

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                                                              (1) 

 Bus frequency is continuous. 

 Bus fare and car toll are constant regardless of Origin-Destination (OD) pair. 

 Bus Frequency in both directives is the same. But car demand is different in direction 

1 or 2 and it is shown by
1

i

cf . 

 

3.1.3. Demand modeling 

There are different types of mode choice models which are related to especial circumstance 

of each problem. In this model we use passenger utility functions for modes in which the 

main effective factors are cost and travel time. Theoretically, we assume that ij

mU  represents 

relative utility function of mode m for travelling from origin i  to destination j  . For bus 

utility function, following factors are considered: access time, waiting time, in-vehicle time 

and bus fare. For car utility function in-vehicle time and travel cost (including both 

operational cost and car toll) are considered. By dividing travel cost to occupation rate, 

individual utility function is acquired. This can be extended for distance-based toll and fare 

which are not considered in this paper. 

𝑈𝑏
𝑖𝑗

= 𝛼𝑏 + 𝛽𝑎𝑏𝑡𝑎𝑏
𝑖 + 𝛽ℎ𝑏

ℎ𝑏 + 𝛽𝑣𝑏𝑡𝑣𝑏
𝑖𝑗

+ 𝛽𝜏𝑏
𝜏𝑏                                                                               (2) 

𝑈𝑐
𝑖𝑗

= 𝛽𝑣𝑐𝑡𝑣𝑐
𝑖𝑗

+ 𝛽𝑐 (𝐶𝑟
𝑖𝑗

+ 𝜏𝑐) 𝑂𝑟⁄                                                                                                        (3) 

For utilizing the results of Tehran municipality studies, Multinomial Logit model was used 

for estimating the demand. So trip number of mode m for OD ( i , j ) is calculated by the 

following formula: 

𝐷𝑚
𝑖𝑗

= 𝐷𝑖𝑗
𝑒𝑈𝑚

𝑖𝑗

∑ 𝑒𝑈𝑛
𝑖𝑗

𝑛

∀𝑖, 𝑗                                                                                                                           (4) 

According to the welfare literature (Tirachini, Hensher and Rose 2014), the value of the 

consumer surplus which will be used in social welfare function could be found using the 

following LOGSUM equation: 

𝐶𝑆 = ∑ ∑
𝐷𝑖𝑗

−𝛽𝑐

𝑃

𝑗=1

𝑃

𝑖=1

𝑙𝑛 (𝑒𝑈𝑐
𝑖𝑗

+ 𝑒𝑈𝑏
𝑖𝑗

)                                                                                                    (5) 

In which c  is the parameter used in car utility function. 

3.1.4. Travel time 

Since there is a designated route for the buses in this corridor (BRT), the bus and car traffics 

do not affect each other. Each bus should stop at each station for boarding the passenger and 

this effects the bus traveling times. Travel times from section i  to 1i  for bus and car are 

represented by ( )i

vb bt f and 1( )i i

vc ct f  are functions of bus frequency and number of cars 
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respectively. For calculating these travel times the following equations, in which 

1 1

1

i P
ij

c

l j ii

c

r

D

f
O

  



 equals to number of cars in the lane one of the assumed corridor, are used. 

𝑡𝑣𝑐
𝑖 (𝑓𝑐1

𝑖 ) = 𝑡𝑐0
𝑖 (1 + 𝛼0 (

𝑓𝑐1
𝑖

𝐾𝑐
)𝛼1)                                                                                                         (6) 

𝑡𝑣𝑏
𝑖 (f𝑏) = 𝑡𝑏0

𝑖 (1 + 0.15(
f𝑏

𝐾𝑏
)4) + 𝑡𝑠𝑏                                                                                                 (7) 

3.1.5. Transportation service provider’s cost 

Some of the transportation service provider’s cost are: infrastructure (station, vehicle) cost, 

human resources cost and operational cost (such as fuel consumption). In this model only 

variable costs (driver, fuel) are considered. It is assumed that the number of station is 

constant and the service provider has unlimited access to the bus, therefore, the bus cost is 

based on bus frequency and gasoline cost according to the following equation: 

𝐶𝑏(𝑓𝑏 , 𝜏𝐹𝑢𝑏
) = 2𝐿 × 𝑓𝑏 × 𝑏𝐹𝑢𝐶𝑘𝑚 × 𝜏𝐹𝑢𝑏

+ 2𝑓𝑏 × 𝑊𝑑𝑟𝑖𝑣𝑒𝑟
ℎ

                                                       (8) 

3.1.6. Constraints 

This problem has two kinds of demand and frequency related constraints. Constraints 11 to 

13 ensures that bf  will be equal or greater than the maximum of total bus demand of all 

sections in both directions of the assumed corridor. Among these constraints, bCa  is the bus 

capacity and k  is a design factor which is considered to ensure existence of free capacity for 

attracting potential demand changes. The bus capacity is determined by the service provider 

and is an input to the model. 

Constraint 14 ensures feasibility of the model due to corridor physical capacity; it means that 

car demand cannot be greater than road physical capacity. 

The bus frequency, which is one of the problem decision variables lies in a boundary. The 

lower bound value ( min

bf ) is related to the lowest service level and is defined by the service 

provider policy. The upper bound value ( max

bf ) is the maximum frequency which is feasible 

by the current condition. It is important to note that both of these values are inputs of the 

model. 

Equilibrium constraints 16 and 17 are representing the multinomial LOGIT model used for 

demand estimation and show the mutual relationship between the travel mode choice and 

travel time. The travel mode choice is depended on travel time of each mode. This time 

consequently depends on the demand of each mode which is related to the travel mode 

choice. These constraints show a fixed-point problem which is solved by iterating between 

mode choice and travel time until its convergence. 

3.1.7. Objective functions and final model 

The proposed model is a bi-objective model. It aims to minimize urban road transportation air 

pollution and at the same time maximizes relative social welfare. 
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For minimizing air pollution (AP) related to urban transportation, we consider the fuel 

consumption of the urban transportation system. Since we have two modes (bus and car) in 

this model, we will consider fuel consumption of both modes. In air pollution function, first 

term is related to car fuel consumption and second term is for bus fuel consumption. Fuel 

consumption for each mode is calculated by multiplying number of vehicles in that mode by 

the distance traveled by these vehicles, and by the average fuel consumption in that mode per 

kilometer. According to the literature, social welfare function is considered as summation of 

consumer surplus and producer surplus. Since multinomial LOGIT was used for demand 

estimation, consumer surplus is obtained by using LOGSUM formula (5), and the producer 

surplus is equal to the provider revenue minus provider operational cost. The provider 

revenue is due tothe bus fare and the car toll. Provider cost is the bus operational cost and car 

operational cost is included in consumer surplus, therefore, the model is as follow: 

𝑚𝑖𝑛𝐴𝑃 ≈ 𝐹𝐶𝑐 + 𝐹𝐶𝑏

= (∑ ∑ [
𝐷𝑐

𝑖𝑗

𝑂𝑟
𝑋𝑐

𝑖𝑗
]

𝑃

𝑗=𝑖

𝑃

𝑖=1

+ ∑ ∑ [
𝐷𝑐

𝑖𝑗

𝑂𝑟
𝑋𝑐

𝑖𝑗
]

𝑖

𝑗=1

𝑃

𝑖=1

) × 𝐹𝑢𝑐 + 𝑓𝑏 × 𝑋𝑏 × 𝐹𝑢𝑏               (9) 

𝑚𝑎𝑥𝑆𝑊 = 𝐶𝑆 − 𝑃𝑆 = ∑
𝐷𝑖𝑗

−𝛽𝑐
𝑖𝑗

𝑙𝑛 (𝑒𝑈𝑐
𝑖𝑗

+ 𝑒𝑈𝑏
𝑖𝑗

) + ∑
𝐷𝑐

𝑖𝑗

𝑂𝑟
𝑖𝑗

𝜏𝑐 + ∑ 𝐷𝑏
𝑖𝑗

𝑖𝑗

𝜏𝑏 − 𝐶𝑏                (10) 

𝐷𝑏1
𝑖 = ∑ 𝐷𝑏

𝑖𝑗

𝑃

𝑗=𝑖+1

∀𝑖 = 1𝑡𝑜𝑃                                                                                                                (11) 

𝐷𝑏2
𝑖 = ∑ 𝐷𝑏

𝑖𝑗

𝑖−1

𝑗=1

∀𝑖 = 1𝑡𝑜𝑃                                                                                                                   (12) 

𝑚𝑎𝑥
𝑖

{𝐷𝑏1
𝑖 , 𝐷𝑏2

𝑖 } ≤ 𝑘𝑓𝑏𝐶𝑎𝑏∀𝑖 = 1𝑡𝑜𝑃                                                                                              (13) 

𝑚𝑎𝑥{∑ ∑
𝐷𝑐

𝑖𝑗

𝑜𝑟
,

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

∑ ∑
𝐷𝑐

𝑖𝑗

𝑜𝑟
}

𝑖−1

𝑗=1

𝑛

𝑖=1

≤ 𝐾𝑐                                                                                             (14) 

𝑓𝑏
𝑚𝑖𝑛 ≤ 𝑓𝑏 ≤ 𝑓𝑏

𝑚𝑎𝑥                                                                                                                               (15) 

𝐷𝑐
𝑖𝑗

= 𝐷𝑖𝑗
𝑒𝑈𝑐

𝑖𝑗

𝑒𝑈𝑐
𝑖𝑗

+ 𝑒𝑈
𝑏
𝑖𝑗

                                                                                                                         (16) 

𝐷𝑏
𝑖𝑗

= 𝐷𝑖𝑗
𝑒𝑈𝑏

𝑖𝑗

𝑒𝑈𝑐
𝑖𝑗

+ 𝑒𝑈𝑏
𝑖𝑗                                                                                                                          (17) 

At least two major differences exist between the model presented in this paper and the model 

proposed in Tirachini, Hensher and Rose (2014). At first, they considered crowding inside 

bus, but it is ignored in our model. The second one is that our model is a bi-objective model 

in which the air pollution is considered as an objective function beside social welfare, while 

they have introduced a single objective model. Thus, contrary to their model, this model 
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cannot be solved analytically due to its complexity. Since, finding the precise solution of bi-

objective constrained optimization is not possible, a numerical approach will be considered 

for solving the proposed model. 

4. Case study 

The proposed bi-objective model is solved by utilizing the data obtained from transportation 

of a corridor between Imam Hossein square and Azadi square in Tehran (Figure 2). This 

corridor is about 9.8 km (6.1 mile) long and is divided into 12 traffic sections (distance of 

two consecutive sections is approximately 817m). Along this corridor, there is a special lane 

for BRT. This corridor is part of Tehran bus lane 1, in which each bus completes the cycle 

(travels from the lane one and returns from the lane two or vice versa) in a two hours period. 

Regarding the physical limitations of the corridor and the average length of the vehicle (cars 

and buses), the total capacity of the corridor is assumed to be about 6000 buses and 450 cars. 

 Figure 2. Case study Corridor (From Imam Hossein square to Azadi) 

The Origin-Destination (OD) matrix (Table 1) of this corridor was obtained from the studies 

conducted by Tehran Urban Research and Planning center.  

According to the survey conducted by Tehran Municipality in 2012, estimated utility 

functions for private car and bus are given by the following equations respectively: 

Ucar=1.52×10-5CTT-0.00411CC+1.44COS                                                                                   (18) 

Ubus=1.83-0.00655BTTT-0.0342BFC                                                                                             (19) 

where CTT is the total time of travel by car, CC is the total cost of travel by car, COS is a 

binary (0 or 1) variable for the rate of car ownership, BTTT is the total time of travel by bus, 

BFC is the total cost of travel by bus and mU   is the utility function of mode m. The car 

utility function derived from Tehran Municipality research, includes the same variables as car 

utility function of this model, except the car ownership variable. Car ownership rate in 

Tehran is one for each two persons (0.5). Using this rate in the expression (18) will result in a 

constant value equal to 0.72. The function used in the proposed model does not have constant 

value, so for similarity and without loss of generality (as utility functions are compared 

together) this amount will be subtracted from bus utility function. Average bus accessibility 

time is about 15 minutes (0.25 hour). Bus headway in peak hour is 1 minutes (0.016 hour) 

and for average (peak and off-peak) is 2 minutes (0.033 hour). Therefore: 

𝑈 𝑐
𝑖𝑗 = 1.52 × 10−5𝑡𝑣𝑐

𝑖𝑗
− 0.00306(𝐶𝑟

𝑖𝑗
+ 𝜏𝑐)                                                                                (20) 

𝑈 𝑏
𝑖𝑗 = 1.108 − 0.00655 × 𝑡𝑣𝑏

𝑖𝑗
− 0.0342 × 𝜏𝑏                                                                             (21) 
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In calculating the operational cost of car, only its fuel cost is considered. Therefore, the 

amount of car operational cost is the multiple of consumed fuel by fuel unit price (now about 

10000 Rial/liter): 

𝐶𝑟
𝑖𝑗

= 𝑋𝑖𝑗 × 𝐹𝑢𝑐𝑘𝑚 × 𝜏𝐹𝑢𝑐

= 0.817|𝑗 − 𝑖| × 0.135 × 𝜏𝐹𝑢𝑐
                                                                                                         (22)

= 110 × |𝑗 − 𝑖|

 

Table 1. OD Matrix for the case study corridor 

O/D 1 2 3 4 5 6 7 8 9 10 11 12 

1 0 1119 437 254 574 353 619 693 415 681 750 141 

2 2009 0 1161 332 1544 1367 2181 485 736 416 167 15 

3 456 421 0 798 1015 588 690 195 187 0 50 42 

4 356 636 544 0 306 33 387 419 0 54 116 90 

5 426 727 110 773 0 736 930 1343 652 527 865 493 

6 292 511 13 319 851 0 452 949 719 173 178 29 

7 675 156 1255 0 324 455 0 754 728 317 610 284 

8 429 961 0 0 264 1216 736 0 279 321 2347 60 

9 118 0 0 0 0 258 612 478 0 404 588 279 

10 0 0 524 0 24 75 213 1092 350 0 591 352 

11 0 201 0 49 327 137 847 726 687 803 0 239 

12 30 137 72 0 154 356 149 167 917 450 336 0 

 

Regarding the expression (8), the labor (driver) cost and the bus fuel price (gasoline costs 

about 3000 Rial/liter), the transportation provider cost will be given by the following 

equation: 

𝐶𝑏(𝑓𝑏) = 2𝐿 × 𝑓𝑏 × 𝑏𝐹𝑢𝐶𝑘𝑚 × 𝜏𝑏𝐹𝑢 + 2𝑓𝑏 × 𝑃𝑑𝑟𝑖𝑣𝑒𝑟/ℎ

= 19.6𝑓𝑏0.598 × 300 + 2𝑓𝑏6600                                                                                                   (23)
= 13211.7208 × 𝑓𝑏

 

For in-vehicle time calculation, first, free-flow travel time must be calculated. Regarding 

maximum allowable speed limit based on Iran national transportation law and assumptions of 

the model, maximum possible speed of cars and buses are considered as 45 km/hour and 16 

km/hour respectively. Thus, in a free flow condition and with maximum allowable speed, 

private car travels the distance between two sections in 0.0181 hour (about 65 seconds). This 

time for buses is 0.0510 hour (3.06 minutes). 

Average stop time at each station is about 30 seconds and by considering the time of 

accelerating and decelerating, sbt  is assumed as 1 minute (0.017 hour). Based on 

transportation literature, the amount of 0  and 1  (parameters in equations 6 and 7) are 

considered as 0.15 and 4 respectively, therefore:  

𝑡𝑣𝑐
𝑖 (𝑓𝑐1

𝑖 ) = 0.0181(1 + 0.15(
𝑓𝑐1

𝑖

6000
)4)                                                                                           (24) 

𝑡𝑣𝑏
𝑖 (𝑓𝑏) = 0.0510(1 + 0.15(

𝑓𝑏

450
)4) + 0.017                                                                              (25) 
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𝑓𝑐1
𝑖 =

∑ ∑ 𝐷𝑐
𝑖𝑗12

𝑗=𝑖+1
𝑖
𝑙=1

1.34
=

=

∑ ∑ 𝐷𝑖𝑗 𝑒01.52×10−5𝑡𝑣𝑐
𝑖𝑗

−0.00306(110|𝑗−𝑖|+𝜏𝑐)

𝑒01.52×10−5𝑡𝑣𝑐
𝑖𝑗

−0.00306(110|𝑗−𝑖|+𝜏𝑐) + 𝑒1.108−0.00655𝑡𝑣𝑏
𝑖𝑗

−0.0342𝜏𝑏

12
𝑗=𝑖+1

𝑖
𝑙=1

1.34
                 (26)

 

And finally: 

𝑡𝑣𝑐
𝑖𝑗 = |𝑗 − 𝑖|𝑡𝑣𝑐

𝑖 (𝑓𝑐1
𝑖

)                                                                                                                            (27) 

𝑡𝑣𝑏
𝑖𝑗

= |𝑗 − 𝑖|𝑡𝑣𝑏
𝑖 (𝑓𝑏)                                                                                                                             (28) 

Distance matrix for this corridor (considering 817 meter as a distance of two consecutive 

sections) and parameters of this case study are summarized in Table 2 and Table 3 

respectively.  

Table 2. Distance matrix between sections of the case study corridor 

ij

cX  1 2 3 4 5 6 7 8 9 10 11 12 

1 0 0.817 1.634 2.451 3.268 4.085 4.902 5.719 6.536 7.353 8.17 8.987 

2 0.817 0 0.817 1.634 2.451 3.268 4.085 4.902 5.719 6.536 7.353 8.17 

3 1.634 0.817 0 0.817 1.634 2.451 3.268 4.085 4.902 5.719 6.536 7.353 

4 2.451 1.634 0.817 0 0.817 1.634 2.451 3.268 4.085 4.902 5.719 6.536 

5 3.268 2.451 1.634 0.817 0 0.817 1.634 2.451 3.268 4.085 4.902 5.719 

6 4.085 3.268 2.451 1.634 0.817 0 0.817 1.634 2.451 3.268 4.085 4.902 

7 4.902 4.085 3.268 2.451 1.634 0.817 0 0.817 1.634 2.451 3.268 4.085 

8 5.719 4.902 4.085 3.268 2.451 1.634 0.817 0 0.817 1.634 2.451 3.268 

9 6.536 5.719 4.902 4.085 3.268 2.451 1.634 0.817 0 0.817 1.634 2.451 

10 7.353 6.536 5.719 4.902 4.085 3.268 2.451 1.634 0.817 0 0.817 1.634 

11 8.17 7.353 6.536 5.719 4.902 4.085 3.268 2.451 1.634 0.817 0 0.817 

12 8.987 8.17 7.353 6.536 5.719 4.902 4.085 3.268 2.451 1.634 0.817 0 

 

Thus, the objective functions are as follows: 

min 𝐴𝑃 = (∑ ∑ [
𝐷𝑐

𝑖𝑗

1.34
𝑋𝑐

𝑖𝑗
]

12

𝑗=𝑖

12

𝑖=1

+ ∑ ∑ [
𝐷𝑐

𝑖𝑗

1.34
𝑋𝑐

𝑖𝑗
]

𝑖

𝑗=1

12

𝑖=1

) × 0.135 + 19.6 × 𝑓𝑏 × 0.598

= 0.101 (∑ ∑ 𝐷𝑐
𝑖𝑗

12

𝑗=𝑖

12

𝑖=1

𝑋𝑐
𝑖𝑗

+ ∑ ∑ 𝐷𝑐
𝑖𝑗

𝑋𝑐
𝑖𝑗

𝑖

𝑗=1

12

𝑖=1

) + 11.72𝑓𝑏                                                                 (29)

 

max  SW= ∑ ∑
Dij

0.00411
ln(eUc

ij

+eUb
ij

)

ji

+ ∑ ∑
Dc

ij

1.34
ji

τc+ ∑ ∑ Db
ij
τb

ji

-13211.7208×fb (30) 
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5. Solution methods and computational results 

As there is no analytical solution method due to high complexity of the proposed model, the 

proposed bi-objective constrained-optimization model with nonlinear objective functions are 

solved by using the numerical approach. Therefore, considering solution methods introduced 

in the literature to solve bi-objective constrained model (for example, Tirkolaee et al. 2019, 

Goli et al., 2019, Hajipour et al., 2014, Rahmati, Hajipour and Niaki, 2013), two meta-

heuristic algorithms (NSGA-II, MOHS) are suggested to solve the model utilizing the data 

from the case study. NSGA is a usual method for solving multi-objective optimization which 

is based on Genetic Algorithms. NSGA-II was introduced to solve some of the NSGA’s 

problems (such as deficiencies in choosing dominant particles, and its computational 

complexities). 

The NSGA-II performs better than NSGA by utilizing the information of the population non-

dominated population by solution P and the number of times solution P becomes non-

dominated. By using the NSGA-II, a random parent population is produced (Each solution is 

a vector with three entities of ( bf ,
b ,

c ) which is produced by using uniform distribution 

and satisfies the constraints). Then Non-dominated sorting will be performed for the 

population. A fitness value is assigned to each solution equal to its non-domination level. 

Then a child population will be created by using the binary tournament selection, 

recombination and mutation operators. After that, parent and child populations will be 

combined as a new population and non-dominated sorting will be performed for them. The 

new parent population will be formed by adding solutions from the first front up to the 

population size. Thereafter, the solutions of the last accepted front are sorted based on their 

non-domination rank and their crowding distance.  The first points of this new sorted set will 

be used for binary tournament selection, one-point arithmetic crossover and mutation to 

create child population.  This procedure continued up to reaching the defined maximum 

iteration (Deb et al. 2000). 

Table 3. Parameters of the case study  

 

 

 

 

 

Parameter Value Parameter Value 

P  12 
cFu  0.598 

max

bf  200 
bFu  0.135 

min

bf  60 
cFu  10000 

rO  1.34 
bFu  3000 

k  90% 
/driver hP  660000 

c  -0.00411 
bCa  200 
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NSGA-II Pseudo code (Coello Coello, Lamont and Van Veldhuizen 2007) 

 

In MOHS algorithm (which is somehow a new meta-heuristic algorithm), each solution is 

called harmony and will be shown by a vector with n dimension. This algorithm has three 

main phases. First, an initial generation of harmony vectors (solutions) will be produced 

randomly and will be recorded in harmony memory. The number of harmony vectors will be 

equal to Harmony Memory Size (HMS).Then a new harmony vector will be produced from 

current solutions either by using the rules of harmony memory consideration rate (HMCR) 

and pitch adjustment rate (PAR) with probability of HMCR*(1-PAR1)) and HMCR * PAR 

respectively  or by random generation with probability of 1-HMCR. Then the rank of each 

harmony will be calculated. For this purpose, non-dominated harmony will have a rank equal 

to one and for dominated harmonies the  rank will be equal to one plus number of harmonies 

of the current iteration which dominate that harmony. Finally, the harmony memory will be 

updated. The main difference of NSGA-II with MOHS is in their evolution process. In 

MOHS process evolution is performed using the single objective HS. However, GA is used 

as the NSGA-II process evolution and selection strategy in NSGA-II is the binary tournament 

(Ricart, et al. 2011).  

                                                           
1 Pitch Adjustment Rate 

Input parameters (Initial population number, Maximum iteration, Crossover rate and mutation rate) 

Generate random population –size N 

Evaluate Objective Values 

Assign Rank (level) Based on Pareto dominance - sort  

Generate Child Population 

   Binary Tournament Selection 

   Recombination and Mutation 

for i=1 to Max number of iteration do 

      for each Parent and Child in Population do  

            Assign Rank (level) Based on Pareto -sort  

            Generate sets of non-dominated solution 

            Loop (inside) by adding solutions to next generation starting from the first front until N              

individuals found determine crowding distance between points on each front 

      end for 

      Select points (elitist) on the lower front (with lower rank) and are outside a crowding distance 

      Create next generation 

          Binary Tournament Selection 

          Recombination and Mutation 

end for 
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MOHS Pseudo code 

Algorithms’ parameters adjustment (tuning) had been done by Taguchi experiment design 

method. Results for MOHS and NSGA-II are summarized in table 4 and Table 5 respectively. 

Table 4. Computational results of parameter tuning for NSGA-II by Taguchi method 

Run number Algorithm Parameters Response 

MOCV nPop CP Pm Max IT 

1 1 1 1 1 2.292E-6 

2 1 2 2 2 2.793E-6 

3 1 3 3 3 2.759E-6 

4 2 1 2 3 2.762E-6 

5 2 2 3 1 2.580E-6 

6 2 3 1 2 2.720E-6 

7 3 1 3 2 2.769E-6 

8 3 2 1 3 2.753E-6 

9 3 3 2 1 2.780E-6 

For NSGA-II and MOHS algorithms, following parameters are adjusted respectively:  

 Initial population number, Maximum iteration, Crossover and mutation rates 

 Harmony memory size, Maximum iteration, Harmony memory consideration rate, 

Pitch adjustment rate and Bandwidth rate 

For each factor three levels were considered (low, medium, high). By using Minitab software, 

the L9 design and the L27 design were used for NSGA-II and MOHS algorithms 

respectively. The metric introduced by Tavakkoli-Moghaddam, et al. (2016) is called Multi-

objective coefficient of variation (MOCV), and is defined by dividing the MID metric by the 

DIVERSITY metric, was used as the response of Taguchi method for each algorithm. 

Initialize Population  

Generate random Harmony Memory (HM) 

while stopping criteria (maximum number of iteration) is not satisfied do 

    Improvise a new solution S 

          for each variable si do 

               if U (0,1) < HMCR then 

                   where  int(U(0,1)*HMS) 1new j

i is s j    

                   if U (0.1) < PAR then 

                       Update 
new

is with ( )is k m  

                     end if 
                 else 

                    new

is  random value 

          end for   

    Calculate the Pareto ranking of S considering HM  

                     
( )( , =Iteration Number) 1 IN

srank S IN p   where 
( )IN

sp denotes the number of 

solutions for the current iteration which dominate the solution in question  

    if S has a better ranking than the worst solution in HM then  

       Update HM with S 

    end if 

end while 
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Table 5. Computational results of parameter tuning for MOHS by Taguchi method 

Run number Algorithm Parameters Response 

MOCV HMS Max IT PAR HMCR BW 

1 1 1 1 1 1 3.11E-6 

2 1 1 1 1 2 2.03E-6 

3 1 1 1 1 3 1.97E-6 

4 1 2 2 2 1 2.57E-6 

5 1 2 2 2 2 1.94E-7 

6 1 2 2 2 3 1.57E-7 

7 1 3 3 3 1 2.51E-6 

8 1 3 3 3 2 6.06E-7 

9 1 3 3 3 3 5.45E-8 

10 2 1 2 3 1 1.11E-7 

11 2 1 2 3 2 9.61E-6 

12 2 1 2 3 3 7.54E-7 

13 2 2 3 1 1 4.73E-7 

14 2 2 3 1 2 4.46E-7 

15 2 2 3 1 3 2.75E-6 

16 2 3 1 2 1 2.21E-6 

17 2 3 1 2 2 3.54E-7 

18 2 3 1 2 3 2.52E-6 

19 3 1 3 2 1 1.97E-6 

20 3 1 3 2 2 3.56E-7 

21 3 1 3 2 3 2.04E-6 

22 3 2 1 3 1 2.94E-7 

23 3 2 1 3 2 8.19E-7 

24 3 2 1 3 3 2.57E-6 

25 3 3 2 1 1 2.55E-6 

26 3 3 2 1 2 2.52E-6 

27 3 3 2 1 3 4.29E-7 

 
In MOCV both metrics (distance from ideal solution and its diversity) were combined, 

therefore, convergence and diversity of Pareto solution is considered simultaneously. Using 

the MOCV metric resulted in more precise Taguchi parameter adjustment. 

Due to Taguchi results (Figure 3) and due to maximizing the noise to signal ratio, optimal 

level of all factors in NSGA-II is level one (low) and in MOHS factors is level one (low) for 

HMS, level two (medium) for max iteration and level three (high) for other parameters. Table 

6 summarizes the optimal amount of all parameters resulting of Taguchi method. 
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Figure 3. Taguchi results for NSGA-II (up) and for MOHS (down) 

Table 6. Algorithms parameters and their levels in Taguchi method 

Algorithm NSGA-II 

Parameter Parameter Range Low (1) Medium(2) High(3) Taguchi result 

nPop 30-100 30 50 100 30 

CP 0.6-0.9 0.6 0.8 0.9 0.6 

mP 0.2-0.4 0.2 0.3 0.4 0.2 

MaxIT 50-200 50 100 200 50 

MOHS Algorithm 

HMS 30-100 30 70 100 30 

HMCR 0.6-0.9 0.6 0.75 0.9 0.9 

PAR 0.2-0.9 0.2 0.4 0.9 0.9 

Bandwidth (BW) 2-4 2 3 4 4 

MaxIT 30-100 30 50 100 50 

 

For comparison of both algorithms, ten test problems based on different amount of p were 

designed. Demand matrix for test problems produced randomly by the Matlab software. 

Without loss of generality, distance matrix was expanded the same as the case study distance 

matrix. Average amount of performance metrics which are introduced in Schott (1995) are 

calculated for ten times test problems’ run and summarized in Table 7. 
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Table 7. Average value of algorithm performance evaluation metrics of test problems 

Test 

Problem 

NSGA-II MOHS 

TIME NOP DIVERSITY SPACING MID TIME NOP DIVERSITY SPACING MID 

1(P=5) 2.47 90 1480570 1.22040 4.940 3.834 22 1019059 1.8973 31.950 

2(P=10) 3.03 100 1293566 0.68830 4.270 4.210 42 3727702 1.9100 1.6433 

3(P=15) 2.43 100 2111695 0.76130 9.512 4.290 40 3841469 1.3908 4.8363 

4(P=20) 3.63 100 3964835 0.86457 10.68 6.594 56 2674966 1.0148 15.719 

5(P=25) 5.52 100 5456603 0.78360 11.80 6.641 40 3665885 1.3320 18.249 

6(P=30) 9.98 90 88213031 1.84090 1.185 7.486 13 3663182 1.7860 26.850 

7(P=35) 23.37 100 6445844 0.98720 22.16 9.114 24 4919247 1.6902 28.656 

8(P=40) 89.38 100 4834308 0.87003 38.87 13.69 22 5492932 1.7700 33.701 

9(P=45) 248.40 81 12647227 0.83847 18.987 19.137 15 5581197 1.5360 43.330 

10(P=50) 1158.1 74 14496686 1.25000 20.60 29.729 14 138273663 1.8322 2.4320 

 

By one-way ANOVA for 95% confidence interval, performance metrics of two algorithms 

were examined. The results (summarized in Table 8) show that both algorithms have 

significant difference in number of Pareto solution and spacing metric but other metrics show 

no significance differences. 

Table 8. ANOVA results 

Metric Source DF SS MS F P 

Run time 

Algorithms 1 103916 103916 1.59 0.223 

Error 18 1173206 65178   

Total 19 1277122    

NO. of 

Pareto 

solution 

Algorithms 1 20930     20930 136.8   0.000 

Error 18 2754 153   

Total 19 23685    

Diversity 

Algorithms 1 5.09282E+13     5.09282E+13   0.04 0.843 

Error 18 2.25646E+16   1.25359E+15   

Total 19 2.26156E+16    

MID 

Algorithms 1 207   207   1.23   0.281 

Error 18 3018   168   

Total 19 3225    

Spacing 

Algorithms 1 1.833   1.833   17.84   0.001 

Error 18 1.849   0.103   

Total 19 3.682    

 

According to Table 7, it is obvious that number of Pareto solution (which will be better if the 

amount be higher) in NSGA-II is better than MOHS. Regarding spacing metrics (which will 

be better if the amount is lower) except test problem 6, spacing metric is better in NSGA-II 

than MOHS. It can be concluded that for this problem, NSGA-II has better performance than 

MOHS. 

6. Managerial insights  

Regarding the results achieved by analyzing the case study, bus fees are not more than 50 

Rials in all solutions. The low amount of fee can be interpreted as a suggestion to make the 

public transportation free. The results support the theory that decreasing fee as much as 

possible (up to making it free) will be an incentive for passengers to use public transportation. 

Therefore, public transportation demand increases while the private car usage decreases 

(assuming constant total demand). Decreasing bus fare, may be compensated by an increase 

in its demand. Meanwhile air pollution will be decreased due to decreasing private car 
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demand. Therefore, the transportation system managers (government) may support free 

public transport (public transport subside) based on the case study. 

It is worth mentioning that lower bus fare in Pareto solutions will increase the bus demand, 

and if suitable increase does not happen in the bus frequency, it will lead to a crowded 

situation inside the bus and passengers’ dissatisfaction. But it is better to improve the model 

by considering the crowding inside the bus in its utility function. 

Average bus frequency of Pareto solutions lies between 60 and 65. At the time of study, the 

real bus frequency in this corridor was 70 which is a little more than the results. If we change 

the min

bf  
to be between 0 and 60 (it means that we consider a situation in which model can 

suggest us to have no public transportation), the average bus frequency will be between 53 to 

58. If we increase max

bf to the maximum corridor bus capacity (450 buses), (assume that there 

is no limitation to provide enough number of bus), the average bus frequency will be between 

60 and 70. 

Average private car toll in different runs were less than 10000 Rials (half of the higher bound 

of the model). But solutions diversity was high. Increasing higher bound to 1 million Rials 

(50 times greater) do not increase average car toll in Pareto solution to more than 150000 

Rials (15 times greater). 

7. Conclusion 

In this paper, as an overall picture, a bi-objective optimization model is proposed in which 

the transportation prices were determined in a way to maximize social welfare and minimize 

relative air pollution simultaneously. A numerical approach was required for solving this 

model, therefore, the model was solved by using two meta-heuristic algorithms (NSGA-II, 

MOHS). Then, the comparison of these algorithms was done by using one-way ANOVA for 

performance metrics. The comparison shows that the performance of NSGA-II for the test 

problems is significantly better than MOHS in terms of some metrics (number of Pareto 

solutions and spacing). 

The main contributions of this model can be summarized as the following: 

1. It tries to fill the existing gap in the rare optimization model used in designing 

transport pricing schemes. 

2. It formulates a pricing problem mathematically and uses the data from a case study 

for solving the model numerically. 

3. It considers improving transport sustainability by using the minimization of air 

pollution as one of the objective functions while improving social welfare. 

4. It determines optimal prices (bus fare and car toll) and optimal designing factor (bus 

frequency) simultaneously in an integrated model. 

From the economical point of view, the obtained results showed that free public transport is 

an effective solution for decreasing air pollution while determining the bus frequency and car 

toll in such a way that the social welfare will be maximize. 
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Solving the model using other new meta-heuristic algorithms and comparing their results 

with the results of this paper is recommended. Expanding the model by incorporating subway 

mode in the model can be useful. Extending the model to the network level, inserting 

decision variable of fuel price and considering the rate of crowding inside of the public 

transportation in utility function can help to achieve more realistic model with more precise 

results in real world. 
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