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Abstract  

In this article, two different systems subject to shocks occurring based on a non-homogeneous Poisson 

process (NHPP) are analyzed. Type –I system is consisted of a single unit and type –II system is consisted 

of two parallel units in which both units operate identically and simultaneously. In type –I system 

occurrence of a shock causes system stopping and consequently will be received minimal repairs. Also 

this system is replaced preventively at time Ψ, or at time less than Ψ due to probable failure. In   type –II 

system a shock to each units leads to unit stopping and accordingly the unit receives minimal repairs and 

other unit receives preventive maintenance services with no system stop. Simultaneously, this system is 

replaced at time Ψ or at times less than Ψ preventively, due to failure of both units. Systems will be 

replaced with new and the same types when minimizes total expected cost. 
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1. Introduction 
Replacement policy is an important issue that has been widely applied to the actual production 

settings. In general, there are two major policies, maintenance policy and replacement policy. 

Maintenance policy implies that an optimal maintenance time is based on mean down time or 

average working time. Replacement policy implies that an optimal replacement time interval 

exists after the long-time running of the system. Thus this means that in the real production, we 

should find out the optimal change time to make the loss of the system minimum.  Age based 

policy is quite common and easy-to-implement in practice. Under a basic age based replacement 

an operating system is replaced at particular age or at failure, whichever occurs first. In the 

literature, developments on replacement models based on the shock have provided satisfactory 

                                                 
1 Industrial Management Department, Kar Higher education Institute, Qazvin, Iran, Khorshidvandb@yahoo.com                                                                                                                                                                                      
2 Productivity Management Department, Iran Center for Management Studies (ICMS), Tehran, Iran. 

* Corresponding Author. 
3 Industrial Management Department, Shahid Beheshti University, Tehran, Iran.                                                                                                                                                                                                                                   



B. Khorshidvand, A.Ayough, A.Tabriz 

 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol. 1, No. 1 Page 73 

 

results for the maintenance operation. But in these researches, shock is not considered as an 

independent parameter of failure. In this article, shock process is unavoidable and plays an 

important role in determining the optimum replacement age. The main contribution of this article 

is developing shock process with age based models by considering the structure of systems. 

These models are applied to industrial equipment like cutting tool, hydraulic structure, 

compressor blades and electronic board and other similar equipment. This article constructed as 

follows: literature are briefly reviewed in section 2. Model description such as shock process and 

maintenance model is given in the section 3. Assumptions and notations are explained in the 

section 4. Numerical examples for proofing model optimization and analysis cumulative 

functions are given in the section 5. Finally conclusions are drawn in the section 6. 

 

2. Literature  
The classical replacement policies proposed by Barlow and Hunter (1960), first researches 

following this work studied total replacement models such as constant interval replacement and 

age based replacement. Regarding a system subject to shocks which may cause system failures; 

Esary et al. (1973) studied the survival probability of a system with homogeneous Poisson 

process (HPP) shocks. A-Hameed and Proschan (1973) further considered a non-homogeneous 

Poisson process (NHPP) case. Boland and Proschan (1983) proposed the periodic replacement 

policy for a system subject to shocks and derived the sufficient conditions for the existence of 

the optimal policy. Yusuf and Ali have studied structural dependence replacement model for 

parallel system. Guo et al. (2013) have proposed a maintenance optimization for systems 

exposed to risks by using of log linear process. Sheu et al. (2013) have studied an extended 

replacement policy for a system subject to non-homogeneous pure birth shocks by using non-

homogeneous pure birth Poisson process, and developed the model to optimize the number of 

repairs before replacement, as well. Marquez (2007) in his comprehensive review have explained 

total replacement models such as constant interval replacement and age based replacement 

models as well as shock based replacement, partial replacement, replacement with imperfect 

maintenance and inspection models. Huynh et al. (2011) have studied age based maintenance 

strategies with minimal repairs for systems considering degradation and shocks. There are other 

studies in the literature on the optimal replacement policies based on age and number of failures 

or combination age and failures number; Guan Jun Wang and Yuan Lin Zhang (2007) have 

proposed an optimal replacement policy by considering a series structure and assuming 

geometric process and developed this model to k dissimilar components, K. Yao and D. A. 

Ralescu (2013) have combined age based replacement policy with uncertainty considerations and 

treated the age of the system as uncertain variable instead of random variable, Yu-Hung Chien 

(2009) considered a system with continuous preventive maintenance and random lead times and 

provided a number-dependent replacement policy, Xu-Feng Zhao et al. (2010) have studied three 

kinds of replacement models and combined it with additive and independent damages, Ling 

Wang et al. (2008) have proposed a condition based order replacement policy for a gradually and 

stochastically deteriorating single unit system inspected periodically, Yen-Luan Chen (2012) 

presented an optimal bivariate preventive maintenance policy with NHPP shock model and 

cumulative damage model, David D. Hanagal and Rupali A. Kanade (2011) have studied optimal 

replacement policies based on number of downtimes for cold standby system  when the lifetime 

and the repair time are dependent, also cold standby repairable system with priority in repair and 

use by considering an α-series process repair model have studied by M. Sreedhar et al. (2013), 

Yu-Hung Chien and Jih-An Chen (2011) have studied optimal maintenance policy for a system 

suffered damage in discrete time process and provided a preventive maintenance policy for a 

continuously running system over indefinitely long operation cycle, Ming Xu et al. (2012) have 

presented a replacement model for a non-repairable safety related system, Sophie Mercier and 

Hai Ha PHAM (2012) have proposed a preventive maintenance policy for a continuously 
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monitored system modeled by a bivariate subordinator, A. Pak et al. (2007) have provided 

maintenance and replacement policies for protective devices with imperfect repairs, M. Yasin 

Ulukus et al. (2012) have provided a frame work for optimally replacing a system that degrades 

due to the influence of its random environment, where the objective is to minimize the total 

expected discounted cost over an infinite horizon, Chin-Chih Chang (2012) have studied a 

preventive replacement policy and imperfect maintenance model by considering random 

operating time.   

 

3. Model description 
 

3.1.   Importance of model  

The systems that are subject to external and internal shocks by occurring any of these shocks can 

be failure and then the minimal repairs to prevent larger and more costly downtime should be 

done. Given that the shocks have cumulative damage property and occur randomly, thus the 

minimal repairs with lower cost can be done. 

 

3.2.   Shock process 

In this article, a cumulative shock model is considered to explain the shock process. The 

probabilities for the shock damages to occur in different time intervals are assumed to be 

independent. The log linear process (LLP) is very flexible and has been widely used to describe 

the occurrence of random events. 

N (Ψ) is the number of events by time Ψ. A stochastic process is a non-homogeneous Poisson 

process for some small value h if:  

 

 
  

 
For all Ψ and where in little o notation    

Thus, we consider stochastic shocks occur in a non-homogeneous Poisson process (NHPP). 

 
To simulate this process by using of LLP, intensity function is 

 

Λ(Ψ) = kecΨ;   k ∈ (0, ∞), c ∈ (−∞, ∞) 
 

 

Let N (Ψ) demonstrate the number of shocks until time Ψ, then the expected number of shocks 

until time Ψ, denoted by D (Ψ) is given by 

 

 

 

 

Also, the probability distribution of N (Ψ) is 

 

 

 

 

3.3.   Age based replacement policy 

In this case, the preventive replacement is done after equipment reaches a certain operating time-

age Ψ. In case of equipment failure a corrective replacement (CR) is done and the next 
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preventive replacement (PR) is scheduled after Ψ units of time. We again want to calculate the 

best Ψ which minimizes total expected cost per unit time. 

 
Figure1: Age based policy over time  

 

4. Model assumptions and notations 
 

4.1.   Assumptions 

a) When Ψ=0, the systems begin to work and under internal and external shocks constantly. 

b) If the systems work until time Ψ properly, replace preventively. 

c) If the systems break before time Ψ, replace correctively.   

d) If in time interval [0, Ψ] unit suffers any internal or external shocks, minimal repairs done. 

e) Certainly for type –II system, when a unit receives minimal repairs other unit receives 

preventive maintenance. 

f) Preventive and corrective replacement, minimal repairs and preventive maintenance time are 

negligible. 

 

4.2.   Notations 

R (Ψ): The survival or reliability function and means that probability of operation until Ψ.  

F (Ψ): The failures function and mean that probability of failure until Ψ. 

f(x): The Probability density function of failure. 

D (Ψ): The expected number of shocks until time Ψ. 

µ (Ψ): Certainly for type –I system, the expected length of the failure cycle.  

V (Ψ): The expected time of system operation until time Ψ. 

CR: The preventive replacement cost rate. 

CF: The corrective replacement cost rate. 

CM: The minimal repairs cost rate.  

CP: The preventive maintenance cost rate. 

K (Ψ): The expected cost of system until time Ψ. 

C (Ψ): Total expected cost per unit time. 

 

For type –I system with a single unit, long term average cost rate is 

 

 

(1) 

 

In this system, the expected cost until time Ψ is 

 

  
 

 

(2) 

 

Also, the length of failure cycle can be estimated calculating the expected value of the failure 

distribution now truncated in Ψ as follows 
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 Thus, expected time of system operation until time Ψ is 

 

 
 

 

(3) 

 

Finally, taking into account equations (1), (2) and (3) average cost rate is 

 

 

 

 
And, for type –II system with two parallel units, we have 

 

 
By considering two parallel units, the expected cost of system until time Ψ is 

 

 

 

(4) 

Also, in this case the system works if at least one of the units works, thus the expected time of 

system operation until time Ψ  

 

 

(5) 

Finally, taking into account equations (1), (4) and (5) average cost rate is 

 

 

 

5. Numerical examples 
 

5.1.   Type –I system 

In type –I system a shock causes system will be stopped and received minimal repairs. Also this 

system replaces preventively at time Ψ, or at time less than Ψ due to failure with a same system.   

In this system, assume the cumulative function followed the Weibull distribution. In this 

distribution λ is scale parameter and β is shape parameter. If β>1 there is an aging process, if β=1 

there is a constant process and if β<1 there is a mortality process. We consider λ=1 and β=2, β=1 
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and β=0.5 respectively. Also we have CR=20, CF=35, CM=8 and shock parameters are k=0.5 

and c=0.07.  

Weibull probability density function is 

 

  

 

By using MATLAB we have 

 
                         Table1: Total expected Cost per unit time for β=2 

 

0.6 0.5 0.4 0.3 0.2 0.1 Ψ 

50.427 54.963 62.795 77.269 108.397 206.192 C(Ψ) 

1.2 1.1 1.0 0.9 0.8 0.7 Ψ 

45.186 44.998 45.024 45.371 46.196 47.746 C(Ψ) 

 
                           Table2: Total expected Cost per unit time for β=1 

 

0.6 0.5 0.4 0.3 0.2 0.1 Ψ 

64.760 71.003 80.587 96.845 129.778 229.385 C(tp) 

1.2 1.1 1.0 0.9 0.8 0.7 Ψ 

50.786 51.835 53.194 54.964 57.286 60.429 C(tp) 

1.8 1.7 1.6 1.5 1.4 1.3 Ψ 

48.154 48.306 48.545 48.888 49.356 49.976 C(tp) 

2.4 2.3 2.2 2.1 2 1.9 Ψ 

48.492 48.323 48.192 48.102 48.062 48.076 C(tp) 

                        

                       Table3: Total expected Cost per unit time for β=0.5 

 

0.6 0.5 0.4 0.3 0.2 0.1 Ψ 

83.847 93.631 107.966 131.132 175.612 301.280 C(Ψ) 

1.2 1.1 1.0 0.9 0.8 0.7 Ψ 

58.456 60.808 63.626 67.056 71.313 76.728 C(Ψ) 

1.8 1.7 1.6 1.5 1.4 1.3 Ψ 

49.957 50.928 52.036 53.306 54.769 56.467 C(Ψ) 

2.4 2.3 2.2 2.1 2.0 1.9 Ψ 

46.093 46.560 47.086 47.678 48.347 49.102 C(Ψ) 

3.0 2.9 2.8 2.7 2.6 2.5 Ψ 

44.227 44.448 44.700 44.987 45.312 45.679 C(Ψ) 

3.6 3.5 3.4 3.3 3.2 3.1 Ψ 

43.437 43.515 43.612 43.730 43.871 44.036 C(Ψ) 

4.2 4.1 4.0 3.9 3.8 3.7 Ψ 

43.313 43.298 43.296 43.308 43.335 43.378 C(Ψ) 
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Figure2: Total expected Cost per unit time for β=2 

 

 
 

Figure3: Total expected Cost per unit time for β=1 

 

 

 
 

Figure4: Total expected Cost per unit time for β=0.5 

 Shows the optimal point in the figures. 

 

In type –I system, when β=2 (aging), the optimal replacement time is 1.1 and cost rate is 44.998 

and reliability at this time is 0.298, when β=1 (constant), the optimal replacement is 2.0 and cost 

rate is 48.062 and reliability at this time is 0.135 and when β=0.5 (mortality), optimal 
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replacement time is 4.0 and cost rate 43.296 and reliability at this time is 0.135. When equipment 

is in the constant state, replacement cycle is nearly twice of aging state and when it is in the 

mortality state is twice of constant state, reliability in mortality state is as equal as constant state 

and both states are less then aging state, as well cost rates differences are not much in all states. 

 

5.2.   Type –II system 

In type –II system a shock for each unit causes that unit will be stopped and received minimal 

repairs and other unit will be received preventive maintenance but system won’t be stopped. In 

addition system replaces with a same type at time Ψ preventively or at times less than Ψ due to 

failure both units simultaneously.     

In this model, assume once the system followed the Erlang distribution. This means that 

operation and failure time have exponential distribution with same rate parameter; through the 

sum of these two distributions we have Erlang distribution. In this distribution α is rate parameter 

and ω is shape parameter. In the other hand, assume the system followed the exponential 

distribution and its rate parameter is same to Erlang distribution. We have α=0.5, ω=2 and 

CR=10, CF=100, CM=5, CP=5. Shock parameters are k=0.5 and c=0.05. Also we consider C1 =
CF

CR
 and C2 =

CM

CP
  

C1=10, 30, 50, 70, 90. And C2=1, 3, 5, 7, 9. 

 

Exponential probability density function is 

 

  
 

And, Erlang probability density function is 

 

 

 

By using MATLAB we have 

 
                           Table4: Total expected Cost per unit time for exponential distribution 

  

MEAN (90,9) (70,7) (50,5) (30,3) (10,1) (C1,C2) 

                  

Ψ 

132.558 162.146 147.352 132.558 117.764 102.970 0.1 

94.0178 132.349 113.183 94.018 74.852 55.687 0.2 

87.8468 134.178 111.013 87.847 64.681 41.515 0.3 

89.1592 142.837 115.998 89.159 62.320 35.482 0.4 

93.052 153.496 123.274 93.052 62.830 32.608 0.5 

97.941 164.635 131.288 97.941 64.594 31.247 0.6 

103.185 175.668 139.427 103.185 66.943 30.702 0.7 

108.488 186.348 147.418 108.488 69.557 30.629 0.8 

113.706 196.571 155.138 113.706 72.274 30.842 0.9 

118.768 206.302 162.535 118.768 75.001 31.234 1 
 
 
                               Table5: Total expected Cost per unit time for Erlang distribution 

MEAN (90,9) (70,7) (50,5) (30,3) (10,1) (C1,C2) 
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Ψ 

129.945 150.017 139.981 129.945 119.909 109.873 0.1 

79.9866 100.193 90.090 79.987 69.883 59.780 0.2 

63.4852 83.912 73.699 63.485 53.272 43.058 0.3 

55.4616 76.211 65.836 55.462 45.087 34.712 0.4 

50.9308 72.118 61.524 50.931 40.337 29.744 0.5 

48.2166 69.984 59.110 48.237 37.263 26.489 0.6 

46.6718 69.110 57.891 46.672 35.453 24.233 0.7 

45.883 69.144 57.515 45.883 34.252 22.621 0.8 

45.676 69.898 57.787 45.676 33.565 21.454 0.9 

45.9312 71.250 58.591 45.931 33.272 20.612 1 

46.5732 73.126 59.850 46.573 33.297 20.020 1.1 

47.551 75.475 61.513 47.551 33.589 19.627 1.2 

48.829 78.259 63.544 48.829 34.114 19.399 1.3 

50.3808 81.454 65.917 50.381 34.844 19.308 1.4 

52.189 85.040 68.614 52.189 35.764 19.338 1.5 

 

 
 

Figure5: Total expected Cost per unit time for Exponential and Erlang C1=10, C2=1 

 

 
 

Figure6: Total expected Cost per unit time for Exponential and Erlang Mean 

 

 

In type –II system, when cumulative function is exponential, mean optimal replacement time is 

0.3 with cost rate 87.847, also when cumulative function is Erlang, mean optimal replacement 

time is 0.9 and cost rate at this time is 45.676. Unlike the results from exponential distribution, in 

Erlang with increasing C1 and C2, optimal cycle changes are less than exponential. Also cost 

rates in Erlang significantly less than exponential. Indeed, Erlang distribution increases the 

accuracy of the modeling by considering the operation and failure distributions.  
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5.3.   Comparison of models 

Now, it is assumed type –I and type –II systems are followed exponential distribution with α=0.6 

and have the same parameters, CR=20, CF=30, CM=12, CP=10, k=0.4 and c=0.01. In this case 

the optimal replacement time for type –I system is 2.7 with cost rate 30.787 and reliability 0.198 

and for type –II system, optimal replacement time is 1.5 with cost rate 42.370 and reliability at 

this time is 0.407. By comparing two structures, it can be said reliability in parallel structure is 

more than single unit structure, but because of the increased risk of shocks in parallel structure 

and an increase in the number of repairs and preventive maintenance subsequently, system 

average cost is more than single unit structure. 

 

6. Conclusions  
In this paper, an optimal replacement policy by considering shock process are presented and 

studied. This policy is extended for two systems with different structures. We have shown 

optimal replacement time through numerical examples. Also, analyses are provided by 

considering cumulative functions and structures. The models in this article will assist in 

replacement policies decision making by considering internal and external shocks and will help 

managers to achieve the lowest cost. Future research can formulate models with the addition 

parameters such as corrosion and delay; also expand models application by considering other 

structure of components.  
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