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2. Introduction 
Given a set of potential facility locations with capacity limits on the demand that can be served 
by each location and a set of customers, the objective of the fixed charge capacitated facility 
location problem (CFLP) is to locate distribution centers (DCs) among candidate locations to 
satisfy the demand points while minimizing the sum of fixed location and transportation costs. A 
number of authors (Geoffrion & Graves,1974; Daskin, 1995; Klose,1999) present models and 
solution procedures for the CFLP and its variations. Moreover, distances, times or costs between 
customers and facilities are measured by a given metric. Possible questions to be answered are: 
(i) which facilities should be used (opened)? (ii) Which customers should be serviced from 
which facility (or facilities) so as to minimize the total costs? In addition to this generic setting, a 
number of constraints arise from the specific application domain. SCND problems include 
extensive scope of formulations ranged from simple single product type to complex multi-
product/multi-period one, from linear deterministic models to complex non-linear stochastic ones 
and from customary forward networks to reverse closed-loop ones. Many attempts have been 
made to model and optimize SC design and these studies have been surveyed by (Melo et al., 
2009) to support the development of richer SCND models. 
Traditionally, the focus of SCND is usually on a deterministic approach and single objective 
(i.e., minimizing costs or maximizing profit) in a forward logistic. For example, Gen and Syarif 
(2005) and Amiri (2006) took into account the total cost of forward logistic network as an 
objective in their works. Also, several studies have been considered about optimization of a 
multi-objective SCND problem by different researchers. Farahani et al (2010) reviewed the 
various criteria and objectives used in facility location problem, which plays a critical role in the 
SCND problem. Chan and Chung (2004) presented a multi-objective SCND in the forward 
logistic, in which the minimization of costs, total delivery days and the equity of the capacity 
utilization rate for manufacturers are considered as objectives. They suggested a multi-objective 
genetic approach for the order distribution problem in a demand driven logistic network. Erol 
and Ferrell Jr (2004) proposed a multi-objective SC model for minimizing costs and maximizing 
the customer satisfaction level. Sun et al (2008) presented a bi-level programming model for 
location of logistic distribution centers by considering benefits of customers and logistics 
planning departments. Altiparmak et al (2006) presented a SC model with three objectives: 
namely minimization of the total cost, maximization of the service level and maximization of the 
capacity utilization balance for distribution centers. They proposed a solution procedure based on 
a genetic algorithm to obtain the set of Pareto optimal solution for their model. 
Most real SC design problems are characterized by numerous sources of technical and 
commercial uncertainty, and so the assumption that all model parameters, such as cost 
coefficients, supplies, demand, etc., are known with certainty is not realistic. A supply chain 
network is supposed to be in use for a considerable time during which many parameters can 
change. If a probabilistic behavior is associated with the uncertain parameters (either by using 
probability distributions or by considering a set of discrete scenarios each of which with some 
subjective probability of occurrence), then a stochastic model may be the most appropriate for 
this situation. In this matter, a number of researchers present comprehensive SCND models using 
a two-stage stochastic approach in a forward logistic. Tsiakis et al (2001) took into account a 
two-stage stochastic programming model for a SCND problem with uncertain demands. They 
proposed a large-scale mixed-integer linear programming model for their problem. Goh et al 
(2007) developed a stochastic multi-stage global SCND model regarding supply, demand, 
exchange and disruption as uncertain parameters in a forward logistic. In addition, there are 
different studies focusing on multi-objective SCND problem under an uncertain environment. 
An integrated multi-objective SCND model under uncertainty of product, delivery and demand is 
developed by Sabri and Beamon (2000). They consider cost, fill rate, and flexibility as objectives 
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and use ߝ-constraint method to solve the problem. Guillén et al (2005) presented a stochastic 
mixed-integer linear programming model for a multi-objective SCND problem, considering 
profit, customer satisfaction, and financial risk as objectives in a three echelon supply chain. The 
problem was solved by the ߝ-constraint approach and branch-and-bound techniques. Azaron et al 
(2008) developed a multi-objective stochastic programming approach for a three echelon supply 
chain design under uncertainty in which the goal attainment technique is used to optimize total 
cost, total cost variance, and financial risk cost. Franca et al (2010) presented a stochastic multi-
objective model for a forward logistic network that uses the Six Sigma measure to evaluate the 
quality of raw materials acquired by suppliers. The objectives of the problem are to maximize 
the profit of SC and minimize the total number of defective raw material parts under demand 
uncertainty. Longinidis and Georgiadis (2011) proposed a model for design of a supply chain 
network. The paper extends the existing models in the literature by incorporating the financial 
issues as financial ratios and considering the demand uncertainty as scenario analysis. 
Moussawi-Haidar and Jaber (2013) considered the problem of finding the optimal operational 
(how much to order and when to pay the supplier) and financial decisions (maximum cash level 
and loan amount) by integrating the cash management and inventory lot sizing problems. They 
presented the problem as a nonlinear program and proposed a solution procedure for finding the 
optimal solution. Ramezani et al (2014) presents a financial approach to model a closed-loop 
supply chain design in which financial aspects are explicitly considered as exogenous variables. 
The model decides to determine the strategic decisions as well as the tactical decisions. The main 
contribution of this paper is to incorporate the financial aspects and a set of budgetary constraints 
representing balances of cash, debt, securities, payment delays, and discounts in the supply chain 
planning. Ramezani et al (2014) addressed the application of fuzzy sets to design a multi-
product, multi-period, closed-loop supply chain network in which three objective functions (i.e., 
maximization of profit, minimization of delivery time, and maximization of quality) are 
considered. The authors jointly considered fuzzy/flexible constraints for fuzziness, fuzzy 
coefficients for lack of knowledge, and fuzzy goal of decision maker(s). 
On the other hand, in context of the lead time in SCND problem, Berman and Larson (1985), 
Owen and Daskin (1998), Jamil et al (1999), and Sourirajan et al (2007); (2009) explicitly 
consider lead times in network design. Also the lead time at a candidate location is modeled as 
an explicit function of the volume of flow transport through that location in studies by Wang et 
al (2002), Wang et al (2004), and Eskigun et al (2005). As summarized above, a few researchers 
address queue models in a SCND problem. Instead, this paper proposes a stochastic model of 
multi-product supply chain considering products in queue with respect to the lead time. 
Furthermore, the properties of the model such as integrating decisions, single sourcing and 
uncertainty differentiate this paper from others in the literature. 

3. Introduction 
We consider a supply chain network design problem with production facilities that produce 
multiple products for which demand occurs at geographically discrete locations (retailer) as 
possible scenarios. The objective is to locate plants and DCs to serve the retailers such that the 
sum of fixed cost of operating and opening plants and DCs plus the expected costs of 
transportation and inventory is minimized. 

3.1. Modeling lead time at the DCs 
We assume that products are shipped from the production facilities to DCs in full truckloads. 
The products incur a waiting time at the production facilities until material are accumulated 
adequately to fill a truck. Sending full truckloads is not necessarily optimal in all situations, but 
it is assumed that the DCs are far enough from the production facilities and that the shipment 
sizes are high enough (since we group the demands of multiple retailers) to justify it. The 
shipments dock at an unloading zone when they arrive at the DC and wait in a First-In-First-Out 
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sum of investment costs and the expected costs of production, transportation and inventory. The 
assumptions used in this problem are: 

1. The number of potential plants, DCs and their maximum capacities are known. 
2. Retailer demands are served from a single DC. 
3. The demands are uncertain and are considered as discrete scenarios. 

The following notations are used to define the mathematical model: 
Indices 

I Set of customers 
J Set of warehouses 
K Set  of plants 
L Set of products 
S Set of scenarios 

Parameters 

jlp  load make-up time parameter of lead time for product l at DC j 

jlq  constant lead time component per unit for product l at DC j 

jlr  congestion parameter of lead time for product l at DC j 

kD  Capacity of plant k 

jW  throughput at DC j 

ij
sd  Demand for product l at customer i under scenario s 

M Maximum number of DCs 
N Maximum number of plants 

jo  Annual fixed cost for operating a DC j 

kg  annual fixed cost for operating a plant k 

lkv  Unit production cost for product l at plant k 

jlh  unit inventory cost for product l at DC j 

ijlc  Unit transportation cost for product l from DC j to customer i 

jkla  Unit transportation cost for product l from plant k to DC j 

ln  Space requirement rate of product l on a DC 

lm  Capacity utilization rate per unit of product l 

sp  Occurrence probability of scenario s  
Variables 

jz  1 if DC j is opened, 0 otherwise. 

kp  1 if plant k is opened, 0 otherwise 

ij
sy  1 if DC j serves customer i, 0 otherwise. 

lk
sx  Quantity of product l produced at plant k under scenario s 

ijl
sq  Quantity of product l shipped from DC j to customer i under scenario s 

jkl
sf  Quantity of product l shipped from plant k to DC j under scenario s 

Using the lead time expression from Section 3.1, the expected lead time ܮ ௝ܶ௟ at the DC at 
location j when the mean demand flow of product l through that DC is ௝ܶ௟ units is given by ܮ ௝ܶ௟ = ௝ܲ௟௝ܶ௟ + ௝௟ݍ + ௝௟௝ܹ௟ݎ − ௝ܶ௟ 		 ; 

Where 
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௝ܶ௟ = ෍݀௜௟௦ ௜௟௦௜ݕ	  ;	ݏ∀			
By Little’s Law, the inventory between the production facility and the DC at location j is given 
by  ܫ௝௟ = ܮ ௝ܶ௟ ௝ܶ௟		; 
The expected inventory cost between the production facility and DC at location j can be obtained 
as: ݕݎ݋ݐ݊݁ݒ݊ܫ	ݐݏ݋ܥ௝௟ = ℎ௝௟ܫ௝௟		; 
Accordingly, the problem can be formulated as follows: 
Min 
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The objective function minimizes the total cost of the supply chain. It consists of the fixed cost 
of operating and opening plants and DCs and the expected costs of production, inventory, 
transportation of the products from plants to DCs and from DCs to customers. Constraint (1) 
represents the unique assignment of a DC to a customer in each scenario, constraint (2) is the 
capacity constraint for DCs, constraint (3) limits the number of DCs that can be opened, 
constraints (4) and (5) give the satisfaction of customers and DCs demand for all products in 
each scenario, constraint (6) is the plant capacity constraint, constraint (7) limits the total 
quantity of product shipped from a manufacturing plant to customers through DCs that cannot 
exceed the amount of that product produced in that plant in each scenario, constraint (8) limits 
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the number of plants that are opened, constraints (9)–(11) imposes the integrality restriction on 
the decision variables ௝ܼ , 	 ௞ܲ, ௜௝௦ݕ	 , constraints (12)–(14) impose the non-negativity restriction on 
decision variables ݔ௟௞௦ , ௜௝௟௦ݍ , ௝݂௞௟௦ . Since the customers are supplied products from a single DC, 
the considered problem is a single-source, multi-product, multi-stage SCN design problem. 
In order to deal with the effects of uncertainty in demands, the two-stage stochastic programming 
approach is applied in this paper. Decision variables, which characterize the network 
configuration, namely those binary variables that represent the existence and the location of 
plants and warehouses of the SC, are considered as first-stage variables. It is assumed that they 
have to be taken at the design stage before the realization of the uncertainty. On the other hand, 
decision variables related to the amount of products to be produced and stored in the nodes of the 
SC and the flows of materials transported among the entities of the network are considered as 
second-stage variables, corresponding to decisions taken after the uncertain parameter has been 
revealed. 

4. Numerical Example 
Consider a supply chain design network consists of plants, distribution centers and demand points. 
Suppose a company is willing to design its SC. This company produces two products for three 
customer located in three different cities A, B and C. There are four possible locations D, E, F, and G 
to establish the distribution centers as well as four possible locations H, I, J and K to establish the 
plants. The products produced await in area of the production facilities before the products are 
transmitted to the DCs. Also products sent to DCs have to wait in the unloading zone. For simplicity, 
without considering other market behaviors (e.g. novel promotion, marketing strategies of 
competitors and market-share effect in different markets), each market demand merely depends on 
the local economic conditions. Transportation costs between nodes on each stage of SCN are 
acquired as coefficient of their Euclidean distances. The congestion time parameter is equalized to 
capacity of the DC. The space requirement rate of products on a DC, and capacity utilization rate of 
products in plants are drawn according to U[2,5]. While the fixed cost of DCs are generated from 
U[10000,30000], the fixed cost of plants are generated from U[50000,150000]. After calculating the 
total capacity of DCs as 1.5∑ ∑ n୪d୧୪	୪∈୐୧∈୍ , the capacity of DCs are determined randomly by sharing 
the total capacity into DCs. In a similar way, the capacities of plants are determined. The total 
capacity of plants is calculated as 1.5∑ ∑ m୪d୧୪	୪∈୐୧∈୍ . The parameters relevant to costs and lead time 
are shown in Tables 1-4, and finally the demand for each type product is assumed as discrete 
scenarios with corresponding probabilities shown in Table 5. 

Table 1: The unit production cost of products at plants. 

 
Plants 

H I J K 

p1 6 7 6 9 

P2 5 5 7 6 

Table 2: The unit inventory cost of product at warehouses. 

 
Distribution centers 

D E F G 

p1 3 2 4 4 

P2 3 4 2 3 
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Table 3: The load make-up time at warehouses. 

 
Distribution centers 

D E F G 

p1 142 136 130 148 

P2 151 142 137 146 

Table 4: The replenishment lead time at warehouses. 

 
Distribution centers 

D E F G 

p1 2 3 2 4 

P2 3 2 4 2 

Table 5: Product demands. 

Customers 
Product 1  Product 2 

Scenarios Probabilities  Scenarios Probabilities

A 110 160 210 0.4 0.4 0.2  130 195  0.35 0.65  

B 125 180  0.3 0.7   115 180 245 0.3 0.4 0.3 

C 170 295 380 0.15 0.35 0.5  120 210  0.22 0.78  

 
This problem attempts to minimize the fixed investment costs and expected cost arising from 
different scenarios while making the following determinations: 

1. Which of the plants and warehouses to build (first-stage variables)? 
2. Amount of product to be produce in each plant, amount of product to be transport from 

plants to distribution centers and finally amount of product to be transport from 
distribution centers to customer centers (second-stage variables)? 

To solve the stochastic model, the deterministic equivalent approach is employed by GAMS, in 
which the status of all solution is optima by solver BARON and set option optcr=0. Since the 
product demands are defined as discrete distribution in Table 1, total number scenarios are 
obtained by multiplying possible situation of each uncertain demand is equal to 3 × 2 × 3 × 2 ×3 × 2 = 216. In fact the problem can be treated as a deterministic problem with |ܫ||ܵ| customers 
instead of |ܫ|. Table 6 shows configurations (1 means the plant/warehouse is built and 0 
otherwise) and the values of the expected total cost of supply chain. 
A usual question in the stochastic programming is whether this approach can be nearly optimal or 
whether they are inaccurate. The theoretical answer to this issue is provided by two concepts: the 
expected value of perfect information (EVPI) and the value of stochastic solution (VSS). The 
EVPI is difference between the WS approach and the stochastic programming (or RP approach). In 
the WS approach, each scenario separately is solved and the mean of objective functions is 
considered as wait-and-see solution (WS). To compute the VSS, first the mean value of each 
stochastic parameter is taken and the model is solved by mean of each parameter, known in the 
literature as Expected Value (EV) approach. Then the optimal variables of EV approach are 
considered as an input for two-stage model and it is allowed that second-stage decisions to be 
chosen optimality as functions of EV solution and stochastic parameters, known in the literature as 
EEV approach. The difference between the objective functions of EEV approach and stochastic 
program would be VSS. To learn more about these issues, we refer the reader to (2011). 
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Table 6: The results of numerical example. 

Approach 
Plants  warehouses 

Total expected cost 
H I J K  D E F G 

EV 1 0 1 0  1 0 1 0 358281.241 

WS 1 0 1 0  1 1 1 0 362164.817 

RP 1 0 1 1  1 1 1 0 363358.958 

EEV - - - -  - - - - - 

 
Tables 6 show the solutions of RP, WS, and EV approaches and EVPI measure is equal to 1194.141. 
EVPI defines the maximum value a decision maker would be ready to pay in return for complete 
information about the future. The results show the values of stochastic program is more than WS 
problem as expected. In addition, the computation shows that the solution of EEV approach is 
infeasible. This issue points that solution of EV approach in terms of two-stage stochastic program 
(RP problem) don’t cover the solution of RP problem. These reports confirm the accurateness of 
two-stage stochastic program and give the consistent results for the presented model. 

5. Conclusions 
In supply chain design, strategic decisions and tactical/operational decisions have been tackled in 
isolation from one another. Also determining the optimal SC configuration is a difficult problem 
since a lot of factors and conditions practically are changed in long period of time which may 
turn a good location to day into a bad one in the future. Hence, the proposed model in this paper 
presented a supply chain network model considering both strategic and tactical decisions. The 
model determines location of plants and DCs regarding single sourcing and capacity of plants 
and distribution centers (strategic level) while the shipments have to wait in the queue for 
transporting from plants to DCs (tactical level), which lead to the lead time is incorporated in 
model. To afford the condition change in practice, then we extended model by defining demands 
as different scenarios. The two-stage stochastic programming approach was applied to solve it. 
We illustrated the proposed model by a numerical example. Finally, the resulting solutions were 
also compared with other approaches by two measures of EVPI and VSS. The results reported 
the consistent outputs for the presented problem. 
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