JIEMS

Journal of Industrial Engineering and Management Studies

Vol. 2, No. 1, pp. 41-60

www.jiems.icms.ac.ir

Particle swarm optimization for a bi-objective web-based convergent
product networks

R. Hassanzadeh!, I. Mahdavi" !, N. Mahdavi-Amiri*

Abstract

Here, a collection of base functions and sub-functions configure the nodes of a web-based (digital)
network representing functionalities. Each arc in the network is to be assigned as the link between two
nodes. The aim is to find an optimal tree of functionalities in the network adding value to the product in
the web environment. First, a purification process is performed in the product network to assign the links
among bases and sub-functions. Then, numerical values as benefits and costs are determined for arcs and
nodes, respectively. To handle the bi-objective Steiner tree, a particle swarm optimization algorithm is
adapted to find the optimal tree determining the value adding sub-functions to bases in a convergent
product. An example is worked out to illustrate the applicability of the proposed approach.

Keywords: Convergent product; Web-based (digital) network; Bi-objective programming; Steiner tree;
Particle Swarm Optimization (PSO).

Received: April 2014-11
Revised: May 2014-15
Accepted: July 2014-23

1. Introduction

Convergence in electronics and communications sectors has enabled the addition of disparate
new functionalities to existing base functions (e.g., adding mobile television to a cell phone or
Internet access to a personal digital assistant, PDA). An important managerial issue for such
convergent products (CPs) is determination of new functionalities adding more value to a given
base. For example, a manufacturer of PDAs may wonder whether it would be a good idea to add
satellite radio to it (i.e., a new functionality incongruent with the base), or whether it would be
better to add electronic Yellow Pages (i.e., a new functionality congruent with the functions of a
PDA). In addition, determining the significance of the base being primarily associated with
utilitarian consumption goals (e.g., a PDA), or with hedonic ones (e.g., an MP3 music player) is
important.

Convergent product is similar to product assembly where different parts of a product get
together to configure a final product. Thus, a designer (modeler) for assembly, as a convergent
product, should be able to specify important features affecting the final product. These features
may in turn help optimize the manufacturing process.

“Corresponding Author.
! Dep. Of Management & Technology, Mazandaran University of Science and Technology, Mazandaran, Iran

R. Hassanzadeh, I. Mahdavi, N. Mahdavi-Amiri

For instance, the ability of the assembly modeler to furnish information on interferences and
clearances between mating parts is particularly useful. Such information would enable the
designer to eliminate interference between two mating parts where it is impractical to provide for
an interference based on physical assembly requirements. This activity can be accomplished
within the modeling program, thereby averting any loss of productivity that might occur due to
interferences on the shop floor. Also, knowledge of mass properties for the entire assembly,
particularly the center of gravity, may permit the designer to redesign the assembly based on
equilibrium and stability considerations. In the absence of such information, the presence of an
elevated center of gravity and the attendant instability would only be detected after physical
assembly on the shop floor. Three-dimensional exploded views generated by the assembly
modeler can help designers verify whether obvious violations of common design for assembly
(DFA) guidelines are present, such as absence of chamfers on mating parts.

Corresponding analyses can be achieved within the framework of the assembly modeler.
Additionally, the assembly model may be imported into third-party programs that can perform
kinematic, dynamic, or tolerance analysis. Tolerance analysis is quite relevant to the physical
assembly process. With the input of the assembly model and other user-supplied information
such as individual part tolerances, tolerance analysis programs can check the assembly for the
presence of tolerance stacks. Tolerance stacks are undesirable elements in the sense that
acceptable tolerances on individual parts are combined to produce an unacceptable overall
dimensional relationship, thereby resulting in a malfunctioning or nonfunctioning assembly.
Stacks are usually discovered during physical assembly, at which point any remedial procedure
becomes expensive in terms of time and cost. Tolerance analysis programs can help the user
eliminate or significantly reduce the likelihood of stacks being present.

Based on the results of the tolerance analysis, assembly designs may be optimized by
modifying individual part tolerances. Note, however, that tolerance modifications have cost
implications; in general, tighter tolerances increase production costs. Engineering handbooks
contain tolerance charts indicating the range of tolerances achieved by manufacturing processes
such as turning, milling, and grinding. Designers use these tables as guides for rationally
assigning part tolerances and selecting manufacturing processes.

A more effective methodology for optimizing product assembly and convergent product is the
tree model, whereas the optimization decision is based on a decision tree. One useful tree for
assembly modelers as a multiple optimization tool is the Steiner tree.

The Steiner tree problem (STP) is a much actively investigated problem in graph theory and
combinatorial optimization. This core problem poses significant algorithmic challenges and
arises in several applications where it serves as a building block for many complex network
design problems. Given a connected undirected graph G=(V,E), where V' denotes the set of nodes
and E is the set of edges, along with a weight C, associated with each edge e € E , the Steiner
tree problem seeks a minimum-weight subtree of G that spans a specified subset N V7 of
terminal nodes, optionally using the subset N=V-N of Steiner nodes. The Steiner tree problem is
NP-hard for most relevant classes of graphs (Johnson, 1985).

The Steiner problem in graphs was originally formulated by Hakimi (1971). Since then, the
problem has received considerable attention in the literature. Several exact algorithms and
heuristics have been proposed and discussed. Hakimi (1971) remarked that an Steiner minimal
tree (SMT) for X in a network G=(V,E) can be found by enumerating minimum spanning trees
of subgraphs of G induced by supersets of X. Lawler (1976) suggested a modification of this

algorithm, using the fact that the number of Steiner points is bounded by |X|—2, showing that
not all subsets of ¥ need to be considered. Restricting NP-hard algorithmic problems regarding

arbitrary graphs to a smaller class of graphs will sometimes, yet not always, result in
polynomially solvable problems.

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 2, No. 1 Page 42

Particle swarm optimization for a bi-objective web-based convergent product networks

Two special cases of the problem, N = V' and N = 2, can be solved by polynomial time
algorithms. When N = V, the optimal solution of STP is obviously the spanning tree of G and
thus the problem can be solved by polynomial time algorithms such as Prim’s algorithm. When
N = 2, the shortest path between two terminal nodes, which can be found by Dijkstra’s
algorithm, is exactly the Steiner minimum tree.

A survey of Steiner tree problem was given by Hwang and Richards (1992). Several exact
algorithms have been proposed such as dynamic programming technique given by Dreyfuss and
Wagner (1971), Lagrangean relaxation approach presented by Beasley (1989), brand-and-cut
algorithm used by Koch and Martin (1998). Duin and Volgenant (1989) presented some
techniques to reduce the size of the graphs for the GSP. Another approach for the GSP is using
approximation algorithms to find a near-optimal solution in a reasonable time.

Some heuristic algorithms have been developed such as Shortest Path Heuristic (SPH) given
by Takahashi and Matsuyama (1980), Distance Network Heuristic (DNH) presented by Kou et
al. (1981), Average Distance Heuristic (ADH) proposed by Rayward-Smith and Clare (1986)
and Path-Distance Heuristic (PDH) presented by Winter and MacGregor Smith (1992).
Mehlhorn (1988) modified the DNH to make the algorithm faster. Robins and Zelikovsky (2000,
2005) proposed algorithms improving the performance ratio.

Recently, metaheuristics have been considered to arrive at better methods for finding
solutions closer to the optimum. Examples are Genetic Algorithm (GA) (Esbensen, 1995;
Kapsalis, et al., 1993), GRASP (Martins et al., 1999) and Tabu search (Ribeiro and Souza,
2000). Although these algorithms have polynomial time complexities, in general, but they cost
enormously on large input sets. To deal with the cost issue, some parallel metaheuristic
algorithms have been proposed such as parallel GRASP (Martins et al., 1998), parallel GRASP
using hybrid local search (Martins et al., 2000) and parallel GA (Fatta et al., 2003).

Here, using the Steiner tree, a bi-objective mathematical model is developed for the convergent
product. The remainder of our work is organized as follows. In Section 2, the proposed model of
the problem is described and two useful network algorithms are given. Section 3 presents the
mathematical model and a Particle Swarm Optimization algorithm. Section 4 works out an
experimental study to illustrate the proposed algorithm. We conclude in Section 5.

2. The proposed model

In our proposed product digital network, a group of functionalities are considered for a product.
Customers view their opinions for classifying the functionalities into base functions and sub-
functions. We make use of this classification in developing our model. The classification
procedure is as follows. First, the customer chooses a product in a list of products being
produced in a company. The functionalities of the product are viewed in a web page. Then, the
customer clicks either function or sub-function for any of the functionalities. Consequently,
customer clicks the classify button and observes the classified functionalities in a separate web
page. This process is shown in Figure 1.

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 2, No. 1 Page 43

R. Hassanzadeh, I. Mahdavi, N. Mahdavi-Amiri

S

o
Ta

Customer

Function/Subfunction Classification

Classification Result
LED Functions Subfunctions
K d
eypa % LCD ‘ Memory ‘

‘ Video ‘

‘ Photo ‘

Software installation

‘ GPRS ‘

l Base Function
l Subfunction

Figure 1: The classification process

Here, we weigh all functionalities (both base functions and sub-functions) considering different
significant attributes affecting the value of a product. Therefore, we consider the following
mathematical notations.

2.1. Mathematical notations:

iand; Index for functions and sub-functions; iandj=1,....n+m
k Index for attributes; k=1,...p
Fj The score of triplet comparison of functions (or sub-functions) with functions (or sub-

functions) considering different attributes.
The three dimension comparison matrix F is shown in Figure 2. Note that customers fill in this

matrix using numerical values F,, <[0.1].

‘ Func.1 Func m Subfunc. m+1 ---- Subfunc. m+n

Func.1

Func. m N

Subfunc. m+1 | ——»

Subfunc. m+ n

Figure 2: The three dimensional comparison matrix

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 2, No. 1 Page 44

Particle swarm optimization for a bi-objective web-based convergent product networks

norm

This matrix is normalized to remove the scales. The normalized values are shown by F,, . A

norm

threshold value of @ is considered in a way that the F, > & are chosen to be assigned as links.
These links configure a network called purified network as shown in Figure 3.

Function Subfunction
Figure 3: A purified network

Now, using the purified network, we characterize the arcs. To do this, two processes of leveling
and clustering are performed. For leveling, we set the base functions at level zero, sub-functions
with one outlet to the previous level in level 1, and so on. Thus, an / level network is configured.
The proposed algorithm is given next.

Algorithm 1: Leveling to configure a leveled network.

Step 0: Set the base functions at level 0. Let /=0.
Step 1: While sub-functions exist for processing do
Find sub-functions with a link to a function (or sub-function) at level / and put
them in level /+1. Let /=/+1.
End while.
{/ is the number of levels.}
Step 2: Stop.

The nodes of leveled network are associated with given costs. We are looking for the benefit
each link provides. Here, a clustering approach is considered. Clusters are formed as follows: at
each level, all sub-functions linked to a single parent is grouped in a cluster. Therefore, clusters
consisting different nodes are configured. These clusters are being configured as a new network.
The leveling and clustering processes are shown schematically in Figure 4. Later, we apply the
Steiner tree methodology to optimize this network. The proposed algorithm for clustering is
given below.

Algorithm 2: Clustering of levels in a leveled network.

Step 0: Set each node at level 0 to be a cluster.
Step 1: For i=1to /do
{Form clusters at level i}
Cluster all sub-functions at level i linked to a single parent at level i-1.
Solve a zero/one mathematical program for level / (we will discuss the
corresponding mathematical program later on).
Perform purification of benefits and costs at level / (as discussed later on).

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 2, No. 1 Page 45

R. Hassanzadeh, I. Mahdavi, N. Mahdavi-Amiri

End for
Step 2: Stop.

Leveling

w Level 0

13
15
”/J/

\i,\ii‘ \i‘ \i‘ \i‘ Level 2

L4

1.1

Level 1

1.2

Level /

1.2

1.1 3

H

H
@
E

(Suuasn)

Figure 4: Leveling and clustering processes

Here, the clustered network is used to configure a tree (the Steiner tree) keeping the base
functions and optimizing two objectives of minimal cost and maximal profit in the convergent
product value adding process. Next, we formulate our adapted proposed Steiner tree model. In
the proposed network, node i (function or sub-function i) have two costs:
ci;- software cost,
ciz- hardware cost.

Each arc is accompanied with a benefit p, which is obtained from nodes i and i". With

respect to the solution approach and using the Steiner tree in the proposed network and the NP-
hardness of the problem, we used leveling and clustering processes to reduce the complexity of the
problem. In clustering, it is not acceptable for any node to be included in more than one cluster in
any level. To guarantee this, for each level /, a zero/one mathematical program is developed in
order to properly appropriate nodes in clusters with the aim to minimize the total cost.

Next, we give the zero/one mathematical program and the purification procedure for each level.

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 2, No. 1 Page 46

Particle swarm optimization for a bi-objective web-based convergent product networks

The zero/one mathematical program for level I:

min TZZ Z(a,-j-c,-j-l+ﬂycyz)zy

ien; jemy;

Zzﬁzl i=1,.. W1,

Jemy;

" if nodeiisin cluster ;
o, otherwise

i1 O € [0,1], Vi, J,

my; : set of indices of clusters at level / where node i is included,
n; - set of indices of different nodes in level /,

c;2 - hardware cost of node 7 in cluster j (c;2= ci2, for all i and /),
c;1: software cost of node i in cluster j (c;1= ci, for all i and j),
a; - the software reduction cost coefficient of node i in cluster j,
B; . the hardware reduction cost coefficient of node 7 in cluster ;.
Purifying benefits and costs at level I:

To determine the cost for each cluster at level /, we use

Cy = Z (aijcy’l + ﬁg’jcijZ) - Zpii"

ien, Vi,i'

where,

i Oy € [0,1], Vi, J,

c;i - cost of cluster j in level /

a; - the software reduction cost coefficient of node 7 in cluster j,

G;: the hardware reduction cost coefficient of node i in cluster ;,

p;» : the benefit of an arc connecting node i in cluster j to node ;" in cluster j, and c;1, ¢, and
n; are as defined above.

Also, to adjust the combined arc benefits in clusters, the following equation is used:

Py = (1+7/1_'/')Zpii’

Vi, i

where,

where, Vi,i',j ,j',
p ;18 the adjusted arc benefit connecting cluster ; to cluster ;",

P, 1s the benefit of an arc connecting node i in cluster j to node i" in cluster ', and
7 ; is the added value configured from nodes in clusters j and ;'.

Algorithms 1 and 2 are transformed into Algorithm 3 using the aforementioned considerations.
Also, each node should be in only one cluster at level /. The node having a minimal cost is
chosen for the level /. Then, instead of using the zero/one mathematical program for level /, we
can use step 3 of Algorithm 3. This leads a reduction of computations by avoiding the need for
using the zero/one programs.

Algorithm 3: leveling and clustering in the network.

Step 0: Set the base functions at level 0. Let /=0.
Step 1: While sub-functions exist for processing do
Find sub-functions with a link to a function (or sub-function) at level / and place
them at level /+1; Let /=/+1,
End while.
{/ is the number of levels}
Step 2: Set each node at level 0 to be a cluster.
Step 3: For i=1till /do
{Form clusters at level i}

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 2, No. 1 Page 47

R. Hassanzadeh, I. Mahdavi, N. Mahdavi-Amiri

Cluster all sub-functions at level i linked to a single parent at level i-1;
While |n,|>0 do
Select k en, suchthat a,,c,, + B¢, = Ejz?{akjckfl +,B,g.c,q.2}. Set z,, =1

and z,, =0, Vjem, , j#p;

n, < n, —{k},

End while;

For j=1till g, do {g, is the number of clusters in the level i}

C; = Z(aijcijl + ﬂ[jcijZ) - an' ;

ien, Yi,i’
End for;
For j=1till g, do
For ;' =1till g, do
Py = (1+ 7‘,‘7’)21)1‘1" ;
Vi, i
End for;
End for;
End for.
Step 4. Stop.

3. Mathematical formulation and the extended MOACS approach

Here, we first propose the mathematical model for the considered problem and then state the
solution approach.

Mathematical formulation

We first recall the undirected Dantzig—Fulkerson-Johnson model for the convergent product
Steiner tree problem (CPSTP) presented in (Costa et al., 2006). Let x;; and y; be binary variables
associated with links (i, j)) € E and clusters i eV, respectively. Variable y; is 1 if cluster i

belongs to the solution, and is 0 otherwise. Similarly, variable x; is 1 if link (i, ;) belongs to the
solution, and is O otherwise. For S < V', define E(S) as the set of links with both end nodes in S.
Assume that terminals are the set N. The mathematical model can then be written as

Maximize Y p,.x; . 1)
(i,j)eE »
Minimize > c,.y,,)
ieV
Such that
2% =2y -1 @)
(i,j)eE ieV
Yx,< Dy, VkeScV, vS:§|=2, @)
(i,/)eE(S) ieS—{k}
v, =1 VheN,)
X; € {01, VijeE, (6)
y, € {0,1}, VielV. (7

The objectives are to maximize the aggregated benefits and minimize the aggregated costs.
Constraint (3) guarantees that the number of clusters in a solution is equal to the number of links
minus one, and constraints (4) are the connectivity constraints. The number of constraints (4)

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 2, No. 1 Page 48

Particle swarm optimization for a bi-objective web-based convergent product networks

equals Z‘V‘—|V|—1. As a result, the number of variables and constraints are increased

exponentially with respect to the number of clusters. Constraints (5) impose the terminal clusters
to exist in the tree. Relations (6) and (7) show the variable types.

The extended MOPSO approach

As mentioned, the STP belong to a class of NP-hard problems. Thus, to solve medium to large-
sized problems, an efficient bi-objective particle swarm optimization (BOPSO) algorithm is
proposed.

Classic PSO

Particle swarm optimization (PSO) has roots in two main aspects. Perhaps more obvious are its
ties to artificial life (A-life), in general, and to bird flocking, fish schooling, and swarming theory
in particular. It is also related, however, to evolutionary computing, and has ties to both GA and
evolutionary programming (Kennedy et al., 1995).

A swarm is composed of particles such as birds, fishes, bees, etc.. Each particle searches the
area for food with its velocity and always remembers the best position found. This value is called
pbest. In addition, each member of the swarm knows the best position found by its best
informant or by the group globally. This value is called gbest. Therefore, there are three
fundamental elements for the calculation of the next displacement of a particle:

1) According to its own velocity.
2) Towards its best performance.
3) The best performance of its best informant.

The way in which these three vectors are combined linearly via confidence coefficients is the
basis of all versions of the “classic” PSO (Clerc, 2006). In the Proposed BOPSO the approach
developed by Zhong (2008) is used.

The Proposed MOPSO

Because the discrete particle swarm optimization algorithm for the Steiner tree problem is more
complicated than the standard PSO, we give its flowchart in Figure 5. There are several key
components in the proposed algorithm, which are the preprocessing operations, the representation,
the update operations, the improving strategies, updating velocity and position values.

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 2, No. 1 Page 49

R. Hassanzadeh, 1. Mahdavi, N. Mahdavi-Amiri

Preprocessing
operations

=1 <

v

Create an MST by the modified Prim’s
algorithm and trim the tree to evaluate X

v

Update velocity Vi

v

Choose some bits from 7= for x *=!
¢ No
Choose some bits from en Xk for ¥ i

v

Fill the absent bits of y =

v

Update pbest,
v

I=s1ze? I=1+1

v Yes

Update gpest

Ending condition is
true?

J’ Yes

Print non-
dominating
set (gbest)

v

Figure 5: Flowchart of the multi objective PSO algorithm

The preprocessing operations

The solution of the STP is always a connected tree. However, because the graph G is
not guaranteed to be a complete graph, a selected collection of nodes may not be adequate to
represent a maximum spanning tree (MST). To overcome this obstacle, Floyd’s algorithm

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 2, No. 1 Page 50

Particle swarm optimization for a bi-objective web-based convergent product networks

(Thomas et al., 1990) is applied to figure out the longest distance and the path between any two
indirectly connected nodes in the graph. As a result, the graph is transformed to a complete
graph.

The other preprocessing operation is finding, the longest distance from each node to all the
terminal nodes. Then, the nodes are to be sorted according to the distance in increasing
order. These points will be considered later in our latest modification, Modification 7, for the
update operations.

The representation

As mention before, the key for STP is to find out the proper intermediate nodes and it is easy
to generate a maximum spanning tree (MST) based on a binary string in a polynomial time.
Consequently, the position of a particle is encoded as a binary string as

X! =(x,,x,,...,x,,) in the proposed algorithm, where x, 1s 0 or 1 and k denote the kth

generation and the ith node in the graph, respectively. Ifx, =1, the ith node is selected as an

intermediate node or it is a terminal node.
Remark 1: The bits standing for the terminal nodes are always set to 1.

The velocities are represented as

SUCh that Vio = iand V,'l — M,
¢ c

1 1

where v’and v;are real numbers in the internal [0, 1] and denote the probabilities of the ith bit to
be 0 or 1. Also, 2 and y are real numbers in the internal [0, 1]. According to Modification 5
below, the sum of v and v'is not necessarily equal to 1.

The update equations
The particles are updated and evaluated repeatedly until the termination criterion is met. First,
the parameters are initialized and every particle is given a random position and velocity.

Then, the positions are saved as pbest,, and evaluated by objective functions to select gbest or
the non-dominating set. in the generations, a particle is updated by the following two equations:

Vit = @l + ey (pbest| = X[)+c,r, (gbest” - X[), ®
Xlk+l — Xlk +I/lk+1'
9)

where & denotes the kth generation. The first equation can be divided into three parts by the
operator “+”. The parameter w, called the inertia weight (Shi and Eberhart, 1998, 2001), helps to
control the influence of pre-velocity. The other two parts are the self-cognitive and the social-
cognitive components. Both ¢, and ¢, are constant real positive numbers, which are used to

direct the /th particle to pbest,and gbest. And r,r, are random real numbers belonging to
[0, 1]. After the updating, the new positions will be evaluated again, and pbest, may be

replaced and ghest may be updated, if necessary.

Since the standard PSO is designed for the continuous problems, the update equations (8)
and (9) in the discrete particle swarm optimization algorithm for the Steiner tree problem have
to be redefined for STP by the following 7 modifications.

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 2, No. 1 Page 51

R. Hassanzadeh, I. Mahdavi, N. Mahdavi-Amiri

Modification 1: The result of subtraction operator “-” between two positions (binary
strings) X, and X, in (8) isdefined as a velocity, in which v" is set to 1 if the jth bit in
X, is bwhile itis notin X, . Otherwise, v’ is setto 0.

Modification 2: In equation (8), the result » of subtraction is multiplied by c;r; (j = 1,
2), where ¢, is a constant real number and r; is a random real number belonging to [0, 1].

We do the same in our proposed algorithm. As a result, each element is multiplied by a
unique real random number selected in [0, ¢,], because the r; are spawn randomly.

Remark 2: If v/ is greater than 1 after the multiplication, it will be set 1.

Remark 3: As towV , the result is that each element v”in ¥ is multiplied by the same o .
Modification 3: The result of the operator “+” in equation (8) between two velocities is a
new velocity, that is ¥ =¥, +,. The v’in V is the greater one between v, and v, .

Following the three modifications above, the first equation is totally redefined for STP. An
example is given as follows.

Assume @=05,1,=2,1,=2 and pbest =(1,1,0,0,1110), ghest* =(111,0,.0.1,0),
P 0.4,0,0, 0.2,0,010
0.6,0,0.2,0.8,0,0,0,1)

i

0,0,0.8,0,0,0,0,0

So Vi = ey (pestf — X 1) =
P ¢, (pbest, 1) [010,0 ,0,0,0,1,0

]. Suppose that ¢,7, =0.8 and 1.5 for each v/

(v! #0).
0,0,0,0,0,0.7,0 ,0

Let, V5" =c,r,(gbest" — X[) = [o,o,o,o,o,o ,0.6,0

J. Suppose that c,r, =0.7 and 0.6 for
each v’ (v #0).
0.2,0,0.8,0.1,0,0.7,0.5,0
Then, V" =V +V " +V5t = :
0.3,0,0.1,04,00 1,05
The second update equation is composed of four modifications.
Modification 4: The next position X, is initialized to be an empty string.

Modification 5: Generate a random number « < [0,1], and if v in ¥**!is greater than «, then
the ith bit of X" issetto b. If both vand v' are greater than « , then the ith bit is set to 0 or 1
randomly. And, if both v? and v,.l are smaller than «, then the ith bit is set to “-”, which stands
for the absent bits. After these two steps, X, is a string with several absent bit.
Modification 6: A new parameter c, is added to equation (9) to keep a balance between
exploitation and exploration, that is, the second update equation is modified as:

XM=V ®@cyr X/,
For each absent bit in X, a random real number 7, belonging to [0, 1] is spawned, and
if c;r; >a, then the corresponding bitin X is copied to X ™.

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 2, No. 1 Page 52

Particle swarm optimization for a bi-objective web-based convergent product networks

However, the number of v’ =0in ¥,*** increases rapidly. So, if we choose as many as possible
bits in X, then almost all elements in X, will come from X, and the algorithm stagnates.

Modification 7: Because several bits are perhaps absent in X", a strategy to fill the blanks is

adopted. For the ith absent bit, a random real number ¢ belonging to [0, 1] is generated, if
t <rand,In, where rand,is the rank of the ith node figured out in the preprocessing operations,

and #n is the number of nodes. Otherwise, the ith bitis set to 0. So, for each node, the farer to all
the terminals it is, the more opportunity to be selected it will have.

Assume a=0.5, ¢, =2,and ¥/"is given as in the example after Modification 3. So, a
possible case is X" = (-,-,0,—,-,0,0,0).

Assume c,r; =1,0.5,0.4,0.7 for the first, second, forth and the fifth bits, respectively. Then,
the first, second and the fifth bits in X are copied to X;**, and so X,* = (1,1,0,-,1,0,0,1).

Suppose ¢ < rand , I n. Then X, =(11,0,0,1,0,0,1).

The modified Prim’s algorithm and the trimming strategy
According to the seven modifications, X' is a new n bit binary string. Because the solution of

CPSTP is a maximum spanning tree, we need to design a method to convert a binary string to a
corresponding MST, and then the benefits of the edges of MST and the cost of nodes of MST
show the fitness of the particle. The Prim’s algorithm (Zhong et al., 2008) is an effective
algorithm to do such a work in a connected graph. However, because it is not known whether all

the selected nodes in X are connected directly, we modify the prim’s algorithm as follows.

Definition 1: A real edge is an edge connecting two nodes in the graph.

Definition 2: A virtual edge is the longest path connecting two nodes, which contain at least
one intermediate node. This is figured out by Floyd’s algorithm (Thomas et al., 1990) in the
preprocessing operation. And, restoring a virtual edge means using the intermediate nodes
and real edges to replace it.

Definition 3: S is the set containing nodes already involved in MST. And, ~S is the set whose
members are candidate nodes for MST.

The modified Prim’s algorithm is:

a. Choose a node randomly to be long to S, and put the other nodes in ~S.

b. Find out the longest real edge connecting one node in S and another in ~S. If succeeded,
then move the selected node from ~S to S and repeat this step until ~S is empty. If no real
edges exist between S and ~S, then go to c.

c. Find out the longest virtual edge connecting one node in S and another in ~S, and then
move the selected node from ~S to S and record the virtual edge, and go to b. If ~S'is
empty, then go to d.

d. Restore the recorded virtual edges and terminate the modified Prim’s algorithm.

Note that after termination, the MST containing all the selected nodes in X" is generated. Due

to the restoring operation, some additional nodes may also be involved in MST.
Updating Velocity and Position Values
In solving multi-objective problems by PSO, the most important item to be paid more attention is
the selection procedure for gbest and pbest corresponding to each particle when the velocity and
position of particles should be updated.

The analogy of PSO with evolutionary algorithms makes it evident that using a Pareto ranking
scheme can be a straightforward way to extend the approach to handle multi-objective
optimization problems. The historical record of best solutions found by a particle (i.e., an

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 2, No. 1 Page 53

R. Hassanzadeh, I. Mahdavi, N. Mahdavi-Amiri

individual) can be used to store non-dominating solutions generated in the past, being similar to
the notion of elitism used in evolutionary multi-objective optimization. The use of global
attraction mechanisms combined with a historical archive of previously found non-dominating
vectors motivate convergence towards Ptrue (Coello Coello et al., 2007).

For each particle, there is a pbest archive that can save all the best positions found by the
particle. Actually, these positions are non-dominating solutions and each particle has its own
approximate Pareto solutions archive. When a new solution is obtained, it is compared with the
ones in pbest archive based on the domination principle. If this new solution dominates any other
in the pbest archive, then that archived solution is removed from the pbest archive and the new
solution is placed in the archive. Moreover, there is a gbest archive for the group and the global
best solutions are saved. This set of Pareto solutions are obtained using the fast non-dominated
sorting procedure proposed by Deb et al. (2002). Updating the gbest archive is done like updating
the pbest archive, that is, if a new solution dominates any other in the gbest archive, then that
archived solution is removed from the gbest archive and the new solution is placed in the archive.

To maintain diversity in the search and escape from the local optima, each gbest has a chance
to be selected. The steps of this selection procedure are presented below:

Step 1. Divide the number of the particles into the number of the gbest archive.

Step 2. Consider the remainder. If the remainder is equal to O, then the number of times each
member of ghest can be selected to update the velocity of the particles equals the sub-multiple
value, and go to Step 4; otherwise, go to Step 3.

Step 3. Calculate the crowding distance proposed by Deb et al. (2002) for each member of gbest.
Sort these obtained values in descending order and choose the first £ members of gbest (as many as
the remainder value). The number of times each member of gbest, except for these £ members of
gbest, can be selected to update the velocity of the particles is equal to the sub-multiple value.
However, these £ members of gbest have one more chance than other members to be selected.

Step 4. Select gbest and a pbest for each particle. To assign the gbest to a particle, the
minimum Euclidean distance of that particle from the gbests, which still has a chance to be
selected, is considered. It means that the nearest gbest to each particle, which still has a chance,
is chosen. To assign a pbest to a particle, the pbest with the maximum Euclidean distance from
the gbest assigned to that particle is chosen. Stop.

The following numerical example describes the mentioned steps clearly. Assume that a PSO
algorithm has 90 particles and the number of members of gbest in the gbest archive is 7. If we
divide 90 into 7, the sub-multiple value is equal to 12. So, each member of gbest can be selected 12
times. However, the remainder does not equal 0. It means that 6 particles do not have gbest values
for updating velocity and position values. In this case, we calculate the crowding distance for each
member of ghest and sort the resulting numbers in descending order. The first 6 members of gbest
with large crowding distance values are considered. These members can be selected 13 times.

When MOPSO is iterated as many as a pre-specified value, the multi-objective optimization
process is terminated and the set of solutions of the final gbest archive is reported as the
Pareto/efficient solutions for the CPSTP problem.

4. An experimental study

Here, to illustrate the applicability and effectiveness of our proposed multiple optimization
process, an experiment is worked out. Consider an undirected graph G=(i, j) with the cluster set
V ={,..,n} and the link set E ={e=(i,/):i,j eV, i< j}, non-negative profits, p., associated
with every link and non-negative costs, c¢;, associated with the clusters. In this Steiner tree
problem, the aim is to find the tree maximizing the revenue, i.e., the sum of the profits of the
links in p. spanned by the solution, and minimizing the sum of the costs of the clusters in the
solution. On the one hand, we would like to have all links spanned by the solution avoiding the

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 2, No. 1 Page 54

Particle swarm optimization for a bi-objective web-based convergent product networks

loss of profit; but this can be too expensive in terms of the cost of the tree-structured network
providing service to all clusters. Thus, there is a trade-off between the cost of the clusters being
in the solution and the profit of the links by the solution.

The three dimensional matrix of functions, sub-functions, and attributes are shown in Table 1.
Note that the tables related to all the three attributes are configured and their arithmetic means
are shown as the final functions, sub-functions, and attributes comparison matrix. Our threshold
value is considered to be 0.561 which is the mean of the data given in Table 1. Therefore, the
thresholded matrix is shown in Table 2, and the corresponding network is configured as Figure 6.

Table 1: The three dimensional comparison matrix for all attributes.

All B B, By S W S5 S3s Si S5 S Sy
attributes

B: 0 059 058 0.6 053 0.66 046 052 0.48 0.46
B, - 0 046 036 046 063 086 058 043 0.43
Bs - - 0 059 056 053 09 063 033 053
S, - - - 0 058 059 06 053 06 06
S, - - - - 036 043 043 0.7 0.83
S; - - - - 0 063 06 0.63 058
S, - - - - - 0 046 06 043
Ss - - - - - - 0 065 0.63
Se - - - - - - - 0 0.63
S; - - - - - - - - 0

Al Bi B, Bs Si S2 S5 Si S5 Se ¢

attributes

B: 0 1 1 0 1 0 0 0 O

B, - 0 0 0 1 1 1 0 O

Bs - 0 1 0 0 1 1 0 0

S, - -0 1 1 1 0 1 1

S, - - - 0 0 0 0 1 1

Ss - - - - 0 1 1 1 1

S, - - - - - 0 0 1 O

Ss - - - - - - 0 1 1

Se - - - - - - - 0 1

S; - e

Figure 6: The configured thresholded network

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 2, No. 1

Page 55

R. Hassanzadeh, 1. Mahdavi, N. Mahdavi-Amiri

Then, the leveling process (the zero th and the first steps of Algorithm 3) is performed and the
leveled network is configured as Figure 7. The clustered network (the second and the third steps
of Algorithm 3) is shown in Figure 8.

LevelD 3 Level 2

Figure 7: The configured leveled network Figure 8: The configured clustered network (the
second and the third steps of Algorithm 3)

The cost vertex, the benefit matrix and the matrices a =[a;,], B =[5;] are:

C1=(150, 210, 180, 20, 30, 30, 50, 10, 20, 20),
C,=(300, 450, 600, 70, 80, 50, 40, 20, 20, 20).

[~ 1500 1300 1100 — 80 - — — -]
]]]] - - - - - 7 9 120 - -

065 — 07 09 - 09
- - - 60 - - 100 110 - -
~ - - - 50 90 110 - 60 40

1 08 - 09 07 -
- - - - - - - - 70 30

a=| - 06 09| B=|- 06 09| p=

- - - - - - 8 70 40 20

-~ 07 065 - 07 06
- _ _ - - - - - 30 -
- - - - - - - - 210
- - - - - - - - - - - - -2

For level 1, using iteration 1 of the while loop in step 3 of Algorithm 3, we obtain:
(@4Can1 + BiaCayp) =76
(C43Cam + BusCazp) = T7
(@61Co11 + PerCern) = 15
(2o + PorCorn) =59
(@72€C791 + Br2C120) = 54
(Q73C731 + PraCrz) =81
(GgrCan + ParCepn) = 21
(@tg3Cqa1 + PoaCazp) =18.5
Therefore, z, =1z, =12z, =1 and z, =1 with other variables equal to zero. The configured
network up to level 1 is shown in Figure 9.

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 2, No. 1 Page 56

Particle swarm optimization for a bi-objective web-based convergent product networks

Figure 9. The configured clustered network for level 1

In Figure 10, the next iteration of Algorithm 3 for clustering is performed and the purified
and the final network is obtained as Figure 11.

oo\ - =
S

’
EJ-.—//"' S:), -
N F
3 N
Bl T .= “"-\
A\
!
A

O oW e

Figure 10. The configured clustered network Figure 11. The configured clustered network

After purifying benefits and costs for level 2, the final cost and benefit matrices are formed as
follows:
[~ 1500 1300 1100 - - - -

- - - - - 28 -
- - - - - - 10 -
- - - - 50132 - -
- - - - - - - 13
- - - - - - 8 135

S
Il

E=(_450 660 780 90 110 33 90 41

With respect to these matrices, the Steiner tree model is:
max X =1500x,, +1300x,; +100x,, + 208 x,5 +110x,, +50x,, +132 x,5 +130x ,+84 x,, +135x,,

min Y =450y, +660y, + 780y, +90y, +110y, + 33y, + 90y, + 41y,
S.t.
Xig + Xy Xy +Xog + Xy + Xy + Xgg + X ggF Xgy FXgg =V Vo F Yyt Vo F Vs + Vet Y+ 1

<DL v VkeScV={123455678}, VS:[S[>2
(1.))<E(S) ieS—{k)
v, =1, Vhe{l,2,3}
x, €{01}, Vi,
y,€{0,1}, Vi

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 2, No. 1 Page 57

R. Hassanzadeh, I. Mahdavi, N. Mahdavi-Amiri

This model was solved using BOPSO in 100 iterations each having 20 particles in MATLAB 9
software environment. The Pareto solutions are obtained and shown in Table 3. Some of the
Pareto solutions are shown in figures 13-16. Figure 12 shows the Pareto solutions in the two-
dimensional space resulted from the two objective functions.

Table 3: The Pareto solutions resulted from the two objective functions.

The number of cost benefit
the Pareto
solution
1 2254 3515
2 2164 3405
3 2143 3385
4 2053 3275
5 1964 3143
6 1923 3008
7 1890 2800
In Figure 12, the X-axis is symmetry of benefit and the Y axis is cost.

2300

250t

2200

2150} .

2100}

2050 ¢ +

m L

+*
1950
+
Ll g ¥

1% -3500 -3400 -3300 -3200 -3100 -3000 -2900 -2800
Figure 12: The Pareto solutions in two-dimensional space resulted from the two objective functions.

1) The first Pareto optimal solution is x* =3515 and Y~ = 2254, with the optimal network as
shown in Figure 13.
2) The second Pareto optimal solution is X" =3405 and Y* = 2164, with the optimal network

as shown in Figure 14.
00 00 (600 00

Figure 13: The first Pareto optimal solution Figure 14: The second Pareto optimal solution

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 2, No. 1 Page 58

Particle swarm optimization for a bi-objective web-based convergent product networks

3) The fourth Pareto optimal solution is x* =3275 and Y* = 2053, with the optimal network
as shown in Figure 15.

4) The sixth Pareto optimal solution is x* =3008 and y* =1923, with the optimal network
as shown in Figure 16.

Figure 15: The fourth Pareto optimal solution Figure 16: The sixth Pareto optimal solution

As shown in figures 13-16, the proposed method provides different products for producers and
consumers having different benefits and costs. The numerical results imply the configuration of
different products having various costs being based on customers’ views obtained from the web
based system. The products themselsves are the ones providing maximum benefits for the
producers. The significant decision made in the proposed methodology is the trade-off between
the cost and the benefit objectives based on the customers’ views on adding features of products
and producers’ views on configuration of beneficial features.

5. Conclusions

We proposed a methodology to determine value adding functionalities for convergent products.
A Steiner tree was modeled to handle the proposed network problem. In the network, each arc is
assigned to be the link between two nodes. The aim was to find an optimal tree of functionalities
in the network adding value to the product in the web environment. First, a purification process
was performed in the product network to assign the links among bases and sub-functions. Then,
numerical values as benefits and costs were determined for arcs and nodes, respectively, using
leveling and clustering approaches. A bi-objective particle swarm optimization algorithm was
developed to provide a solution framework. Several implications were discussed based on the
obtained results.

Acknowledgements
The first two authors thank Mazandaran University of Science and Technology and the third
author thanks Sharif University of Technology for supporting this work.

References

1. Beasley, J. E., 1989. “An SST-based algorithm for the Steiner problem in graphs. Networks, 19(1), 1-
16.

2. Clerc, M. 2006. Particles Swarm Optimization, ISTE Ltd.

3. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A., 2007, Evolutionary algorithms for
solving multi-objective problems, Springer Science+Business Media, LLC. 2nd edition.

4. Costa, A. M., Cordeau, J. F., Laporte, G., 2006. “Steiner tree problems with profits”. INFOR 44(2),
99-115.

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. 2002. “A fast and elitist multiobjective genetic
algorithm: NSGA-I”, IEEE Transactions on Evolutionary Computation 6, 182-197.

6. Dreyfuss, S. E., & Wagner, R. A., 1971. “The Steiner problem in graphs”. Networks 1(3), 195-207.

7. Duin, C. W., & Volgenant, A., 1989. “Reduction tests for the Steiner problem in graphs”, Networks
19(5), 549-567.

8. Esbensen, H., 1995. “Computing near-optimal solutions to the Steiner problem in a graph using a
genetic algorithm”. Networks, 26(4), 173-185.

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 2, No. 1 Page 59

R. Hassanzadeh, I. Mahdavi, N. Mahdavi-Amiri

10.
11.
12.
13.
14.
15.
16.
17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

217.

28.

29.

30.

31.

Fatta, G. Di, Presti, G. Lo, Re, G. Lo, 2003. “A parallel genetic algorithm for the Steiner problem in
networks”, 15th IASTED International Conference on Parallel and Distributed Computing and
Systems (PDCS 2003), Marina del Rey, CA, USA, 569-573.

Hakimi, S. B., 1971. “Steiner’s problem in graphs and its implications”. Networks, 1, 113-133.
Hwang, F. K., & Richards, D. S., 1992. “Steiner tree problems”. Networks, 22(1), 55-89.

Johnson, D. S., 1985. “The NP-completeness column: An ongoing guide”. Journal of Algorithms,
6(3), 434-451.

Kapsalis, A., Rayward-Smith, V. J., Smith, G. D., 1993. “Solving the graphical Steiner tree problem
using genetic algorithms”. Journal of the Operational Research Society, 44(4), 397-406.

Kennedy, J., & Eberhart, R. 1995. “Particle Swarm optimization”, The 1995 IEEE international
conference on neural networks, 4, 1942-1948.

Koch, T., Martin, A., 1998. “Solving Steiner tree problems in graphs to optimalitys”. Networks,
32(3), 207-232.

Kou, L., Markowsky, G., Berman, L., 1981. “A fast algorithm for Steiner trees”. Acta Informatica,
15(2), 141-145.

Lawler, E. L., 1976. Combinatorial Optimbation Networks and Matroids, Holt, Rinehart and
Winston, New York.

Martins, S. L., Pardalos, P., Resende, M.G., Ribeiro, C.C., 1999. “Greedy randomized adaptive
search procedures for the Steiner problem in graphs”. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 43, 133-146.

Martins, S. L., Resende, M. G. C., Ribeiro, C.C., Pardalos, P.M., 2000. “A parallel GRASP for the
Steiner tree problem in graphs using a hybrid local search strategy”. Journal of Global Optimization,
17(1), 267-283.

Martins, S. L., Ribeiro, C. C., Souza, M. C., 1998. “A parallel GRASP for the Steiner problem in
graphs”. Lecture Notes in Computer Science, Springer-Verlag, 1457, 310-331.

Mehlhorn, K., 1988. “A faster approximation algorithm for the Steiner problem in graphs”.
Information Processing Letters Archive, 27(3), 125-128.

Rayward-Smith, V. J., Clare, A., 1986. “On finding Steiner vertices”. Networks, 16(3), 283-294.
Ribeiro, C. C., Souza, M.C., 2000. “Tabu search for the Steiner problem in graphs”. Networks, 36(2),
138-146.

Robins, G., Zelikovsky, A., 2000. “Improved Steiner tree approximation in graphs”, Proceedings of
the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, ACM, New
York, 770-779.

Robins, G., Zelikovsky, A., 2005. “Tighter bounds for graph Steiner tree approximation”. SIAM
Journal on Discrete Mathematics 19 (1), 122-134.

Shi, Y., Eberhart, R. C. 1998. “A modified particle swarm optimizer”, Proc. IEEE Int. Conf. Evol.
Comput., 69-73.

Shi, Y., & Eberhart, R. C. 2001. “Fuzzy adaptive particle swarm optimization”, Proc. IEEE Int.
Congr. Evol. Comput., 1, 101-106.

Takahashi, H., Matsuyama, A., 1980. “An approximate solution for the Steiner problem in graphs”.
Mathematica Japonica, 24(6), 573-577.

Thomas, H.C., Charles, E.L., Ronald, L. R., Clifford, S. 1990. Introduction to Algorithms, MIT
press. USA.

Winter, P., & MacGregor Smith, J., 1992. “Path-distance heuristics for the Steiner problem in
undirected networks”. Algorithmica, 7(2 & 3), 309-327.

Zhong, W.L., Huang, J,. & Zhang, J. 2008. “A novel particle swarm optimization for the Steiner tree
problem in graphs”, IEEE World Congress on Computational Intelligence. Hong Kong.

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 2, No. 1 Page 60

