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For instance, the ability of the assembly modeler to furnish information on interferences and 
clearances between mating parts is particularly useful. Such information would enable the 
designer to eliminate interference between two mating parts where it is impractical to provide for 
an interference based on physical assembly requirements. This activity can be accomplished 
within the modeling program, thereby averting any loss of productivity that might occur due to 
interferences on the shop floor. Also, knowledge of mass properties for the entire assembly, 
particularly the center of gravity, may permit the designer to redesign the assembly based on 
equilibrium and stability considerations. In the absence of such information, the presence of an 
elevated center of gravity and the attendant instability would only be detected after physical 
assembly on the shop floor. Three-dimensional exploded views generated by the assembly 
modeler can help designers verify whether obvious violations of common design for assembly 
(DFA) guidelines are present, such as absence of chamfers on mating parts.  

Corresponding analyses can be achieved within the framework of the assembly modeler. 
Additionally, the assembly model may be imported into third-party programs that can perform 
kinematic, dynamic, or tolerance analysis. Tolerance analysis is quite relevant to the physical 
assembly process. With the input of the assembly model and other user-supplied information 
such as individual part tolerances, tolerance analysis programs can check the assembly for the 
presence of tolerance stacks. Tolerance stacks are undesirable elements in the sense that 
acceptable tolerances on individual parts are combined to produce an unacceptable overall 
dimensional relationship, thereby resulting in a malfunctioning or nonfunctioning assembly. 
Stacks are usually discovered during physical assembly, at which point any remedial procedure 
becomes expensive in terms of time and cost. Tolerance analysis programs can help the user 
eliminate or significantly reduce the likelihood of stacks being present.  

Based on the results of the tolerance analysis, assembly designs may be optimized by 
modifying individual part tolerances. Note, however, that tolerance modifications have cost 
implications; in general, tighter tolerances increase production costs. Engineering handbooks 
contain tolerance charts indicating the range of tolerances achieved by manufacturing processes 
such as turning, milling, and grinding. Designers use these tables as guides for rationally 
assigning part tolerances and selecting manufacturing processes. 

A more effective methodology for optimizing product assembly and convergent product is the 
tree model, whereas the optimization decision is based on a decision tree. One useful tree for 
assembly modelers as a multiple optimization tool is the Steiner tree.  

The Steiner tree problem (STP) is a much actively investigated problem in graph theory and 
combinatorial optimization. This core problem poses significant algorithmic challenges and 
arises in several applications where it serves as a building block for many complex network 
design problems. Given a connected undirected graph G=(V,E), where V denotes the set of nodes 
and E is the set of edges, along with a weight Ce associated with each edge	 Ee , the Steiner 
tree problem seeks a minimum-weight subtree of G that spans a specified subset VN   of 
terminal nodes, optionally using the subset N=V-N of Steiner nodes. The Steiner tree problem is 
NP-hard for most relevant classes of graphs (Johnson, 1985). 

The Steiner problem in graphs was originally formulated by Hakimi (1971). Since then, the 
problem has received considerable attention in the literature. Several exact algorithms and 
heuristics have been proposed and discussed. Hakimi (1971) remarked that an Steiner minimal 
tree (SMT) for X in a network G=(V,E) can be found by enumerating minimum spanning trees 
of subgraphs of G induced by supersets of X. Lawler (1976) suggested a modification of this 
algorithm, using the fact that the number of Steiner points is bounded by ,2X  showing that 

not all subsets of V need to be considered. Restricting NP-hard algorithmic problems regarding 
arbitrary graphs to a smaller class of graphs will sometimes, yet not always, result in 
polynomially solvable problems. 
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Two special cases of the problem, N = V and N = 2, can be solved by polynomial time 
algorithms. When N = V, the optimal solution of STP is obviously the spanning tree of G and 
thus the problem can be solved by polynomial time algorithms such as Prim’s algorithm. When 
N = 2 , the shortest path between two terminal nodes, which can be found by Dijkstra’s 
algorithm, is exactly the Steiner minimum tree. 

A survey of Steiner tree problem was given by Hwang and Richards (1992). Several exact 
algorithms have been proposed such as dynamic programming technique given by Dreyfuss and 
Wagner (1971), Lagrangean relaxation approach presented by Beasley (1989), brand-and-cut 
algorithm used by Koch and Martin (1998). Duin and Volgenant (1989) presented some 
techniques to reduce the size of the graphs for the GSP. Another approach for the GSP is using 
approximation algorithms to find a near-optimal solution in a reasonable time. 

Some heuristic algorithms have been developed such as Shortest Path Heuristic (SPH) given 
by Takahashi and Matsuyama (1980), Distance Network Heuristic (DNH) presented by Kou et 
al. (1981), Average Distance Heuristic (ADH) proposed by Rayward-Smith and Clare (1986) 
and Path-Distance Heuristic (PDH) presented by Winter and MacGregor Smith (1992). 
Mehlhorn (1988) modified the DNH to make the algorithm faster. Robins and Zelikovsky (2000, 
2005) proposed algorithms improving the performance ratio. 

Recently, metaheuristics have been considered to arrive at better methods for finding 
solutions closer to the optimum. Examples are Genetic Algorithm (GA) (Esbensen, 1995; 
Kapsalis, et al., 1993), GRASP (Martins et al., 1999) and Tabu search (Ribeiro and Souza, 
2000). Although these algorithms have polynomial time complexities, in general, but they cost 
enormously on large input sets. To deal with the cost issue, some parallel metaheuristic 
algorithms have been proposed such as parallel GRASP (Martins et al., 1998), parallel GRASP 
using hybrid local search (Martins et al., 2000) and parallel GA (Fatta et al., 2003). 

Here, using the Steiner tree, a bi-objective mathematical model is developed for the convergent 
product. The remainder of our work is organized as follows. In Section 2, the proposed model of 
the problem is described and two useful network algorithms are given. Section 3 presents the 
mathematical model and a Particle Swarm Optimization algorithm. Section 4 works out an 
experimental study to illustrate the proposed algorithm. We conclude in Section 5. 

2. The proposed model 
In our proposed product digital network, a group of functionalities are considered for a product. 
Customers view their opinions for classifying the functionalities into base functions and sub-
functions. We make use of this classification in developing our model. The classification 
procedure is as follows. First, the customer chooses a product in a list of products being 
produced in a company. The functionalities of the product are viewed in a web page. Then, the 
customer clicks either function or sub-function for any of the functionalities. Consequently, 
customer clicks the classify button and observes the classified functionalities in a separate web 
page. This process is shown in Figure 1. 
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Figure 1: The classification process 

Here, we weigh all functionalities (both base functions and sub-functions) considering different 
significant attributes affecting the value of a product. Therefore, we consider the following 
mathematical notations. 

2.1. Mathematical notations: 

i and j Index for functions and sub-functions; i and j=1,…,n+m 
k Index for attributes; k=1,…,p 
Fijk The score of triplet comparison of functions (or sub-functions) with functions (or sub-

functions) considering different attributes. 
The three dimension comparison matrix F is shown in Figure 2. Note that customers fill in this 
matrix using numerical values  1,0ijkF .  
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Figure 2: The three dimensional comparison matrix 
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This matrix is normalized to remove the scales. The normalized values are shown by 
norm

ijkF . A 

threshold value of   is considered in a way that the 
norm

ijkF  are chosen to be assigned as links. 

These links configure a network called purified network as shown in Figure 3.  

 
Figure 3: A purified network 

Now, using the purified network, we characterize the arcs. To do this, two processes of leveling 
and clustering are performed. For leveling, we set the base functions at level zero, sub-functions 
with one outlet to the previous level in level 1, and so on. Thus, an l level network is configured.  
The proposed algorithm is given next. 
Algorithm 1: Leveling to configure a leveled network. 
Step 0: Set the base functions at level 0. Let l=0. 
Step 1: While sub-functions exist for processing do 

Find sub-functions with a link to a function (or sub-function) at level l and put 
them in level l+1. Let l=l+1. 

 End while. 
 {l is the number of levels.}  
Step 2: Stop. 

The nodes of leveled network are associated with given costs. We are looking for the benefit 
each link provides. Here, a clustering approach is considered. Clusters are formed as follows: at 
each level, all sub-functions linked to a single parent is grouped in a cluster. Therefore, clusters 
consisting different nodes are configured. These clusters are being configured as a new network. 
The leveling and clustering processes are shown schematically in Figure 4. Later, we apply the 
Steiner tree methodology to optimize this network. The proposed algorithm for clustering is 
given below. 
Algorithm 2: Clustering of levels in a leveled network. 
Step 0: Set each node at level 0 to be a cluster. 
Step 1: For i=1 to l do 

 {Form clusters at level i} 
Cluster all sub-functions at level i linked to a single parent at level i-1. 
Solve a zero/one mathematical program for level l (we will discuss the 
corresponding mathematical program later on). 
Perform purification of benefits and costs at level l (as discussed later on). 
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End for 
Step 2: Stop. 
 

 
Figure 4: Leveling and clustering processes 

Here, the clustered network is used to configure a tree (the Steiner tree) keeping the base 
functions and optimizing two objectives of minimal cost and maximal profit in the convergent 
product value adding process. Next, we formulate our adapted proposed Steiner tree model. In 
the proposed network, node i (function or sub-function i) have two costs: 
ci1: software cost, 
ci2: hardware cost. 

Each arc is accompanied with a benefit iip   which is obtained from nodes i  and i  . With 

respect to the solution approach and using the Steiner tree in the proposed network and the NP-
hardness of the problem, we used leveling and clustering processes to reduce the complexity of the 
problem. In clustering, it is not acceptable for any node to be included in more than one cluster in 
any level. To guarantee this, for each level l, a zero/one mathematical program is developed in 
order to properly appropriate nodes in clusters with the aim to minimize the total cost.  

Next, we give the zero/one mathematical program and the purification procedure for each level. 
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The zero/one mathematical program for level l: 


 


l lini mj

ijijijijij zccT )(min 21   

                           l
mj

ij niz
li

,......,11 


 

                                          





otherwise,0

clusterinisnodeif,1 ji
zij  

where, ,ij   jiij ,,1,0  , 

mli   : set of indices of clusters at level l where node i is included,  
nl : set of indices of different nodes in level l,  
cij2 : hardware cost of node i in cluster j (cij2= ci2, for all i and j), 
cij1: software cost of node i in cluster j (cij1= ci1, for all i and j), 
αij : the software reduction cost coefficient of node i in cluster j,  
βij :  the hardware reduction cost coefficient of node i in cluster j.  
Purifying benefits and costs at level l: 
To determine the cost for each cluster at level l, we use 
  







ii

ii
ni

ijijijijjl pccc
l ,

21 ,)(   

where, ,ij   jiij ,,1,0  , 

cjl : cost of cluster j in level l  
αij : the software reduction cost coefficient of node i in cluster j,  
βij :  the hardware reduction cost coefficient of node i in cluster j,  

iip   : the benefit of an arc connecting node i in cluster j to node i   in cluster j , and cij1, cij2, and 

nl are as defined above. 
Also, to adjust the combined arc benefits in clusters, the following equation is used: 




 
ii

iijjjj pp
,

)1(   

where, ,,,, jjii   

jjp  is the adjusted arc benefit connecting cluster j to cluster j , 

iip  is the benefit of an arc connecting node i in cluster j to node i   in cluster j , and 

jj  is the added value configured from nodes in clusters j and j .  

Algorithms 1 and 2 are transformed into Algorithm 3 using the aforementioned considerations. 
Also, each node should be in only one cluster at level l. The node having a minimal cost is 
chosen for the level l. Then, instead of using the zero/one mathematical program for level l, we 
can use step 3 of Algorithm 3. This leads a reduction of computations by avoiding the need for 
using the zero/one programs. 
 Algorithm 3: leveling and clustering in the network. 
Step 0: Set the base functions at level 0. Let l=0. 
Step 1: While sub-functions exist for processing do 

Find sub-functions with a link to a function (or sub-function) at level l and place 
them at level l+1; Let l=l+1; 

 End while. 
 {l is the number of levels}  
Step 2: Set each node at level 0 to be a cluster. 
Step 3: For i=1 till l do 

 {Form clusters at level i} 
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Cluster all sub-functions at level i linked to a single parent at level i-1; 
While 0in  do 

Select  ink   such that  2121 min kjkjkjkj
mj

kpkpkpkp cccc
ik

 


. Set  1kpz  

and pjmjz ikkj  ,,0 ; 

 .knn ii   

End while; 
For j=1 till iq  do { iq  is the number of clusters in the level i} 

     






ii

ii
ni

ijijijijji pccc
l ,

21 )(  ; 

End for; 
For j=1 till iq  do  

      For j=1 till iq  do  

                


 
ii

iijjjj pp
,

)1(  ; 

      End for; 
                        End for; 
             End for. 
Step 4: Stop. 

3. Mathematical formulation and the extended MOACS approach 
Here, we first propose the mathematical model for the considered problem and then state the 
solution approach.  
Mathematical formulation 
We first recall the undirected Dantzig–Fulkerson–Johnson model for the convergent product 
Steiner tree problem (CPSTP) presented in (Costa et al., 2006). Let  xij and  yi be binary variables 
associated with links Eji ),(  and clusters Vi , respectively. Variable yi is 1 if cluster i 
belongs to the solution, and is 0 otherwise. Similarly, variable xij is 1 if link (i, j) belongs to the 
solution, and is 0 otherwise. For VS  , define E(S) as the set of links with both end nodes in S. 
Assume that terminals are the set N. The mathematical model can then be written as 
Maximize     

Eji
ijij xp

),(

. ,        (1) 

Minimize      
Vi

ii yc . ,        (2) 

Such that 





Vi

i
Eji

ij yx 1
),(

,        (3) 

 




kSi

i
SEji

ij yx
)(),(

,      2:,  SSVSk ,    (4)       

Nhyh  ,1 ,       (5) 

  Ejixij  ,,1,0 ,       (6)       

  Viyi  ,1,0 .        (7)      	
The objectives are to maximize the aggregated benefits and minimize the aggregated costs. 
Constraint (3) guarantees that the number of clusters in a solution is equal to the number of links 
minus one, and constraints (4) are the connectivity constraints. The number of constraints (4) 
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equals 12  VV . As a result, the number of variables and constraints are increased 

exponentially with respect to the number of clusters. Constraints (5) impose the terminal clusters 
to exist in the tree. Relations (6) and (7) show the variable types.  
The extended MOPSO approach 
As mentioned, the STP belong to a class of NP-hard problems. Thus, to solve medium to large-
sized problems, an efficient bi-objective particle swarm optimization (BOPSO) algorithm is 
proposed. 
Classic PSO 
Particle swarm optimization (PSO) has roots in two main aspects. Perhaps more obvious are its 
ties to artificial life (A-life), in general, and to bird flocking, fish schooling, and swarming theory 
in particular. It is also related, however, to evolutionary computing, and has ties to both GA and 
evolutionary programming (Kennedy et al., 1995). 

A swarm is composed of particles such as birds, fishes, bees, etc.. Each particle searches the 
area for food with its velocity and always remembers the best position found. This value is called 
pbest. In addition, each member of the swarm knows the best position found by its best 
informant or by the group globally. This value is called gbest. Therefore, there are three 
fundamental elements for the calculation of the next displacement of a particle:  
1) According to its own velocity.  
2) Towards its best performance.  
3) The best performance of its best informant.  

The way in which these three vectors are combined linearly via confidence coefficients is the 
basis of all versions of the “classic” PSO (Clerc, 2006). In the Proposed BOPSO the approach 
developed by Zhong (2008) is used. 
The Proposed MOPSO   
Because the discrete particle swarm optimization algorithm for the Steiner tree problem is more 
complicated than the standard PSO, we give its flowchart in Figure 5. There are several key 
components in the proposed algorithm, which are the preprocessing operations, the representation, 
the update operations, the improving strategies, updating velocity and position values. 
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(Thomas et al., 1990) is applied to figure out the longest distance and the path between any two 
indirectly connected nodes in the graph. As a result, the graph is transformed to a complete 
graph. 

The other preprocessing operation is finding, the longest distance from each node to all the 
terminal nodes. Then, the nodes are t o  b e  sorted according to the distance in increasing 
order. These points will be considered later in our latest modification, Modification 7, for the 
update operations. 
The representation 
As mention before, the key for STP is to find out the proper intermediate nodes and it is easy 
to generate a maximum spanning tree (MST) based on a binary string in a polynomial time. 
Consequently, the position of a particle is encoded as a binary string as 

 ln21 ...,,, xxxX ll
k
l   in the proposed algorithm, where lix  is 0 or 1 and k denote the kth 

generation and the ith node in the graph, respectively. If 1lix , the ith node is selected as an 

intermediate node or it is a terminal node.  
Remark 1: The bits standing for the terminal nodes are always set to 1. 
The velocities are represented as 













11
2

1
1

00
2

0
1

...,,,

...,,,

n

n

vvv

vvv
V  

such that 
i

i c
v


0 and ,

)1(1

i

i
i c

c
v





 

where 0
iv and 1

iv are real numbers in the internal [0, 1] and denote the probabilities of the ith bit to 

be 0 or 1. Also,   and   are real numbers in the internal [0, 1]. According to Modification 5 

below, the sum of 0
iv and 1

iv is not necessarily equal to 1. 

The update equations 
The particles are updated and evaluated repeatedly until the termination criterion is met. First, 
the parameters are initialized and every particle is given a random position and velocity. 
Then, the positions are saved as lpbest , and evaluated by objective functions to select gbest or 

the non-dominating set. in the generations, a particle is updated by the following two equations: 

),()( 2211
1 k

l
kk

l
k
l

k
l

k
l XgbestrcXpbestrcVV                                                            (8) 

,11   k
l

k
l

k
l VXX                                                                                                                   

(9) 
where k denotes the kth generation. The first equation can be divided into three parts by the 

operator “+”. The parameter ω, called the inertia weight (Shi and Eberhart, 1998, 2001), helps to 
control the influence of pre-velocity. The other two parts are the self-cognitive and the social-
cognitive components. Both 1c  and 2c  are constant real positive numbers, which are used to 

direct the lth particle to lpbest and gbest. And 21 , rr  are random real numbers belonging to 

[0, 1]. After the updating, the new positions will be evaluated again, and lpbest  may be 

replaced and gbest may be updated, if necessary. 
Since the standard PSO is designed for the continuous problems, the update equations (8) 

and (9) in the discrete particle swarm optimization algorithm for the Steiner tree problem have 
to be redefined for STP by the following 7 modifications. 
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 Modification 1: The result of subtraction operator “–” between two positions (binary 
strings) 1X  and 2X  in (8) is defined as a velocity, in which b

iv  is set to 1 if the jth bit in 

1X  is b while it is not in 2X . Otherwise, b
iv  is set to 0. 

Modification 2: In equation (8), the result V of subtraction is multiplied by jj rc  (j = 1, 

2), where jc  is a constant real number and jr  is a random real number belonging to [0, 1]. 

We do the same in our proposed algorithm. As a result, each element is multiplied by a 
unique real r a n d o m  number selected in [0, jc ], because the jr  are spawn randomly. 

Remark 2: If b
iv is greater than 1 after t h e  multiplication, it will be set 1. 

Remark 3: As to V , the result is that each element b
iv in V is multiplied by the same . 

Modification 3: The result of the operator “+” in equation (8) between two velocities is a 
new velocity, that is 21 VVV  . The b

iv in V is the greater one between b
iv1  and b

iv2 . 

Following the three modifications above, the first equation is totally redefined for STP. An 
example is given as follows. 

Assume 2,2,5.0 21  rr  and ),0,1,1,1,0,0,1,1(k
lpbest ),0,1,0,1,0,1,1,1(kgbest

.
1,0,0,0,8.0,2.0,0,6.0

0,1,0,0,2.0,0,0,4.0








k

lV  

So .
0,1,0,0,0,0,0,0

0,0,0,0,0,8.0,0,0
)(11

1
1 








 k

l
k
l

k
l XpbestrcV  Suppose that 1.5 and8.011 rc  for each b

iv  

( )0b
iv . 

Let, .
0,6.0,0,0,0,0,0,0

0,0,7.0,0,0,0,0,0
)(22

1
2 








 k

l
kk

l XgbestrcV  Suppose that 0.6 and7.022 rc  for 

each b
iv  ( )0b

lv . 

 Then,  .
5.0,1,0,0,4.0,1.0,0,3.0

0,5.0,7.0,0,1.0,8.0,0,2.01
2

1
1

1









  k

l
k

l
k

l
k

l VVVV   

The second  update equation is composed of four modifications. 
Modification 4: The next position 1k

lX is initialized to be an empty string. 

Modification 5: Generate a random number  1,0 , and if b
iv in  1k

lV is greater than  , then 

the ith bit of 1k
lX is set to b. If both 0

iv and 1
iv  are greater than  , then the ith bit is set to 0 or 1 

randomly. And, if both 0
iv and 1

iv  are smaller than  , then the ith bit is set to “-”, which stands 

for the absent bits. After these two steps, 1k
lX  is a string with several absent bit. 

Modification 6: A new parameter 3c  is added to equation (9) to keep a balance between 

exploitation and exploration, that is, the second update equation is modified as: 

.33
11 k

l
k

l
k
l XrcVX    

For each absent bit in k
lX , a random real number 3r  belonging to [0, 1] is spawned, and 

if 33rc , t h e n  the corresponding bit in k
lX is copied to 1k

lX .  
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However, the number of 0b
iv in 1k

lV  increases rapidly. So, if we choose as many as possible 

bits in k
lX , then almost all elements in 1k

lX will come from k
lX , and the algorithm stagnates. 

Modification 7: Because several bits are perhaps absent in 1k
lX , a strategy to fill the blanks is 

adopted. For the ith absent bit, a random real number t belonging to [0, 1] is generated, if 
nrandt i / , where irand is the rank of the ith node figured out in the preprocessing operations, 

and n is the number of nodes. Otherwise, the ith bit is set to 0. So, for each node, the farer to all 
the terminals it is, the more opportunity to be selected it will have. 

Assume ,2,5.0 3  c and 1k
lV is given as in the example after Modification 3. So, a 

possible case is )1,0,0,,,0,,(1 k
lX . 

Assume 7.0,4.0,5.0,133 rc for the first, second, forth and the fifth bits, respectively. Then, 

the first, second and the fifth bits in k
lX are copied to 1k

lX , and so )1,0,0,1,,0,1,1(1 k
lX . 

Suppose nrandt /4 . Then 1k
lX = )1,0,0,1,0,0,1,1( . 

The modified Prim’s algorithm and the trimming strategy 
According to the seven modifications, 1k

lX is a new n bit binary string. Because the solution of 

CPSTP is a maximum spanning tree, we need to design a method to convert a binary string to a 
corresponding MST, and then the benefits of the edges of MST and the cost of nodes of MST 
show the fitness of the particle. The Prim’s algorithm (Zhong et al., 2008) is an effective 
algorithm to do such a work in a connected graph. However, because it is not known whether all 
the selected nodes in 1k

lX are connected directly, we modify the prim’s algorithm as follows. 

Definition 1: A real edge is an edge connecting two nodes in the graph. 
Definition 2: A virtual edge is the longest path connecting two nodes, which contain at least 
one intermediate node. This is figured out by Floyd’s algorithm (Thomas et al., 1990) in the 
preprocessing operation. And, restoring a virtual edge means using the intermediate nodes 
and real edges to replace it. 
Definition 3: S is the set containing nodes already involved in MST. And, ~S is the set whose 
members are candidate nodes for MST. 

The modified Prim’s algorithm is: 
a. Choose a node randomly to be long to S, and put the other nodes in ~S. 
b. Find out the longest real edge connecting one node in S and another in ~S. If succeeded, 

then move the selected node from ~S to S and repeat this step until ~S is empty. If no real 
edges exist between S and ~S, then go to c. 

c. Find out the longest virtual edge connecting one node in S and another in ~S, and then 
move the selected node from ~S to S and record the virtual edge, and go to b. If ~S is 
empty, then go to d. 

d. Restore the recorded virtual edges and t e r m i n a t e  the modified Prim’s algorithm. 
Note that after termination, the MST containing all the selected nodes in 1k

lX is generated. Due 

to the restoring operation, some additional nodes may also be involved in MST. 
Updating Velocity and Position Values 
In solving multi-objective problems by PSO, the most important item to be paid more attention is 
the selection procedure for gbest and pbest corresponding to each particle when the velocity and 
position of particles should be updated. 

The analogy of PSO with evolutionary algorithms makes it evident that using a Pareto ranking 
scheme can be a straightforward way to extend the approach to handle multi-objective 
optimization problems. The historical record of best solutions found by a particle (i.e., an 
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individual) can be used to store non-dominating solutions generated in the past, being similar to 
the notion of elitism used in evolutionary multi-objective optimization. The use of global 
attraction mechanisms combined with a historical archive of previously found non-dominating 
vectors motivate convergence towards Ptrue (Coello Coello et al., 2007). 

For each particle, there is a pbest archive that can save all the best positions found by the 
particle. Actually, these positions are non-dominating solutions and each particle has its own 
approximate Pareto solutions archive. When a new solution is obtained, it is compared with the 
ones in pbest archive based on the domination principle. If this new solution dominates any other 
in the pbest archive, then that archived solution is removed from the pbest archive and the new 
solution is placed in the archive. Moreover, there is a gbest archive for the group and the global 
best solutions are saved. This set of Pareto solutions are obtained using the fast non-dominated 
sorting procedure proposed by Deb et al. (2002). Updating the gbest archive is done like updating 
the pbest archive, that is, if a new solution dominates any other in the gbest archive, then that 
archived solution is removed from the gbest archive and the new solution is placed in the archive. 

To maintain diversity in the search and escape from the local optima, each gbest has a chance 
to be selected. The steps of this selection procedure are presented below: 

Step 1.	Divide the number of the particles into the number of the gbest archive. 
Step 2.	Consider the remainder. If the remainder is equal to 0, then the number of times each 

member of gbest can be selected to update the velocity of the particles equals the sub-multiple 
value, and go to Step 4; otherwise, go to Step 3. 

Step 3.	Calculate the crowding distance proposed by Deb et al. (2002) for each member of gbest. 
Sort these obtained values in descending order and choose the first k members of gbest (as many as 
the remainder value). The number of times each member of gbest, except for these k members of 
gbest, can be selected to update the velocity of the particles is equal to the sub-multiple value. 
However, these k members of gbest have one more chance than other members to be selected.   

Step 4.	 Select gbest and a pbest for each particle. To assign the gbest to a particle, the 
minimum Euclidean distance of that particle from the gbests, which still has a chance to be 
selected, is considered. It means that the nearest gbest to each particle, which still has a chance, 
is chosen. To assign a pbest to a particle, the pbest with the maximum Euclidean distance from 
the gbest assigned to that particle is chosen. Stop. 

The following numerical example describes the mentioned steps clearly. Assume that a PSO 
algorithm has 90 particles and the number of members of gbest in the gbest archive is 7. If we 
divide 90 into 7, the sub-multiple value is equal to 12. So, each member of gbest can be selected 12 
times. However, the remainder does not equal 0. It means that 6 particles do not have gbest values 
for updating velocity and position values. In this case, we calculate the crowding distance for each 
member of gbest and sort the resulting numbers in descending order. The first 6 members of gbest 
with large crowding distance values are considered. These members can be selected 13 times. 

When MOPSO is iterated as many as a pre-specified value, the multi-objective optimization 
process is terminated and the set of solutions of the final gbest archive is reported as the 
Pareto/efficient solutions for the CPSTP problem. 

4. An experimental study 
Here, to illustrate the applicability and effectiveness of our proposed multiple optimization 
process, an experiment is worked out. Consider an undirected graph G=(i, j) with the cluster set  

 nV ,...,1  and the link set   jiVjijieE  ,,:, , non-negative profits, pe, associated 
with every link and non-negative costs, ci, associated with the clusters. In this Steiner tree 
problem, the aim is to find the tree maximizing the revenue, i.e., the sum of the profits of the 
links in  pe  spanned by the solution, and minimizing the sum of the costs of the clusters in the 
solution. On the one hand, we would like to have all links spanned by the solution avoiding the 
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