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Abstract 
This paper introduces a two stage stochastic programming to address strategic hub location decisions 

and tactical flight routes decisions for various customer classes considering uncertainty in demands. 

We considered the airline network with the arc capacitated single hub location problem based on 

complete–star p-hub network. In fact, the flight routes are allowed to stop at most two different hubs. 

The first stage of the model (strategic level) determines the network configuration, which does not 

change in a short space of time. The second stage is dedicated to specify a service network consists of 

determining the flight routes and providing booking limits for all itineraries and fare classes after 

realization of uncertain scenarios. To deal with the demands uncertainty, a stochastic variations 

caused by seasonally passengers’ demands through a number of scenarios is considered. Since airline 

transportation networks may face different disruptions in both airport hubs and communication links 

(for example due to the severe weather), proposed model controls the minimum reliability for the 

network structure. Due to the computational complexity of the resulted model, a hybrid algorithm 

improved by a caching technique based on genetic operators is provided to find a near optimal 

solution for the problem. Numerical experiments are carried out on the Turkish network data set. The 

performance of the solutions obtained by the proposed algorithm is compared with the pure GA and 

Particle Swarm Optimization (PSO) in terms of the computational time requirements and solution 

quality. 
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1. Introduction 

Revenue management has emerged on the capacity management by booking classes for 

available seats in the airline industry.  RM techniques (such as seat inventory control, pricing, 

forecasting and etc.) are arose out after the deregulation in the airline industry and have been 

considered as powerful tools for maximizing the total revenue (M.G. Yoon et al., 2017). 

Deregulation in the airline industry makes it is possible for airlines to sell the seats of an 
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aircraft to different customer segments at different prices during the booking period. Airlines 

define some conditions and restrictions as fences to limit switching of the customers among 

various segments of the market and offer multiple services with various prices. In particular, 

airline companies try to sell high-fare ticket prices as many seats as possible and attempt to 

minimize the potential loss that happens as an effect of unsold seats. In this process, they may 

reject an early customer with a lower-fare ticket so as to save the seat for the customer with 

higher-fare ticket prices, but at the same time they confront with the risk of flying with some 

empty seats. Under this circumstance, the airline company has fixed and perishable set of 

assets that should be sold to a price-sensitive population of customers with the purpose of 

maximizing the total expected revenue over the selling horizon (Aslani et al. 2014).  

Most airlines utilize hub-and-spoke type of network to serve more origin–destination (OD) 

pairs with fewer flights. Hub and spoke networks cause to receive much interest as the fight 

legs are shared by multiple origin-destination itineraries. Most of the time, using hub and 

spoke networks results in lower cost carriers as compared to those of direct flights. Applying 

optimal inventory control strategies together with choosing the best network topology help 

the airlines to improve the total expected revenue. This topology uses switching, 

transshipment and flow consolidation facilities named hubs that remarkably decrease the 

links required to connect all origins and destinations in transportation networks (Alumur et 

al., 2012). In other words, consolidating traffic flow in inter-hub transportation and on the 

spokes causes to reduce the operational costs in comparison with direct links between all 

pairs and leads to maximize the total revenue.  

In the current paper, we extend a model that incorporates uncertainty into the hub location 

problem in which we allocate the fixed amount of capacity to the right customers with the 

purpose of maximizing the total revenue that incurred by transfer activities in a reliable hub 

network design. We consider a hub location problem that arises in the design of a complete–

star network. In a complete–star p-hub network, there are several nodes in the network that 𝑝 

of them are chosen to be hubs. Each node is assigned to exactly one hub and all of the hubs 

are connected to each other. To capture the uncertainty of demand, a two-stage stochastic 

integer-programming model is formulated. The first stage aims to find the optimal locations 

of p hubs, the allocation of non-hub nodes to the p located hubs considering the reliability of 

network, and the second stage provides the decisions on the sold tickets, which are influenced 

by uncertain demands. Due to the NP-hardness of the problem, to solve the proposed model, 

we are proposing an algorithm based upon the evolutionary genetic algorithm and exact 

solution method. The rest of the paper is organized as follows:  

Section 2 discusses the relevant literature briefly. The model is developed in Section 3. In 

Section 4, we provided a hybrid algorithm improved by a caching technique based on genetic 

operators to solve the problem. A computational study with different numbers of hubs and 

nodes using Turkish network data set is presented in Section 5. We also analysis the 

performance of proposed algorithm in section 5.4. Moreover, two well-known ratios for 

stochastic optimization, the Expected Value of Perfect Information (EVPI) and the Value of 

the Stochastic Solution (VSS) are calculated to evaluate the developed model section 5.5. 

Finally, in Section 6, general conclusions and some suggestions for future research are given. 

2. Literature review 

2.1. Revenue management problem  

Revenue Management (RM) has attracted the attention of practitioners and researchers for 

many years. The methods and techniques in this science attempt to maximize the revenue. 

Forecasting, pricing and seat controls have played key roles in airlines among different RM 

techniques (M.G. Yoon et al. 2017). Littlewood (1972) is known as a pioneer of revenue 
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management. He introduced a model to manage the capacity of single flight leg for two fare 

classes. 

There is a considerable amount of literature regarding revenue management in the airline 

industry. Belobaba (1989) applied Littlewood's (1972) rule and introduced effective heuristic 

known as EMSR (expected marginal seat revenue), for single leg problems with multi 

independent demand for pairs of fare classes. He also provided a modified EMSR method, 

called EMSR-b (Belobaba and Weatherford (1996)). EMSR-b differs in aggregating the 

demand of the products for reducing the problem with p fare classes to two-class problems 

based on a weighted combination in which seat protection levels near to optimal values better 

than previous EMSR. The problem of seat allocation in the form of multiple fare classes has 

been studied by many researchers. Brumelle and McGill (1993) provided several static 

models with different distribution of the demand that determine the optimal booking limits 

for different fare classes in a single-leg problem. A two-class dynamic seat allocation model 

with passenger diversion is considered by Zhao and Zheng (2001). Their studies have two 

particular characteristics, in proposed model discount fare cannot be reopened when it closed, 

the other feature is that they considered some flexible customers, these customers would buy 

discount fare tickets if available but willing to pay the full fare. Chen et al. (2010) analyzed 

the optimal policy for the two-flight and optimal booking problem. Nechval et al. (2013) 

considered the allocation of the finite seat inventory to the uncertain airline customer demand 

that occurs during the time before the flight is scheduled to depart. The purpose of proposed 

model is to maximize the revenue by finding the right combination of customers of various 

fare classes. Cizaire and Belobaba (2013) proposed a joint approach to optimize fares and 

booking limits so as to maximize the total revenues generated by the two fare products over 

the two time periods. Mou and Wang (2014) presented an uncertain programming for 

network revenue management in which the fares and the demands are considered as uncertain 

variables. 

We refer to study Çetiner (2013), Lapp and Weatherford (2014), and Brumelle and McGill 

(1993) for an overview on the seat allocation problem and the early researches on this 

subject. 

In trying to offer a more comprehensive framework for revenue management, the 

performance of a given system, significantly depends on designing optimal networks for 

routing the traffic. To provide organized transportation between different origins and 

destinations, utilizing set of hubs and using fewer arcs instead of point-to-point network can 

reduce transportation costs. 

2.2. Reliable hub location problem 

In HLP networks, any failure or malfunction in components may cause inconstancy and 

degradation of the entire network’s capability to transfer flows (Kim and O’Kelly 2009). Kim 

and O’Kelly (2009) utilized the concept of reliability in the HLP for the first time and 

introduced a reliable p-HLP which focused on maximizing network performance in terms of 

reliability by locating hubs for delivering flows among origin destination pairs. 

Davari et al. (2010) addressed a single-allocation hub-and-spoke network with the aim of 

maximizing the reliability of the network. They assumed that the reliability of each arc is a 

fuzzy variable.  Fazel Zarandi et al. (2011) presented a reliable single-allocation hub-and-

spoke network using an interactive fuzzy goal programming.  Azizi et al. (2016) presented a 

mathematical model that builds hub-and-spoke systems under the risk of hub disruption. 

They assume that once a hub stops normal operations, the entire demand initially served by 

this hub is handled by a backup facility. An et al. (2015) introduced a set of reliable hub and- 

spoke network design models, where the selection of backup hubs and alternative routes are 

taken into consideration to handle hub disruptions. Eghbali et al. (2014) studied multi-



Using revenue management technique to allocate the capacity in reliable hub network design … 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol.7, No.2  Page 142 

objective single hub location problem, where all the routes that utilized for transmitting the 

traffic flow are controlled to have minimum reliability. 

Numerous studies have attempted to solve the p-hub location problem with genetic algorithm. 

Topcuoglu et al (2005) presented a robust solution based on a genetic algorithm search for 

the uncapacitated single allocation hub location problem called USAHLP, and numerical 

experiments were carried out on the CAB and AP data set for solving the problem. Kratica et 

al (2007) proposed two genetic algorithm (GA) approaches improved by caching strategy for 

solving an uncapacitated single allocation p-hub median problem. Damgacioglu et al (2014) 

proposed a genetic algorithm approach to solve a single hub location problem with an 

uncapacitated and planar model called PHLP in a reasonable amount of time. Momayezi et al. 

(2018) developed a capacitated modular with single assignment considered backup for failed 

hubs.  

2.3. Uncertainty of demands in hub location problem 

In a real-world application in the airline market, demand has some uncertainty during the 

time. The importance of uncertainty has motivated several researchers to study various 

stochastic parameters in network design problems. Sim et al.  (2009) considered chance 

constraints in the stochastic p-hub center problem to formulate the service-level guarantees. 

The only source of uncertainty in their study is travel time. Alumur et al. (2012) proposed the 

hub location problem by considering two sources of uncertainty contains the set-up costs for 

the hubs and the demands between origin–destination pairs. Contreras et al. (2011) addressed 

stochastic uncapacitated hub location problems considering uncertainty in demands and 

transportation costs. Yang (2009) and Yang and Chiu (2016) presented a stochastic 

programming model to determine the air freight hub location and flight routes planning in the 

stochastic environment. Adibi and Razmi (2015) developed an uncapacitated multiple hub 

location problem with stochastic demand and transportation cost. They used 10-node air 

network in Iran to evaluate their proposed model. 

2.4. An integrated hub location and revenue management problem 

Hub location is one of the most attractive fields in facility location which has been appeared 

in various applications in the real world, including airline systems, postal delivery systems, 

cargo delivery systems and telecommunication network design. Since the service network 

design plays an important role in airline operations, many researchers have been addressed 

this problem. O’Kelly (1987) was the first one who formulated the discrete hub location 

problem as a quadratic integer program. After that, this field have attracted attentions of 

researchers. The large, and growing researches, solution techniques and applications on hub 

location problem is summarized in (Alumur and Kara 2008), (Farahani et al. 2013) and 

(Campbell and O'Kelly 2012).  

The purpose of the classical hub location is to minimize the total cost including establishment 

cost and the cost of traffic flows under the assumption of serving all demands. However, in 

order to maximize the profit, we can serve only a portion of flows between each origin-

destination pair. Accordingly, as a relatively novel approach, some studies in the literature 

discussed the trade-off between the obtained revenue and the total costs of the transportation 

system. We can classify the researches that incorporate the profit maximization into hub 

location problem as follows: 

 Some of the studies including Alibeyg et al. (2016), Neamatian Monemi et al. (2017), 

Alibeyg et al. (2018), Taherkhani and Alumur (2019) only focused on network design 

problem to captured profitable flows between demand nodes. 
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 While other papers like Lüer-Villagra and Marianov (2013), Lin and Lee (2018), and 

Čvokić and Stanimirović (2020) incorporated pricing decisions into hub location 

problem. 

 Finally, some of the studies like Tikani et al. (2018) and Huo et al. (2019a) not only 

considered network design to captured profitable flows but also focused on 

integration of RM techniques and hub location problem (RM-HLP). 

 

The current paper is dedicated to the latter and addresses an integrated model of RM and 

HLP. Firstly, this problem is introduced by Tikani et al. (2016). They studied the seat 

inventory control decisions in a hybrid transportation network considering both hub-stop 

flights and non-stop flights. Tikani et al. (2018) formulated the problem of Tikani et al. 

(2016) in a complete in a star/star hub network. In the following, Huo et al. (2019a) analyzed 

the RM-HLP with a weighted sum function including average and worst-case profits. Then, 

Huo et al. (2019b) under multiple capacity levels for hubs. To the best of author’s knowledge 

from a review of the literature, this is the first work that studies the reliability of hubs and 

links in RM-HLP. The problem is named as the reliable integrated hub location and revenue 

management problem abbreviated by R-RM-HLP. In detail, R-RM-HLP considers the entire 

network's ability based on Kim and O’Kelly (2009) and Eghbali et al. (2016) to increase 

customer convenience in an airline RM system. It also focuses with seat allocation decisions 

in flight routes based upon stochastic programming and the scenario generation method. In 

the current study, we provided a new formulation in order to maximizes airline’s profit by 

designing best capacitated reliable topology network and routing policies by applying optimal 

hub and spoke, then optimal seat allocation for different customer classes is carry out for each 

itinerary regarding to available capacity. We also propose an efficient hybrid algorithms for 

solving the problem. In the Table 1, the innovation of the current study is compared to the 

existing literature. 

3. Problem description of R-RM-HLP 

The aim of the presented model is to find the location of hubs, the optimal flight routes and 

the number of seats to allocate on each rout for different classes to maximize the revenue. We 

consider a hub location problem that arises in the design of a complete–star network. There 

are several nodes in the network that 𝑝 of them are chosen to be hubs. Each node is assigned 

to exactly one hub and all of the hubs are connected to each other. Our hub and spoke 

network configuration is an extended case of flow-based models which proposed by Adibi 

and Razmi (2015). We formulate capacitated version of the problem and incorporate 

customer segmentation strategy in the second stage of the model. 

In Figure 1, a complete–star network is depicted. Consider that we have to transfer 

passengers between two nodes 8 and 9, if both nodes are assigned to the same hub like  2, the 

passengers from node 8 to node 9 first goes to hub 2 and then from hub 2 goes to node 9 

(one-hub-stop flights). In a situation that node 7 and node 13 are assigned to different hubs 

the passengers traffic between these nodes first goes from node 7 to its hub like 3, and then 

from hub 3 to the hub 1 and lastly the traffic goes from hub 1 to node 13. The limited 

capacity on arc (i, j) is shared between itineraries from i to the other destination nodes and the 

itineraries between all origin nodes to the node i. Therefore, we have two types of flight legs 

in the network. The first one is the links that transfers the traffic between non hub node and a 

hub node that we name them as link type 1 and the second type is that transfers the traffic 

between hubs that we name them as links type 2. The classical discount factor 𝛼 is 

incorporated to the model by taking 𝐶2 =  𝛼 𝐶1. It is assumed customers are classified into 

different segments or classes based on their sensitivity to prices. Considering the locations of 
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hubs and the fixed and limited capacity for serving uncertain demand, the sale decisions are 

made after the arrival of customer orders as well as when more definitive information 

becomes available.  
 

The decisions about network structures in hub location problems such as locating hubs and 

the allocation of non-hub nodes to the hubs is substantially important due to the major capital 

investments to establish them and since the transportation system must be utilized for many 

years in the future (Eghbali et al. 2014). The operation of each element (hub and arc) in the 

system affect the overall performance of the network acutely. In air transportations, airlines 

have to face various disruptions such as severe weather, labor strikes, terrorism threats, and 

runway incursions disrupt regular operations that make airports partially or completely 

unavailable (An et al. 2015). Such problems may cause delaying, canceling and etc. that bring 

customer dissatisfaction. 

The general assumptions of the hub location problem (which are in common with R-RM-

HLP) are: 

 The number of hubs is predefined. 

 The location of hub nodes should be specified by the model. 

 Direct connection between two non-hub nodes is prevented. 

 Each non-hub is only allowed to be assigned to exactly one hub and all of the hubs are 

connected by a complete network 

 The traffic flows between two hub nodes (by leg type 2) are discounted by parameter 

due to the economies of scale. 
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 Table 1. Related works on profit maximization for hub location problem and their solution methods 
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Kim and O’Kelly (2009)      
Complete-

star 

CAB data 

set 
CPLEX solver 

Lüer-Villagra and 

Marianov, (2013)      
Complete-

star 

CAB data 

set 
Genetic algorithm 

Eghbali et al. (2014)      
Complete-

star 

Turkish 

dataset 
non-dominated sorting genetic algorithm-II 

Tikani et al. (2016)       Star-star 
Turkish 

dataset 
Genetic algorithm 

Alibeyg et al. (2016)       incomplete CAB data CPLEX solver 

Neamatian Monemi et 

al. (2017)      
Complete-

star 
real data 

Metaheuristic approach combining a local search 

algorithm and a Lagrangian relaxation 

Lin and Lee (2018)      
Complete-

star 

Cities in 

Taiwan 
Lagrangian relaxation 

Tikani et al. (2018)       Star-star 
Turkish 

dataset 
Genetic algorithm 

Alibeyg et al. (2018)       incomplete CAB data Lagrangian relaxation 

Huo et al. (2019a)       Star-star 
Turkish 

dataset 
Genetic algorithm 

Taherkhani and Alumur 

(2019)      
Complete-

star 
CAB data CPLEX solver 

Huo et al. (2019b)       Star-star 
Generated 

instances 
Genetic algorithm 

Čvokić and Stanimirović 

(2020)      
Complete-

star 

CAB 

dataset 
CPLEX solver 

Current study      
Complete-

star 

Turkish 

dataset 

Particle swarm optimization, Modified Genetic algorithm, 

Standard GA, CPLEX solver 
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Moreover, the specific assumptions of R-RM-HLP are listed below. 

 

 The employed aircrafts through leg type 1 and type 2 have limited by capacity Q1 and 

Q2, respectively 

 The price of the ticket for each fare class is known in advance. 

 Cancellations are not permitted. Moreover, upgrading or downgrading the ticket class 

or changing the departure time of flight is not allowed. 

 Upgrading to a higher fare class or changing to a later or earlier flight shouldn’t be 

allowed. 

 Traffic demands for each type of fare class 𝑘 is considered to be independent. 

 The air traffic passenger for each class is uncertain. The booking limit is related to 

both the protection level of tickets and the uncertain traffic passenger. 

 It is not necessary to satisfy all the demands between origin-destination pairs and the 

objective function is calculated based on the number of tickets sold on the profitable 

itineraries. 

As mentioned before, network design is determined at the beginning of the horizon. In 

addition, the sale decisions are made after the arrival of customer orders as well as when 

more definitive information becomes available. On the other hand, the customer classes 

arrive with stochastic demands. The tickets are sold according to both the capacities and 

demands to maximize the total airline’s revenue. In this section, first we introduce the non-

linear revenue maximization and capacitated hub location model with different customer 

classes. In the second part of this section, a linear Deterministic Equivalent Problem is 

obtained by some additional variables and constraints.  

Notations used for mathematical formulation are as follows: 
 

 
Figure 1. An example solution of presented hub location and seat allocation problem 
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3.1. Sets and Parameters 

𝑁 The number of nodes (spokes) in the hub-spoke network. 

𝑃 The number of hubs. 

Ω The number of scenarios. 

𝐾 The number of customer classes. 

𝑖, 𝑚 Indices for nodes 𝑖, 𝑚 = 1 … 𝑁. 

𝑗, 𝑙 Indices for hubs. 

𝜔 Indices for scenarios. 

𝑘 Indices for customer classes. 

𝑓𝑖𝑚 Distance from node 𝑖 to node 𝑚. 

𝐶1𝑘 Transfer cost (per unit flight and unit distance) between origin and hub node which is 

defined as leg type 1 for customer class 𝑘.                                           

𝐶2𝑘 Transfer cost (per unit flight and unit distance) between a two hubs which is defined as 

leg type 2 for customer class 𝑘. 

𝐷𝑖𝑚
𝑘 (𝜔) Traffic demand between origin 𝑖 and destination 𝑚 for customer class k under scenario 

𝜔. 

𝑝(𝜔) The probability of traffic demand between origin 𝑖 and destination 𝑚 for customer 

class k under scenario 𝜔 

𝑟𝑖𝑚
𝑘  Ticket price of itinerary between origin 𝑖 and destination m for customer class 𝑘. 

𝑁𝑜𝑖𝑗
1  Number of flights available for itinerary between node 𝑖 and hub 𝑗. 

𝑁𝑜𝑗𝑙
2  Number of flights available for itinerary between hub 𝑗 and hub 𝑙. 

𝑆1 Number of seats available in a service cabin at leg type 1. 

𝑆2 Number of seats available in a service cabin at leg type 2. 

𝐹𝑗 Fixed cost for establishing hub 𝑗. 

𝑅𝑒𝑖𝑗 Reliability of link between node 𝑖 and node 𝑗 

𝑟𝑒𝑗 Reliability of hub j 

𝐻 Minimum reliability that considered for each origin/ destination route 

3.2. Decision variables 

𝑦𝑖𝑚
𝑘 (𝜔) Number of tickets sold for itinerary between origin 𝑖 and destination 𝑚 for customer 

class 𝑘 under scenario 𝜔. 

𝑥𝑖𝑗𝑙𝑚 A binary decision variable, which is 1 if traffic from node 𝑖 to node m goes through 

hubs located at node 𝑗 and 𝑙 and 0 otherwise. 

𝑤𝑖𝑗 A binary decision variable, which is 1 if node i is connected to hub j and 0 otherwise. 

𝑤𝑗𝑗 A binary decision variable, which is 1 if node 𝑗 is selected to be hub and 0 otherwise. 

 
With these set of variables, we can obtain a nonlinear formulation as follows 

3.3. Non-linear formulation of R-RM-HLP 

The nonlinear formulation of the proposed hub location and revenue maximization problem is 

as follows: 
 
Stage (1): 

Max 𝐸[𝑄(𝑤, 𝜉(𝜔))] − ∑ 𝐹𝑗𝑤𝑗𝑗𝑗   (1) 

Subject to  

∑ ∑ 𝑥𝑖𝑗𝑙𝑚𝑙𝑗 = 1     ∀𝑖, 𝑚  (2) 

𝑥𝑖𝑗𝑙𝑚 ≤ 𝑤𝑖𝑗       ∀𝑖, 𝑗, 𝑙, 𝑚  (3) 
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𝑥𝑖𝑗𝑙𝑚 ≤ 𝑤𝑚𝑙       ∀𝑖, 𝑗, 𝑙, 𝑚  (4) 

𝑤𝑖𝑗 ≤ 𝑤𝑗𝑗       ∀𝑖, 𝑗  (5) 

∑ 𝑤𝑖𝑗𝑗 = 1     ∀𝑖  (6) 

∑ 𝑤𝑗𝑗𝑗 = 𝑃  (7) 

𝑅𝑒𝑖𝑗𝑟𝑒𝑗
1−𝛽

𝑅𝑒𝑗𝑙
1−𝛾𝑟𝑒𝑙

1−𝛽
𝑅𝑒𝑙𝑚 ≥ 𝐻. 𝑥𝑖𝑗𝑙𝑚   ∀𝑖, 𝑗, 𝑙, 𝑚 (8) 

𝑤𝑖𝑗 ∈ {0,1}      ∀𝑖, 𝑗  (9) 

𝑥𝑖𝑗𝑙𝑚 ∈ {0,1}      ∀𝑖, 𝑗, 𝑙, 𝑚  (10) 

 

Where 𝑄(𝑤, 𝜉(𝜔𝐷)) is the optimal value of the following second stage problem: 

Stage (2): 

𝑄(𝑤, 𝜉(𝜔)) = 𝑀𝑎𝑥 ∑ ∑ ∑ 𝑦𝑖𝑚𝑘
(𝜔)𝑟𝑖𝑚

𝑘 − ∑ ∑ ∑ 𝐶1𝑘[ 𝑓𝑖𝑗(∑
𝑦𝑖𝑚

𝑘 (𝜔)

𝑆1
) +𝑚∈𝐼/{𝑖}𝑘𝑗𝑖𝑘𝑚𝑖   

𝑓𝑗𝑖(∑
𝑦𝑚𝑖

𝑘 (𝜔)

𝑆1
𝑚∈𝐼/{𝑖} ))]𝑤𝑖𝑗 − ∑ ∑ ∑ ∑ ∑ 𝐶2𝑘𝑚∈𝐼/{𝑖}𝑖𝑙𝑗 [ 𝑓𝑗𝑙 (

𝑦𝑖𝑚
𝑘 (𝜔)

𝑆2
 ) + 𝑓𝑙𝑗 (

𝑦𝑚𝑖
𝑘 (𝜔)

𝑆2
 )] 𝑥𝑖𝑗𝑙𝑚𝑘   

)11( 

𝑦𝑖𝑚
𝑘 (𝜔) ≤ 𝐷𝑖𝑚

𝑘 (𝜔)     ∀𝑖, 𝑚, 𝑘  (12) 

∑ ∑ ∑
𝑦𝑖𝑚

𝑘 (𝜔)

𝑆2
𝑘𝑚𝑖 𝑥𝑖𝑗𝑙𝑚 +

𝑦𝑖𝑚
𝑘 (𝜔)

𝑆2
𝑥𝑚𝑗𝑙𝑖 ≤ 𝑁𝑂𝑗𝑙

1    ∀𝑗, 𝑙    
)3(1 

∑ ∑
𝑦𝑖𝑚

𝑘 (𝜔)

𝑆1
𝑘𝑚 + ∑ ∑

𝑦𝑖𝑚
𝑘 (𝜔)

𝑆1
𝑘𝑚 ≤ ∑ 𝑁𝑂𝑖𝑗

2
𝑗 . 𝑤𝑖𝑗 + 𝑀 𝑤𝑖𝑖    ∀𝑖  

)4(1 

𝑦𝑖𝑚𝑘(𝜔)      ∀𝑖, 𝑚, 𝑘  (15) 

 
Problems stage (1) and (2) combine together to achieve a two-stage stochastic program. 

The objective function (1) maximizes the total revenue of the airline transportation system 

and contains a deterministic term∑ 𝐹𝑗𝑤𝑗𝑗𝑗 , which is related to fix hub setup costs, and the 

expectation of the second stage objective 𝑄(𝑤, 𝜉(𝜔𝐷)) which is obtained after realizations of 

random event 𝜔 and determine the total revenue (objective function 12). In the other words, 

the strategic decisions is made in the first stage of the problem. These decisions are relevant 

to locating hubs and the allocation of non-hub nodes to hubs, which need major capital 

investments since the transportation network is a long-term plan and should be employed for 

many years. In fact, network configuration is prior to realizations of the random 

parameters 𝜉(𝜔). 

The second stage of the problem establish the network through the determination of flight 

routes and booking limits for all itineraries and fare classes (i.e. 𝑦𝑖𝑚
𝑘 (𝜔)) after the after 

realization of uncertain scenarios and the first stage decision,𝑤𝑖𝑗 has been taken. To put it 

another way, once the value of 𝑤𝑖𝑗 and consequently 𝑥𝑖𝑗𝑙𝑚 is taken value in the first stage, the 

second stage decisions are may change under various realizations of 𝜔. 

Constraint (2) ensures that each origin/destination pair (i, m) is allocated to one pair of hub 

nodes (𝑗, 𝑙). Constraints (3) and (4) guarantee that the demand from origin node 𝑖 to 

destination node 𝑚 cannot be allocated to a hub pair (𝑗, 𝑙) unless both nodes (𝑗, 𝑙) are defined 

as hub nodes. Constraint (5) assures that a node can be assigned to a location if a hub is 

opened at that site. Constraint (6) enforces single allocation for each node. Constraint (7) 

states that there must be exactly P hubs.  Constraint (8) controls the reliability in such way 

that from origin 𝑖 to destination 𝑚 via hubs k and 𝑙 must not be less than a specified value. 

Constraint s (9) and (10) guarantee the variables are binary. 

The objective function (11) maximizes the total revenue of selling tickets to different classes 

and itineraries considering total transportation cost between all non-hub nodes and the hub 

nodes, total transportation cost between hubs. 
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Constraint (12) insures that the number of sold tickets for each origin destination itineraries 

should be less than the demands. Constraint (13) establish the capacity constraints of link 

type 1 between hub node j and hub node 𝑙. Also, constraint (14) states the capacity limit of 

link type 2 between node i and hub node j. Constraint (15) defines the types of decision 

variables. 

3.4. Linear Deterministic Equivalent Problem  

The two-stage stochastic programming is computationally hard to be solved by general 

optimization tools. To employ the stochastic programming (SP) model the demand 𝐷(𝜔) is 

assumed to follow a discrete scenarios under seasonal demand variation and the problem can 

be formulated with a finite number of possible scenarios. So in this section we rewritten the 

Deterministic Equivalent Problem (DEP) for 2-stage stochastic programming. Proposed DEP 

of model is a mixed integer problem and equivalent to the original version of the model and 

on the contrary much simpler to solve.  In order to obtain the linear integer programming we 

add some variables and a set of linear constraints. Now with this explanation linear DEP 

formulation of the problem is as follows: 
 

𝑀𝑎𝑥 ∑ ∑ ∑ ∑ 𝑝(𝜔)𝑦𝑖𝑚
𝑘 (𝜔)𝑟𝑖𝑚𝑘𝜔𝜖𝛺𝑘𝜖𝐾𝑚/{𝑖}𝜖𝑁𝑖𝜖𝑁 −

∑ ∑ ∑ ∑ 𝐶1𝑘[𝑓𝑖𝑗 (𝑝(𝑤)(
𝑉𝑖𝑗𝑚

𝑘 (𝜔)

𝑆1
+

𝑉𝑗𝑖𝑚
𝑘 (𝜔)

𝑆1
))]𝜔𝜖𝛺𝑘𝜖𝐾𝑚/{𝑖}𝜖𝑁𝑖𝜖𝑁 -

∑ ∑ ∑ ∑ ∑ 𝐶2𝑘 ∑ [𝑓𝑗𝑙 (𝑝(𝑤)(
𝑂𝑖𝑗𝑙𝑚

𝑘 (𝜔)

𝑆1
+

𝑂𝑚𝑙𝑗𝑖
𝑘 (𝜔)

𝑆1
))𝜔𝜖𝛺 ]𝑙𝜖𝑁𝑗𝜖𝑁𝑘𝜖𝐾𝑚/{i}𝜖𝑁𝑖𝜖𝑁 − ∑ 𝐹𝑗𝑤𝑗𝑗𝑗  

)6(1 

∑ ∑ 𝑥𝑖𝑗𝑙𝑚𝑙𝑗 = 1     ∀𝑖, 𝑚  )2( 

𝑥𝑖𝑗𝑙𝑚 ≤ 𝑤𝑖𝑗       ∀𝑖, 𝑗, 𝑙, 𝑚  )3( 

𝑥𝑖𝑗𝑙𝑚 ≤ 𝑤𝑚𝑙       ∀𝑖, 𝑗, 𝑙, 𝑚  )4( 

𝑤𝑖𝑗 ≤ 𝑤𝑗𝑗       ∀𝑖, 𝑗  )5( 

∑ 𝑤𝑖𝑗𝑗 = 1     ∀𝑖  )6( 

∑ 𝑤𝑗𝑗𝑗 = 𝑃  )7( 

𝑦𝑖𝑚
𝑘 (𝜔) ≤ 𝐷𝑖𝑚𝑘(𝜔)     ∀𝑖, 𝑚, 𝑘, 𝜔  )12( 

∑ ∑ ∑
𝑂𝑖𝑗𝑙𝑚

𝑘 (𝜔)

𝑆2
𝑘𝑚𝑖 + ∑ ∑ ∑

𝑂𝑚𝑗𝑙𝑖
𝑘 (𝜔)

𝑆2
𝑘𝑚𝑖 ≤ 𝑁𝑂𝑗𝑙

1      ∀𝑗, 𝑙, 𝜔    
)71( 

∑ ∑
𝑦𝑖𝑚

𝑘 (𝜔)

𝑆1
𝑘𝑚 + ∑ ∑

𝑦𝑚𝑖
𝑘 (𝜔)

𝑆1
𝑘𝑚 ≤ ∑ 𝑁𝑂𝑖𝑗

2
𝑗 . 𝑤𝑖𝑗 + 𝑀 𝑤𝑖𝑖    ∀𝑖, 𝜔  

)15( 

𝑅𝑒𝑖𝑗𝑟𝑒𝑗
1−𝛽

𝑅𝑒𝑗𝑙
1−𝛾𝑟𝑒𝑙

1−𝛽
𝑅𝑒𝑙𝑚 ≥ 𝐻. 𝑥𝑖𝑗𝑙𝑚   ∀𝑖, 𝑗, 𝑙, 𝑚 )8( 

𝑉𝑖𝑗𝑚
𝑘 (𝜔) ≥ (𝑤𝑖𝑗 − 1)𝑀 + 𝑦𝑖𝑚

𝑘 (𝜔)                   ∀𝑖, 𝑚, 𝑗, 𝑘, 𝜔  (18) 

𝑉𝑚𝑗𝑖
𝑘 (𝜔) ≥ (𝑤𝑖𝑗 − 1)𝑀 + 𝑦𝑚𝑖

𝑘 (𝜔)                   ∀𝑖, 𝑚, 𝑗, 𝑘, 𝜔 (19) 

𝑂𝑖𝑗𝑙𝑚
𝑘 (𝜔) ≥ (𝑥𝑖𝑗𝑙𝑚 − 1)𝑀 + 𝑦𝑖𝑚

𝑘 (𝜔)         ∀𝑖, 𝑚, 𝑗, 𝑙, 𝑘, 𝜔  (20) 

𝑂𝑚𝑗𝑙𝑖
𝑘 (𝜔) ≥ (𝑥𝑚𝑗𝑙𝑖 − 1)𝑀 + 𝑦𝑖𝑚

𝑘 (𝜔)          ∀𝑖, 𝑚, 𝑗, 𝑙, 𝑘, 𝜔  (21) 

𝑂𝑖𝑗𝑙𝑚
𝑘 (𝜔) , 𝑉𝑖𝑗𝑚

𝑘 (𝜔) ≥  0      ∀𝑖, 𝑗, 𝑙, 𝑚, 𝑘, 𝜔 (22) 

𝑤𝑖𝑗 ∈ {0,1}      ∀𝑖, 𝑗  (9) 

𝑥𝑖𝑗𝑙𝑚 ∈ {0,1}      ∀𝑖, 𝑗, 𝑙, 𝑚  (10) 

𝑦𝑖𝑚
𝑘 (𝜔) ∈  𝑍+   ∀𝑖, 𝑚, 𝑘, 𝜔  (17) 

 

By employing constraint (18), the variable 𝑦𝑖𝑚
𝑘 (𝜔)becomes the lower bound for 𝑉𝑖𝑗𝑚

𝑘 (𝜔), if 

𝑤𝑖𝑗 takes value of 1, and using constraint (20), the variable 𝑦𝑖𝑚
𝑘 (𝜔) becomes the lower bound 

for 𝑂𝑖𝑗𝑙𝑚
𝑘 (𝜔) , if  𝑥𝑖𝑗𝑙𝑚 = 1. As we minimize the value of 𝑂𝑖𝑗𝑙𝑚

𝑘 (𝜔) and 𝑉𝑖𝑗𝑚
𝑘 (𝜔), in the 
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objective function they will attain the lower bound. In line with additional constraints (18-

22), we can obtain the linear model. 

In proposed model, the routing reliability is calculated by sequentially multiplying the 

reliabilities of all links and hubs on that route (Eghbali et al. 2014). Since in most real world 

applications the physical conditions of network facilities are associated to network 

performance it is essential to consider the efficiency of involved facilities (Kim and O’Kelly 

2009). 

In this study, reliability factors 𝛾 and 𝛽 are employed to reflect the performance of hub 

facilities and related connections. Factors 𝛾 and 𝛽 express the degree of benefit from 

enhancing the reliability of inter hub links and hub facilities when traffic utilizes inter hub 

links and hub facilities. These factors are set as power parameters (Kim and O’Kelly 2009). 

Different types of routes in hub location networks and their reliability that are computed by 

left side of constraint (8). The process of calculating reliability values are shown in Table 2.  

Consider that the routing variable 𝑋𝑖𝑘𝑙𝑗 takes one. It means that the traffic from node 𝑖 to 𝑖 

should pass from three links (𝑖𝑘), (𝑘𝑙) and (𝑗𝑙) with reliabilities 𝑅𝑒𝑖𝑘 , 𝑅𝑒𝑘𝑙
1−𝛾

 and 𝑅𝑒𝑗𝑙 and 

two hubs 𝑘 and 𝑙 with reliabilities 𝑟𝑒𝑘𝑘
1−𝛽

 and 𝑟𝑒𝑙𝑙
1−𝛽

. Thus, the reliability of this route is 

calculate by 𝑅𝑒𝑖𝑘𝑟𝑒𝑘𝑘
1−𝛽

𝑅𝑒𝑘𝑙
1−𝛾

𝑟𝑒𝑙𝑙
1−𝛽

𝑅𝑒𝑗𝑙. The reliability of the other potential routes is 

described in Table 2. 
 

Table 2. Different types of routes in hub location networks and their reliabilities (Eghbali et al. 2014). 

Type of routes Routing variable Routing reliability 

 

𝑋𝑖𝑘𝑙𝑗 𝑅𝑒𝑖𝑘𝑟𝑒𝑘𝑘
1−𝛽

𝑅𝑒𝑘𝑙
1−𝛾

𝑟𝑒𝑙𝑙
1−𝛽

𝑅𝑒𝑗𝑙 

 
𝑋𝑖𝑘𝑙𝑙 𝑅𝑒𝑖𝑘𝑟𝑒𝑘𝑘

1−𝛽
𝑅𝑒𝑘𝑙

1−𝛾
𝑟𝑒𝑙𝑙

1−𝛽
 

 
𝑋𝑖𝑘𝑘𝑗 𝑅𝑒𝑖𝑘𝑟𝑒𝑘𝑘

1−𝛽
𝑅𝑒𝑗𝑘 

 
𝑋𝑖𝑘𝑘𝑘 𝑅𝑒𝑖𝑘𝑟𝑒𝑘𝑘

1−𝛽
 

 
𝑋𝑘𝑘𝑘𝑗 𝑟𝑒𝑘𝑘

1−𝛽
𝑅𝑒𝑗𝑘 

 
𝑋𝑘𝑘𝑙𝑗 𝑟𝑒𝑘𝑘

1−𝛽
𝑅𝑒𝑘𝑙

1−𝛾
𝑟𝑒𝑙𝑙

1−𝛽
𝑅𝑒𝑗𝑙 

 
𝑋𝑘𝑘𝑙𝑙 𝑟𝑒𝑘𝑘

1−𝛽
𝑅𝑒𝑘𝑙

1−𝛾
𝑟𝑒𝑙𝑙

1−𝛽
 

 

4.  Solution method  

In order to solve the problem, proposed mixed-integer linear model is coded by the GAMS 

24.1.3. However, only the small-sized instances can be solved to optimality using the general 

purpose MIP solvers. Due to this limitation, a hybrid meta-heuristic algorithm combined the 

genetic algorithm and the exact solution approach is used. 

Genetic algorithm is a stochastic search approach which imitates the process of evolution and 

natural selection for finding the near-optimal solution. The primary idea was introduced by 

Holland (1975). GA works with an initial population of solutions that usually randomly 

initialized. Each population is represented by chromosomes treat as individuals, whose fitness 

is calculated by the corresponding objective function value. Individuals of a given population 

goes through some procedure named evolution consisting of cross over and mutation. Cross 

over and mutation are used to generate population. In cross over, two chromosomes (parents) 

𝑖 𝑘 
𝑙 

𝑗 

𝑖 𝑘 𝑙 

𝑖 𝑘 𝑗 

𝑖 𝑘 

𝑘 𝑗 

𝑘 𝑙 𝑗 

𝑘 𝑙 

dict://key.25D62D261B9B6943BE86B7DCF8F9D255/essential
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are combined (mated) to produce a new chromosome (offspring). The mutation operator 

makes random changes in individual's genes. This cycle of evaluation-selection-reproduction 

is repeated until a well-defined stopping criterion is satisfied. Proposed evolutionary 

algorithm for solving large-scale problem is composed of meta-heuristic and exact solution 

based on CPLEX and GA. In fact, our problem can be parsed into two sub-problems: the first 

stage that design a reliable hub location problem which is an NP-hard problem (Kara and 

Tansel 2000) and the second stage that specify a service network consists of determining the 

flight routes and providing booking limits for all itineraries and fare classes after realization 

of uncertain scenarios. A modified genetic algorithm is employed to find different structures 

for the reliable hub location network and then to take advantage of the optimal solutions; the 

CPLEX solver is used in obtaining the overall revenue and other variables based on the 

network configuration proposed by GA. 

4.1. Modified Caching Genetic Algorithm 

Caching GA is a modified version of the genetic algorithm with the purpose of avoiding 

unnecessary calculation of objective values for repetitive individuals during the GA 

operations (Kratica et al. 2007). Kratica et al. (2007) applied caching techniques to introduce 

two efficient version of genetic algorithms for solving NP-hard problem. They concluded that 

implementing caching technique has a significant improvement in the GA running time. They 

utilized simple and useful caching strategy called Least Recently Used (LRU) with pre-

specified data storage. 

In the caching process, the objective function value of each individual is stored in a cache 

table which is called hash-row table. The main advantage of this method is that if we meet the 

same genetic code during the operation of the genetic algorithm, we can use the stored 

information in cache-table instead of repeating the calculations. We applied mentioned 

technique in our proposed algorithm to reduce the time-consuming part of the algorithm 

which calculates the objective value and sold tickets. By this method, we improve the 

performance of our evolutionary algorithm significantly. Same as referred work, we used 

LRU caching strategy and store a certain amount of calculated values in a cache-table with 

size of 𝑁𝑐𝑎𝑐ℎ 𝑒=3000. We also considered an additional operator named immigration. In 

migration operator some immigrants (random members) entrant to the society in each period 

which keep the algorithm away from local optima during the execution. It is worth 

mentioning that after obtaining the network structure from the individual's genetic code, by 

fixing values of 𝑤𝑖𝑗 and then 𝑥𝑖𝑗𝑙𝑚 , the initial mixed non-linear integer programming 

problem is reduced to a linear mixed integer programming (MIP) sub problem that could be 

solved by CPLEX without the complexity of linearization. According to the mentioned 

description we used the link between MATLAB software and GAMS. Thereupon, the 

evolutionary algorithm is coded in MATLAB and a software that makes an interface between 

MATLAB and GAMS is employed (Ferris 2019). 

Complete flowchart of the algorithm is provided in Figure 2. Caching operator is specified 

with dash line in the figure. 

dict://key.25D62D261B9B6943BE86B7DCF8F9D255/specify
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Figure 2. Flowchart of process of proposed evolutionary algorithm based on genetic algorithm 

4.2. Representation of the Solution 

The efficiency of genetic algorithm is perceptibly affected by chromosome structure. 

Chromosome structure contains all the information related to solve the problem. The solution 

of the hub location problem represents the network configuration by demonstrating the 

location of hubs and allocation of nodes to hubs. We used a (𝑲 × 𝑲+1) dimension matrix 

contains numbers between [0,1] to represent the given network as a chromosome structure in 

which 𝑲 denotes the number of nodes. The first row of the matrix is used to locate the hubs 

(a (1 × 𝑲) matrix). Figure 3 demonstrate an example for location matrix with six nodes and 

three hubs. In this matrix, the first maximum P numbers specify the locations of hubs. This 

approach ensures that exactly P distinct hub indices are established as hubs. 

 

Figure 3. Decoding process for locating hubs. 
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Rest of the chromosome matrix is utilized to represents the allocation of non-hub nodes to the 

located hubs. This part of the solution (shown in Figure 4) contains the (𝑲 × 𝑲) matrix that is 

filled by random numbers belongs to [0, 1]. The non-hubs nodes are assigned to hubs by 

comparing the values at the intersection of non-hub node’s column and the rows which are 

assigned as hubs, and the biggest number determines the hub number which the mentioned 

node should be assigned to that. This approach ensures that each ordinary node is only 

allowed to connect into one hub. The values which are equal to one at the main diagonal will 

be considered as a hub and on the other elements with value 1 show the allocated demand 

nodes. A sample solution related to Figure 4 is depicted in Figure 5. 

In the current study we applied two genetic operators consist of crossover and immigration. 

Thus, the following subsections are dedicated to discuss about these operators. 

 

 

 

Figure 4. Decoding process for allocation of nodes 

to hubs. 

 

 

Figure 5. Sample network solution 

 

4.3. Crossover Operator 

In crossover operator two individuals are randomly chosen to act as parents so as to create 

one or more offspring. There are different methods to combine variable values of given 

parents. In the current study, we applied parameterized uniform crossover. We choose the 

first parent amongst the best individuals in the population while the other one is chosen from 

the whole of population, randomly. Then, a real random number in the interval [0,1] for each 

row is produced. If the random number is larger than a predetermined threshold value, called 

crossover probability (𝐶Prob), then the allele of the first parent is applied. Otherwise, the 

allele of the second parent is applied to generate the offspring. An example process of 

crossover is provided in Figure 6.  
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Figure 6. Example of parameterized uniform crossover with crossover probability equal to 0.25. 

In this example, the offspring 1 inherits the gene of parent 1 with probability 0.75 and inherits 

the gene of parent 2 with probability 0.25. 

4.4.   Migration operator 

In this study, instead of using mutation operator we applied immigration operator. Same as 

mutation operator, immigration operator helps to prevent premature convergence of the 

population. This idea inspired form many real-world societies in which there is a set of 

individuals named immigrants which enter to the existing population permanently. These new 

immigrants are randomly created from the same distribution as the original population and 

thereupon, no genetic material of the current population is brought in (Tikani and Setak 

2019). Altogether, in the proposed algorithm, number of offsprings and immigrants added to 

the main population, and then after sorting, better individuals enter to the next generation.  

5.  Computational results  

In this section, we reported the results of computational experiments by implementing the 

model on five subsets of Turkish network data set (Figure 7) presented by Tan and Kara 

(2007). These subsets are selected from the first 5, 6, 10, 15 and 20 elements of the 

aforementioned dataset. We also evaluated the performance of implementation of caching 

technique on modified GA in comparison with the exact solution obtained by GAMS 

SOLVER 24.1.3 and the performance of the solutions found by the proposed improved 

genetic algorithm is compared with pure GA and Particle Swarm Optimization (PSO). The 

meta-heuristic algorithms are implemented in the MATLAB program and linked to the 

GAMS with ILOG CPLEX 12.5 64-Bit optimization routines. All programs are run on an 

Intel core i5-3337U (1.8 GHz) with 6 GB of RAM. 

To model the uncertainty of data, we applied stochastic programming by using a finite 

number of scenarios. These scenarios and their relevant probabilities represent an 

approximation of the probability distribution given by the random data. This method helps to 

avoid the difficulty of continuous distributions. In the current study, we utilized a scenario 

tree-based stochastic programming approach to produce demand scenarios. Other input 

parameters are generated according to Table 3. 
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Table 3. Generated input parameters 

Number of flights between hubs 𝐷𝑈(3,6) 

Number of flights between nodes and hubs 𝐷𝑈(1,3) 

The setup costs for a hub 𝑈(1200000,2400000) 

The unit transportation costs (𝐶) 𝑈 [7, 14] 

Demand scenarios (high/nominal /low)  125%/100%/75% 

Demand classes (economic / business)  80%/20% 

Scenario Probabilities  0.19/0.59/0.22 

Ticket price for each itinerary for economic class  𝑈(600,3600) 

Ticket price for each itinerary for business class 1.5 × ticket price for corresponding economic class  
Reliability of links 𝑈(0.75,1) 

Reliability of hubs 𝑈(0.80,1) 

 

In Table 3, 𝑈[𝑎, 𝑏] denotes a continuous uniform distribution function with upper bound 𝑎 

and lower bound  𝑏, and DU(a, b) denotes discrete uniform distribution with integer 

parameters between 𝑎 and 𝑏. Parameter C  refers to the transfer cost per unit flight and unit 

distance between origin and hub for business class seats. This is calculated by equation C11 =
C, and for economic seats C12 = 𝜌C where 𝜌 ~ U [0.5,1]. We sampled the nominal demand 

from Turkish network data set. Then, we considered deviations from the nominal scenario as 

125%, and 75% in response to the seasonal demand variation. The capacity of aircrafts in leg 

between hub and nodes have 100 seats capacity while 200 capacity of seats is considered for 

aircrafts that transfer passengers between hubs. 

 

Figure 7. Locations of demand nodes for TR data set (Merve and Yaman 2016) 

Since parameter calibration has a significant effect on the efficiency of meta-heuristic 

algorithms, in the next section we applied Taguchi design method for setting the parameters.  

5.1. Parameters tuning 

Taguchi method provides a fractional factorial experiment instead of full factorial 

experiments in order to reduce the number of experiments. It divides the factors into signal 

and noise factors. This method strives to minimize the effect of noise for determining the 

optimal level of the signal factors.  

In current problem, the L9 design of the Taguchi method is employed for meta-heuristic 

algorithms by using the Minitab 16.2 software. The relative percentage deviation (RPD) 

formulation is used to change objective function values to non-scale data so a lower response 

level is more desirable. Since quality characteristic is considered as relative percentage 

deviation, we selected “Smaller is better” type. 
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Accordingly, the RPD is calculated as follows: 

𝑅𝑃𝐷 =
|𝐴𝑙𝑔𝑠𝑜𝑙 − 𝐵𝑒𝑠𝑡𝑠𝑜𝑙|

|𝐵𝑒𝑠𝑡𝑠𝑜𝑙|
× 100 

)(23 

Where, 𝐴𝑙𝑔𝑠𝑜𝑙 is the objective function value obtained by the meta-heuristic algorithms and 

𝐵𝑒𝑠𝑡𝑠𝑜𝑙 is the optimal solution obtained for each instance by the GAMS software. 

In order to study the behavior of different parameters of the proposed evolutionary algorithm, 

we considered four factors involved in our pure genetic algorithm, namely, the crossover 

percentage, mutation percentage and population size. For proposed algorithm, we used 

immigration percentage instead of mutation. Moreover, for PSO we considered three factors 

consist of number of personal learning coefficient, global learning coefficient and swarm 

size. The considered levels of the parameters are shown in Table 4.  

Relative percentage deviation (RPD) for the objective function value is utilized to compare 

the levels of parameters. The result of implementing Taguchi design method in MINITAB 

16.2 is reported in Table 5.  

Table 4.  Levels of parameters of meta-heuristic algorithms 

Algorithm Parameter Level 1 Level 2 Level 3 

Modified GA 

Crossover percentage 0.60 0.70 0.80 

Immigration percentage 0.05 0.10 0.15 

Population size 50 70 90 

GA 

Crossover percentage 0.60 0.70 0.80 

Mutation percentage 0.10 0.15 0.20 

Population size 50 70 90 

PSO 

Personal Learning Coefficient (C1) 1 1.5 2 

Global Learning Coefficient (C2) 1 1.5 2 

Swarm Size 70 80 90 

 

Table 5.  Tuned parameters for the proposed GA, pure GA and PSO 

Parameter (GA) Modified GA GA Parameter  PSO 

Crossover percentage 0.60 0.80 Personal Learning Coefficient (C1) 2 

Mutation percentage - 0.15 Global Learning Coefficient (C2) 1.5 

Immigration percentage 0.10 - Swarm Size 70 

Population size 70 70   

 

5.2. Experimental results 

In this section, we reported the results of computational experiments to evaluate the 

effectiveness of modified GA using MATLAB software in comparison with the exact 

solution obtained using GAMS SOLVER 24.1.3. Table 6 provides the results of proposed 

algorithm and exact solution for different instances with discount factor 𝛼 = 0.2, 0.4. In the 

first and second columns, instance’s dimensions n and p are given. The optimum solutions 

are presented in column three if existed otherwise it is marked with dash. The next column 

shows computational time in GAMS. We run GA algorithms 10 times and then best obtained 

solution of the executions is presented in the fifth column. The solution quality is evaluated 

by 𝑎𝑔𝑎𝑝 =
1

10
∑ 𝑔𝑎𝑝𝑖

10
𝑖=1  where 𝑔𝑎𝑝𝑖 = 100 ×

𝐵𝑒𝑠𝑡.𝑠𝑜𝑙−𝑠𝑜𝑙𝑖

𝐵𝑒𝑠𝑡.𝑠𝑜𝑙.𝑠𝑜𝑙
, 𝑠𝑜𝑙𝑖 indicates the best solution 

which found in the ith execution, and 𝐵𝑒𝑠𝑡. 𝑠𝑜𝑙 is the optimum solution if it is found and 

otherwise it is the best solution obtained from all GA runs. In the next column standard 
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deviation of average gap 𝜎 = √
1

10
∑ (𝑔𝑎𝑝𝑖 − 𝑎𝑔𝑎𝑝)210

𝑖=1  is presented. In Table 6 𝑒𝑣𝑎𝑙 

represents the average number of fitness function evaluations while cache shows the average 

percentage of using cache table to obtain fitness function instead of evaluating it. In fact, it 

could be considered as a measure of time saving during the executions. 

We set the total running time 1 hour as a criterion and proposed GA algorithm terminates if 

the best solution is not changed during 10 numbers of iterations. 

Achieved results obviously demonstrate that the proposed algorithm is an effective solution 

approach for solving the problem. As can be seen from Table 6, the proposed GA reached the 

optimum solution in small-sized instances. Therefore, for larger instances where exact 

methods cannot provide optimum solutions in a reasonable amount of time, proposed 

algorithm can be used instead. Also, a little gap in achieving the near-optimal solution by the 

proposed algorithm confirms that presented solution algorithm is efficient in finding the 

problem solutions. 

As can be seen from Table 6, in the experiments with 5 and 6 nodes, exact solution performs 

faster than the modified hybrid GA. Nevertheless, the computational time in exact method 

has an exponential growth by increasing the problem size. According to Table 6, changes in 

discount factor 𝛼 does not have a meaningful effect on the computational time, however the 

objective function  decreases with increasing the discount factor in all instances. Since we 

assume different demand levels in various scenarios, the proposed model may provide 

different flight routes and capacity allocations for various scenarios. For instance, the 

network structures for two scenarios with 10 nodes and 3 hubs are shown in Figures 8–9. 

Proposed model maximizes airline’s revenue by designing capacitated network topology and 

then available capacities among nodes of network partitioned to different customer classes of 

several itineraries. As we can see from the Figures 8–9, by increasing the demand, the model 

can earn more profit with fewer itineraries, as the use of hub-stop flights in some routes 

decreases. 
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Table 6. Results of optimum solution and proposed GA for different instances 

n p 
α=0.2 

Opt.sol Time(s) Modified GA Time(s) 𝑒𝑣𝑎𝑙 cache 𝑎𝑔𝑎𝑝% 𝜎% 

5 2 578193.19 9.17 opt 31.41 75 0.92 0 0 

6 2 1648711.25 40.90 opt 69.96 174 0.89 0 0 

10 3 11863082.18 1621.58 opt 371.16 960 0.55 0.46 0.71 

 5 21141670.43 1872.19 opt 382.78 874 0.58 0.61 0.92 

 7 31409761.71 1923.39 opt 380.18 886 0.60 0.57 0.63 

15 3 - - 16817480.41 578.17 1279 0.48 0.72 1.37 

 5 - - 24429508.20 584.10 1293 0.52 1.01 0.74 

 7 - - 38172945.77 660.27 1248 0.49 0.87 1.38 

20 3 - - 21243181.61 1258.01 1541 0.42 1.93 2.81 

 5 - - 29784726.91 1261.86 1602 0.44 2.02 2.77 

 7 - - 44827554.81 1304.92 1582 0.40 1.95 1.90 

α=0.4 

5 2 561372.29 8.95 opt 33.16 77 0.93 0 0 

6 2 1519571.42 41.29 opt 70.14 168 0.90 0 0 

10 3 10697139.61 1659.22 opt 354.20 942 0.56 0.47 0.73 

 5 20625291.14 1829.98 opt 385.26 869 0.51 0.56 1.11 

 7 30847192.26 1966.73 opt 380.02 860 0.58 0.62 0.80 

15 3 - - 15192064.17 581.91 1309 0.46 0.80 0.77 

 5 - - 23573282.14 590.11 1389 0.51 1.04 1.01 

 7 - - 37206711.19 649.44 1360 0.45 0.91 1.22 

20 3 - - 20156594.40 1239.21 1646 0.43 1.76 2.60 

 5 - - 28089941.29 1260.23 1727 0.46 2.12 2.42 

 7 - - 42998018.56 1314.43 1372 0.39 1.88 2.13 

 

 

Figure 8. Network and selected itineraries between Node 6 and other cities in high demand. 

 

Figure 9. Network and selected itineraries between Node 6 and other cities in low demand. 
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Table 7. Computational results for the proposed GA, pure GA and PSO 

α=0.2 

n p 
Modified GA  Pure GA  PSO 

Obj.value Time(s) agap% σ%  Obj.value Time(s) agap% σ%  Obj.value Time(s) agap% σ% 

5 2 578193.19 31.41 0 0 578193.19 186.16 0 0  578193.19 201.60 0 0 

6 2 1648711.25 69.96 0 0 1648711.25 200.08 0 0  1648711.25 228.16 0 0 

10 3 11863082.18 371.16 0.46 0.71 11863082.18 715.17 1.35 0.81  11863082.18 712.12 1.01 1.04 

 5 21141670.43 382.78 0.61 0.92 21141670.43 694.69 1.25 1.33  21141670.43 702.23 1.30 1.26 

 7 31409761.71 380.18 0.57 0.63 31409761.71 712.98 1.90 2.39  31232698.13 730.08 2.17 2.19 

15 3 16817480.41 578.17 0.72 1.37 16612391.41 970.29 2.40 2.51  16817480.41 1010.29 2.60 2.67 

 5 24429508.20 584.10 1.01 0.74 24429508.20 995. 17 2.57 2.72  24429508.20 1001.26 2.80 2.54 

 7 38172945.77 660.27 0.87 1.38 36194422.77 1021.52 3.12 3.48  37569862.18 1049.72 3.11 3.16 

20 3 21243181.61 1258.01 1.93 2.81 21243181.61 1539.23 3.87 3.26  21091269.17 1518.82 3.87 3.33 

 5 29784726.91 1261.86 2.02 2.77 28956471.40 1719.13 3.99 3.44  27769489.96 1793.17 3.52 3.51 

 7 44827554.81 1304.92 1.95 1.90 43948644.20 1984.28 4.14 3.74  43019462.02 2019.28 4.21 3.83 

α=0.4 

5 2 561372.29 33.16 0 0 

 

561372.29 188.16 0 0  561372.29 191.19 0 0 

6 2 1519571.42 70.14 0 0 1519571.42 196.47 0 0  1519571.42 214.12 0 0 

10 3 10697139.61 354.20 0.47 0.73 10697139.61 712.69 1.26 0.90  10697139.61 684.16 1.20 1.02 

 5 20625291.14 385.26 0.56 1.11 20625291.14 616.14 1.53 1.11  20625291.14 705.19 1.43 1.39 

 7 30847192.26 380.02 0.62 0.80 30847192.26 704.08 2.07 2.17  30847192.26 767.41 2.54 1.94 

15 3 15192064.17 581.91 0.80 0.77 15192064.17 1001.11 2.15 1.44  15192064.17 1019.48 2.14 1.56 

 5 23573282.14 590.11 1.04 1.01 22065980.01 915.76 3.21 3.01  23573282.14 1015.40 2.62 3.06 

 7 37206711.19 649.44 0.91 1.22 36847673.43 1011.19 2.43 3.19  36358521.18 1058.70 2.41 2.79 

20 3 20156594.40 1239.21 1.76 2.60 19897429.18 1547.22 4.07 3.42  19968491.35 1489.02 3.67 3.19 

 5 28089941.29 1260.23 2.12 2.42 28089941.29 1656.25 4.10 3.86  27576940.40 1786.25 3.56 3.11 

 7 42998018.56 1314.43 1.88 2.13 42019816.30 2025.17 3.94 3.88  41767583.09 2004.01 4.50 3.95 

Total average : 624.59 0.92 1.23   968.77 2.24 2.12   995.53 2.21 2.07 
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In order to evaluate the performance of the proposed modified genetic algorithm, we also 

compared the quality of its solutions with those of solutions obtained by a standard GA 

algorithm and Particle Swarm Optimization. The results of the comparison for various size 

instances of the problem are presented in Table 7. We run PSO and GA ten times to solve it. 

The total computational time and objective function value of the best obtained solution and 

GAP and standard deviation of ten obtained solutions by PSO and modified GA and pure GA 

are presented. The results indicate the superiority of proposed algorithm in compared with 

pure GA and PSO in all problem instances regarding to the quality of the solutions and total 

computational time.  

Figure 10 compares the growth in computational time of the mathematical model with the 

proposed GA, pure GA and PSO. It is obvious from the figure that by increasing the number 

of nodes computational time increases in both GAMS and meta-heuristic algorithms. In 

addition, the proposed caching genetic algorithm has higher speed in compare with ordinary 

genetic algorithm and PSO due to repetitive individuals that appear during the running 

process. 

Since modified caching genetic algorithm prevents re-calculation of objective function by 

storing values in a cache table, it can evaluate a large number of population size with higher 

speed than ordinary genetic algorithm due to repetitive individuals that appear during the GA 

execution. Figure 11 indicates the speed of objective function improvement in the modified 

genetic algorithms that tries to achieve the best solution.  

 

 

5.3. Managerial insights 

The proposed R-RM-HLP with the profit-oriented objective. In detail, the customers are 

classified into several groups based on their sensitivity to prices and R-RM-HLP only 

satisfies a portion of demand nodes which is profitable for the airline company. The 

following managerial insights can be extracted from this study: 

 

 Our results indicate that applying R-RM-HLP helps to increase the revenue airlines by 

designing economical capacitated network topology and assign the available 

capacities to the most profitable flows based on customer classes in various 

itineraries. 

 In designing SC configurations in an uncertain environment. In capacity allocation of 

R-RM-HLP in an uncertain air traffic passenger, we understand that making decisions 
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by using stochastic programming yields to increase the flexibility of decisions since 

the decisions can be varied for different scenarios. The amounts of 𝑉𝑆𝑆 and 𝐸𝑉𝑃𝐼 

justify the use of complicated formulations and further efforts in the solution 

techniques. 

 The R-RM-HLP would be helpful for decision-makers to consider the entire 

network’s capability in transferring the traffic flows through a hub location problem. 

In detail, practitioners can compromise between the levels of reliability and the 

obtained revenue of company. They can control their desire level by adopting the 

parameter H which shows the reliability threshold for each origin/ destination route. 

 

6. Conclusion  

Airline companies encounter with strategic hub location and network design decisions, which 

has a long lasting impacts on their operations and some tactical flight routes decisions, which 

are affected by uncertainty. In this study, we focused on demand uncertainty in capacitated 

reliable transportation network. We formulated and solved the problem as a two stage 

stochastic programming with the aim of maximizing the airline profit by classifying 

customers in complete-star transportation network. The proposed model strives to find the 

optimal locations of p hubs, the allocations of non-hub nodes to the p located hubs and 

allocate the fixed amount of capacity to various fare classes. Computational study with 

different number of hubs and nodes was carried out based on Turkish network data set. Since 

the problem is NP-hard and it is impossible to solve it in large-scales in reasonable amount of 

time. Therefore, we applied the evolutionary algorithm that includes genetic operators and 

exact solution by linking MATLAB software to GAMS. In the proposed algorithm, an 

immigration operator is utilized for a better search in the solution space. This operator helps 

to preserve the diversity and keep the algorithm away from local optima. In addition, 

computational performances of the algorithm were improved by caching technique. Caching 

process prevents re-calculation of fitness function by storing values in a cache table. 

The performance of the modified GA is compared with the pure GA and Particle Swarm 

Optimization (PSO). The results corroborated capability of the proposed algorithm in 

achieving high-quality solutions in a reasonable time. Moreover, a considerable percentage of 

run-time savings is obtained by using caching technique. Additionally, the solution quality of 

proposed genetic search approach is quite satisfactory.  

For future works, incorporating pricing strategies, addressing the problem in a competitive 

market, analyzing the problem with robust optimization and consideration of budget 

constraints in designing the network structure could be some valuable research fields. 
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