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Abstract  
Quick response to the relief needs right after disasters through efficient emergency logistics distribution 

is vital to the alleviation of disaster impact in the affected areas. In this paper, by focusing on the 

distribution of relief commodities after disaster, the best possible allocation for the affected areas is 

specified and shortest path to vehicle transporting is determined. The objective of the proposed model 

is the minimization of the maximum distance traveled by each vehicle in order to achieve fairness in 

response to the wounded. In our proposed model, the location of demand is uncertain and determined 

by the simulation approach. The proposed approach solves the proposed model and determines 

appropriate allocation and best route for vehicles according to the allocation, simultaneously. 

Consequently, using genetic algorithm with two-part chromosome structure in routing and allocation 

problems. Computational results show the efficiency and effectiveness of the proposed model and 

algorithm for solving real decision-making problems.  
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1. Introduction 

Nowadays, Natural disasters are considered as one of the most important factors around the 

world that endanger the lives of people. (Dellmuth. 2021) Thus, the global community has been 

forced to improve upon decentralization in accident management, effectiveness and 

accountability of risk management in natural disasters. (Putra and Matsuyuki, 2019) A pillar 

of human society has always been the effects of these natural or even unnatural disasters. 

Natural disasters usually affect everyone regardless of political or social standing. (Wang and 

Nie, 2019) The level of disaster and emergency is directly related to two factors: the type and 

size of the crisis and the performance and readiness of people before, during and afterwards. 

(Zhu et al., 2019). Tomasini and Van Wassenhove (2009) classified people into three groups 
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after a crisis: The first group are people who are frightened and scattered outdoors, the second 

group are the injured or dead and the third group are people that are trapped but can be released 

with minimum effort. The main goal of this paper is How have been allocated relief station to 

crisis center and routing the vehicles after disaster. In this study, we focus on the first group 

that the location of the crisis requires such equipment as tents, water, food, etc. Caunhye et al. 

(2012) classified the main activities of emergency logistic to two groups: activities before and 

after the crisis. Activities that are carried out in the pre-crisis phase are 1. Facility location 2. 

Preparation of warehouse inventories 3. Discharge planning. Activities that are carried out after 

the crisis are: 1. Distribution of relief items 2. Transportation of the injured and the deceased 

3. The evacuation of people. The topic of distribution of relief items is divided into two 

categories on its own: resource allocation and goods flow which are modeled in this case study. 

In this paper in response to the crisis phase, the sub-problem of allocation of relief stations to 

a crisis center and vehicle routing to distribute relief items has been modeled as mixed-integer 

programming problem. A proposed model implementation of the numerical example is carried 

out. Because the vehicle routing problem is NP-hard, a genetic algorithm is utilized to find a 

suitable answer to each question in a reasonable time. In each instance, the number of districts 

in crisis and relief stations are known.  Each relief station has vehicles for the distribution of 

relief items. In the first phase of the model, the allocation of the mentioned vehicles to crisis 

area are determined. In the second phase, the best route for vehicles to the crisis centers are 

determined. (Fariborz. Y and Partovi, 2015) Routing practices used are designed such that each 

vehicle returns to the station it belongs to after it has given its services. In other words, routing 

is closed-loop. In fact, the main purpose of this article is to answer the question of what is the 

best route and where is the best location for the optimal distribution of relief items after the 

crisis. The remain of this paper is organized as follows:  In section 2, the previous studies have 

been reviewed. The description of the problem and the proposed mathematic model are 

investigated in section 3. The proposed solution approach is presented in section 4, and 

computational results are provided in section 5. Finally, the conclusion and suggestions for 

future studies are discussed in section 6. 

2. Literature review  

This section is focused on post-disaster measures as well as the distribution of aid, routing, and 

allocation. The first research on disaster response was carried out by Knott (1998) with a linear 

programming model for determining the scheduling of the vehicle for bulk food transportation 

in disaster areas. Oh and Haghani (1996) analyzed the transportation of large volumes of goods 

such as food, clothing, medical equipment, medicines, machinery and human resource in an 

efficient manner to minimize the casualties with several types of vehicle for relief operations. 

One point which had been ignored in this subject for many years is the lack of availability of 

transportation routing access to roads in the early hours of the relief operation, which 

Barbarosoghlo et al. (2002) in an article considers this objective to focus on using a helicopter. 

Barbarosoghlo and Arda (2004) modeled the problem as a Bi-level stochastic programming 

problem to plan the delivery of aids. Due to the essence of demand, the considered demand as 

a stochastic variable, which is only considered in demand. Ghasemi and Babaeinesami (2020) 

proposed a model to focus on fire station material optimization and decrease the time of arrive 

the occurrence. They were use the enterprise dynamic software for simulation the fire station 

situation. Yi and Kumar (2006) considered the main problem of emergency logistic. The 

evacuation of injured and the distribution of relief items are highlighted in their paper. They 

divided this problem into two stages of decision making that includes determining vehicle 

routing structure and distribution of goods and didn’t consider any uncertainties. They utilized 

the Ant colony optimization meta-heuristic method for solving their model. Sheu (2007) 
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modeled the distribution relief items problem from production centers to distribution centers 

and crisis areas using a dynamic approach and time-dependent modeling and used a fuzzy 

clustering technique to solve it. Yi and Ozdamar (2007) proposed a model for coordination of 

logistics in emergencies. This model studies two issues: 1) Optimum location of emergency 

responders. 2) efficient distribution of medical units. In this model, a mixed integer bi-level 

network flow has been utilized. A two-stage methodology is proposed for solving this problem: 

1) Formulation of the model. 2) an algorithm which produces routing and instructions on 

loading/unloading from the optimum solution of the previous stage. In Yi’s study, dealing with 

uncertainty has been avoided. Saadatseresht et al. (2008) presented a model for evacuation and 

transference of the people from disaster areas to a safe place to discover the best route and 

minimum distance. Some of the techniques used in this study include Multi-objective 

evolutionary algorithms and geographic information systems. They offered a three-level 

method for modeling the evacuation problem. In this way, the location Relief stations must 

first be determined, then the allocation of the stations to crisis centers considering the 

restrictions and finally using an algorithm, determining the optimum routing between each 

crisis center and relief station assigned to it. Zografos and Androutsopoulos (2008) proposed a 

decision support system in the presence of an uncertain environment with a special focus on 

the routing of dangerous material and the consideration of time of the transfer, the concepts of 

risk and discharge. The aim of this study was finding the best routing for transferring dangerous 

materials through modeling the problem as an integer programming and solving it by using the 

Lagrange relaxation heuristic algorithm. Yueming and Deyun (2008) examined the role of 

emergency evacuation plans of urban transit system’s ability to respond in a disaster situation. 

Examined the role of emergency evacuation planning on optimization of the capabilities of 

urban transit systems in responding to the disaster. They considered the structure of evacuation 

routing and distribution networks and aimed to achieve the shortest time for emergency 

responses. Erdemir et al. (2010) studied a combining of ground and air medical services and 

proposed a combined model to cover the crisis area. They used heuristic methods for solving 

their model. Ozdamar and Demir (2012) focused on the post-disaster phase and modeled the 

problems of distributing relief items and evacuating the injured and solved these by utilization 

of a hierarchical clustering method. Bozorgi-Amiri et al. (2013) introduced a multi-objective 

robust stochastic programming under uncertainty. They considered demand, supply, and the 

cost of buying and shipping of their proposed stochastic model and utilized a scenario-based 

approach. Najafi and Eshghi (2013) considered the shipment of goods and injured, as well as 

the ability to carry different vehicles in their proposed model. Najafi et al. (2013) proposed a 

robust multi-objective model by considering several vehicles, several goods, and several 

periods with the aim of logistics operation management of people in crisis and relief after the 

earthquake. Che et al. (2014) proposed a bi-level optimization model by applying uncertainty 

to demand. Their model consisted of lower and upper which, the aim of the upper model was 

minimizing the last arrival time and maximizing the utilization of vehicle load and solved it by 

genetic algorithm, and the aim of other one was minimizing the cost of total transportation and 

employed the Gams to solved it. Haijun Wang et al. (2014) created a nonlinear open location 

routing problem for relief distribution, which, this model included the travel time, total cost, 

and reliability divided at delivery time. Bozorgi-Amiri and Khorsi (2015) proposed a dynamic 

multi-objective location–routing model for relief logistic planning under uncertainty on 

demand, travel time and cost parameters which, in that paper, they were considered condition 

before and after disasters and solved their model by used on ε-constraint method. Ahmadi et 

al. (2015) for a multi depots' location routing problem proposed a model with due to the failure 

network, location of depots, and standard time. Their model defined the location of local depots 

and distribution routing after an earthquake. Christian Burkat et al. (2016). Studied in the 

decision support system and proposed the origin of beneficiaries’ choice for the disaster relief 
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logistics in the location routing problem, in these regards they were introduced a multi-

objective location routing model which this model could minimize the out of service demand 

and the DC’s cost for routing the relief shipment. Vahdani et al. (2016) introduced a new 

mathematical integer nonlinear multi-objective, multi-period, multi-commodity model to 

determine the distribution center for on-time dispensation the relief’s items to the crisis area, 

vehicle routing, etc. which their model aim is minimizing the travel time and total cost. For 

solving the model, they apply two metaheuristic algorithms, namely NSGAII and MOPSO. 

Saffarian et al. (2017) investigated on a model that includes the multi-objective model for 

location and routing of vehicles in disaster. In this model, uncertainty in transfer time and 

demand of warehouse in the disaster area. Vahdani et al. (2018) considered a unique system 

with split delivery that takes several services in the critical area when the disaster takes place. 

They used the two metaheuristic algorithms NSGAII and MOPSO to solve their proposed 

model when some parameters in it put on uncertainty conditions. 

Barojas et al. (2019) proposed a mixed integer non-linear model that it provides necessary 

materials for the respectable survival of the people, usually in the hydro meteorological 

disasters of the state of  Veracruz., Mexico. 

Doodman et al. (2019), considers  the problem for improving performance in the humanitarian 

relief chain, that including the removal of relief items and planning for a multi - period 

distribution between distribution centers.  In addition to improving supply chain cost, their 

proposed model also increased equality and equity. 

Adabazadeh et al. (2020) evaluated the performance of health unit by consider population, 

GDP, etc. by statistical method in dealing the covid-19. In fact, the goal of this paper is 

identifying the capabilities of government behavior in critical management on pandemic time. 

Other works and comparison have been shown in table 1. 

The gap analyze is shown the researcher often considers uncertainty for the demand’s volume 

of relief goods in the post-disaster phase and pay no attention to uncertainty instead of demand. 

As a result, the topics of routing and allocation of relief items with uncertainty in demand’s 

place will be discussed in this article. Another point is that previous research on this topic 

focuses on the response time to a crisis, often aiming to minimize this time; while the realities 

of a relief logistics system are establishing equity and justice in response times. So, this article 

utilizes the minimax objective function in order to achieve minimization of maximum distance 

by each vehicle for establishing justice in response to injured. Due to the complexity of the 

problem being of the exponential degree, with the increasing in the scale of the problem, a lot 

more time is required to get an accurate answer; therefore, we utilize a metaheuristic approach 

for solving this model. 
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Table 1. literature review 
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Liu et al., (2019)  *  *   * 
HHA and NSGA-II 

algorithms 

Peng et al., (2019) *       PLS‐SEM 

Cao et al., (2017) *   *   * Branch and Bound 

Sekar et al., (2019)  *     * Nash Equilibrium 

Bozorgi amiri & Khorsi 

(2016) 
 *  * *  * ε-constraint 

Caunhye et al., (2015) * *  *  *  Expected-value model 

Cavdur et al., (2016)     * *  
deterministic model 

stochastic program 

Ghasemi et al., (2019)    * *  * 
MMOPSO, NSGA-II, ε-

constraint 

Ayough et al., (2020)  *    *  
Time window, SA, 3L-

CVRP 

Rafie-Majd et al., (2018) * *   * *  
Lagrangian relaxation 

algorithm 

Tofighi et al., (2016) *      * 

Mixed 

possibilistic-stochastic 

programming; 

Vahdani et al., (2018)  *  *   * 
NSGAII and MOPSO 

Robust 

Elluru et al., (2019) * *  *  *  
proactive and reactive 

approaches 

Ghaffari et al., (2020) *  *     
swarm optimization 

algorithm 

Liu et al., (2020)     *   PSO-RFR 

Kebriyaii et al., (2021) *       
Robust fazzy stochastic 

programming 

Sun et al., (2021)    * * *  Robust 

Rabbani et al., (2021)  *     * 
NSGA-II 

MOPSO 

Current work  *   * *  Genetic algorithm 

3. Problem description and proposing a mathematic model 

This problem consists of some relief stations with specific capacity and crisis area with an 

uncertain location. The location of relief stations is available, and the demand for relief items 

such as tents, canned food, and water are only calculated for areas with no certain coordinates 

which are obtained through simulations.  The location of relief stations has been identified, and 

demand for relief items such as tents, canned food, and water for crisis areas with no certain 
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coordinates is calculated using simulation.  As is apparent in Figure 1 the logistics planning for 

the distribution of relief items consists of four steps which in this study, we assume that the 

first step is determined therefore decisions are only made regarding steps two to four.  

 

 
 

Figure 1. Steps of emergency logistics planning 

3.1. Assumption 

1. Land-based transportations are being considered.  

2. Relief stations are fixed, and they have unlimited capacity.  

3. Demand for relief and rescue operations are determined in crisis centers. 

4. Each relief station has one vehicle for shipment of goods. 

5. The dimensions and severity of the incidents are such that paths between all relief 

centers and crisis centers are available, as well as between all the crisis centers ensuring 

no failures.  

6. Allocation of each crisis center only to one vehicle, but each vehicle can service several 

crisis centers. 

3.2. Indices, parameters, and variables 

N : set of crisis points 

M : set of relief stations 

V : number of vehicles for relief items transport 

Posi : coordinates of crisis point i (𝑖 ∈ 𝑁) 

Pos0j : coordinates of relief station j ( 𝑗 ∈ 𝑀) 

dij 
: the distance of crisis points i with the coordinate of Posi from crisis point j with the 

coordinate of Pos0j 

d0ij : the distance of crisis points i from relief station j (𝑖 ∈ N  𝑗 ∈ M) 

Di : the demand of crisis points i (𝑖 ∈ 𝑁) 

Cv : the capacity of vehicle v (𝑣 ∈ 𝑉) 

yiv : Equals 1 if vehicle v is allocated to crisis point; otherwise, equal to 0 

Xijv
m  

 : Number of trips between crisis point i to crisis point j by vehicle v from relief 

station M  
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3.3. Mathematical model 

(1 ) 𝑀𝑖𝑛 𝑍 = 𝑀𝑎𝑥𝑣(∑ ∑ ∑ 𝑑𝑖𝑗
𝑁
𝑖=1 𝑋𝑖𝑗𝑣

𝑚  + ∑ ∑ ∑ 𝑑0𝑖𝑗
𝑁
𝑖=1 𝑋𝑖𝑗𝑣

𝑚𝑀
𝑗=1

𝑀
𝑚=1

𝑁
𝑗=1

𝑀
𝑚=1 )  

2) ∑ 𝑦𝑖𝑣
𝑉
𝑣=1 = 1        ∀𝑖 ∈ 𝑁   

(3 ) 
 

∑ 𝐷𝑖𝑦𝑖𝑣
𝑁
𝑖=1 ≤  𝐶𝑣    ∀𝑣 ∈ 𝑉   

(4 ) 
 
∑ 𝑋𝑟𝑗𝑣

𝑚
𝑟 = ∑ 𝑋𝑗𝑠𝑣

𝑚
𝑠     ∀𝑗. 𝑣. 𝑚 ≠ 𝑗 . 𝑦𝑗𝑣 = 0   

(5 ) 
 

𝑋𝑖𝑗𝑣
𝑚 ≥ 0          ∀𝑖. 𝑗. 𝑣. 𝑚   

(6 ) 
 

𝑋𝑖𝑗𝑣
𝑚 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟     ∀𝑖. 𝑗. 𝑣. 𝑚  

(7 ) 
 

𝑦𝑖𝑣 = 0.1         ∀𝑖. 𝑣 
 
The objective function of this problem (equation 1) minimizes the maximum distance traveled 

by vehicles. For this purpose, the distance traveled by each vehicle is calculated, and among 

them, the maximum value is selected and considered as the objective function’s value. 

Constraint (2) ensures that each crisis center is only allocated to one vehicle. Constraint (3) 

ensures that the demand quantity allocated to a vehicle does not exceed its capacity. Constrain 

(4) represent the equilibrium equation of the number of entries and exits to and from each crisis 

center  constraint (5) -(7) are related to nonnegative, integer, and 0-1 variable constraints. 

4. The proposed solution approach 

Due to the vehicle routing problem being an NP-Hard, using exact methods on some relatively 

large-scale problems cannot be justified (Lenstra and Kan, 1981). To solve the proposed model, 

the genetic algorithm, which is one of the evolutionary metaheuristic algorithms is utilized. Jan 

Holland proposed of the genetic algorithm as one of the evolutionary algorithms (Holland, 

1975). A genetic algorithm is a searching algorithm based on the structure of genes and 

chromosomes. It is one of the random search methods, and despite the randomness quality, it 

has a goal-oriented structure. In this regard, Figure 2 is an overview of the proposed solution 

algorithm. 

4.1. Chromosome’s description 

The structure of the Chromosome is a two-part structure such that in the first part of this 

structure, the assignment of crisis bases to relief centers is determined, and the second part 

consists of the order by which each vehicle visits a disaster area.  

4.2. Initial population 

A function is used for generating the initial population, which randomly determines the 

allocation of vehicles and arrangement of crisis centers. In addition, a penalty method is used 

for the enforcement of restrictions. 
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4.3. Cross over operation 

Figure 3 describes the two types of crossover operations, one of them relating to the first part 

of the chromosome and the other for the second part of it. The crossover considered for part 

one is a single-point crossover, and the crossover applied to the second part is a permutation 

crossover. With every iteration of the crossover operation, it’s either done so on the first section 

only, or on the second section, or both of them. For example, if there are five vehicles and ten 

crisis centers, performing a single-point crossover, we will have to perform a single-point 

crossover. 

4.4. Mutation operation 

To mutation, operation is defined as two types of mutation: one for the first part of chromosome 

related to the allocation of vehicles and another for the second part of, the arrangement of crisis 

centers. For each mutation operation, one member of the population is randomly selected, then 

the first part mutation is calculated by choosing a crisis center randomly and is allocated to a 

vehicle that is not the vehicle which it is currently being served by. For a mutation will be 

considered the second part of the chromosome by using of switch defined, one of the following 

scenarios occurs: The mutation for the second part of the chromosome is defined using the 

switch property and results in one of these scenarios:  
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Figure 3. Single-point cross over 

1- Swap Mutation: swaps the location of two crisis centers in the chromosome structure. 2- 

Reversion Mutation: The number of two genes are accidentally chosen, and the number of 

crisis centers between these two genes is  reversed. 3- Insertion Mutation: Number of two genes 

are randomly selected, and the number of the crisis center related to the second gene is placed 

immediately after the first gene. For example, there are five vehicles and ten crisis centers, by 

doing mutation operations on the first part of the chromosome, we will have: 

 
Figure 4. A mutation in the first part of the chromosome 

 
By randomly choosing box number 5, the number “1” in that box is replaced by another number.  

4.5. Choosing a new population 

In order to choose a new population, at first, all of the population produced from mutation and 

crossover operations is combined with the initial population. Then the population calculated is 

sorted by the cost function, and finally they are ordered by the number of initial population 

(npop) and the members with the best cost function are chosen.  

4.6. Parameters setting and stop condition 

In this section, the parameters of the genetic algorithm as well as tuning processes are 

expressed.  

• MaxIt: The maximum number of repetitions of the main loop of the algorithm. 

• Npop: the initial population. 

• P Crossover: Percent of the population on which a crossover operation was performed. 

• P Mutation: Percent of the population, on which mutation was performed. 

• Tournament Selection Size: Represents the number of chromosomes that must be 

chosen to produce a member of the next generation. The best of these chromosomes are 

chosen. 

• Selection Pressure: selection pressure refers to the concept of the best chromosomes 

spreading faster and on a greater scale.  
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By implementing this algorithm repeatedly and using the results of previous studies, 

parameters of the algorithm are set to the following values. Stopping criteria chosen in our 

code is the maximum number of iterations. 

 
Max It 
 

=200 

N pop 

 
=50 

P Crossover 

 
=0.8 

N Crossover 

 
Round= (p Crossover * n pop/2) *2           

P Mutation 

 
=0.3 

N Mutation 

 
Round= (p Mutation * n pop)                         

Tournament Selection Size 

 
=3 

Selection Pressure 

 
=10 

5. Computational results 

To represent the performance and efficiency of the model and proposed solution method, this 

is implemented on several sample problems, some of them by considering the opinion of red 

crescent organization experts and others are random  based on similar research. which are 

discussed in more detail in the table (2) in below:  

Table 2. Sample problem profile 
A 

Sample 

problem 

The number 

of crisis 

centers (N ) 

The number of 

Relief station 

(M) 

The number 

(V)of vehicles 
(C) Capacity of vehicles 

1 40 5 5 563,393,531,474,456 
2 50 8 8 461,453,366,374,423,232,361,307 
3 80 10 10 589,401,474,395,389,588,587,538,555,367 
4 100 12 12 680,440,616,363,413,666,447,531,623,520,692,376 

5 130 14 14 
444,538,378,750,599,404,608,786,759,444,490,622,486,

767 

6 180 18 18 
702,672,473,346,581,385,714,349,562,553,701,772,479,

354, 373,758,608,525 

7 200 20 20 
420,710,618,800,742,411,482,386,695,526,633,627,734,

598, 589,521,549,534,779,531 

The demand of each crisis center is determined according to the population density of the 

center, event severity, and types of buildings in the area. Table 3 represents the demand only 

for the first sample (consisting of forty crisis centers). For example, the demand for the first  
crisis center equals 86 units of goods. 
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Table 3. The demand for a crisis center for the first sample problem 
(N) Crisis center number 

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

    Summation of demand for each crisis center 

85 50 69 94 49 63 94 25 56 69 17 78 62 55 19 34 55 98 92 86 

Applying the proposed solution method on the before mentioned problem and solving the 

model by use of the genetic algorithm, reach the results presented in Table 4 containing the 

objective function values and computing time. The proposed solution approach was coded in 

MATLAB, and the computer used for calculations supported a Pentium ® Dual-Core with 

3GHz CPU and 4 GB of internal storage capacity. 

Table 4. Function value and solving time of sample problem 
A Sample 

problem 
(Z )Function value 

model solving 

(Second)time 

The initial 

population 

The maximum number of 

repetitions main loop 

1 286 10,260 50 200 

2 305 19,865 50 200 

3 422 14,990 50 200 

4 454 18,059 50 200 

5 478 20,309 50 200 

6 560 33,344 50 200 

7 634 27,043 50 200 

8 648 36,597 50 200 

9 665 45,297 50 200 

10 680 55,628 50 200 

11 696 58,955 50 200 

12 705 62,265 50 200 

13 718 74,654 50 200 

14 729 87,996 50 200 

15 741 98,234 50 200 

16 758 106,235 50 200 

17 771 110,384 50 200 

18 789 116,547 50 200 

19 804 119,258 50 200 

20 822 121,402 50 200 

21 843 124,928 50 200 

22 867 125,368 50 200 

23 891 128,641 50 200 

24 912 131,260 50 200 

25 934 132,825 50 200 

26 956 138,564 50 200 

27 995 139,211 50 200 

28 1010 141,405 50 200 

29 1048 143,657 50 200 

30 1066 147,288 50 200 

31 1097 148,054 50 200 

32 1115 148.897 50 200 

33 1138 150,023 50 200 

34 1161 152,083 50 200 

35 1182 152,558 50 200 

36 1198 153,091 50 200 

37 1208 154,334 50 200 

38 1225 155,103 50 200 

39 1253 155,997 50 200 

40 1269 157,199 50 200 

 

(N) Crisis center number 

40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 

Summation of demand for each crisis center 

48 17 33 22 42 45 46 85 46 37 49 20 46 88 62 31 43 71 59 57 
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Table 5 shows the allocation of the relief stations to the crisis centers for the first crisis center 

(containing forty crisis centers and five relief stations). For example, the first column shows 

that the 9th crisis center was allocated to the 2nd relief station. 

Table 5. How to allocate the relief station to the crisis center for first sample problem 

Relief station number Crisis center number 
1 32,7,33,13,30,36,25,37,17 
2 9,11,19,14,15,22,29,38 
3 39,21,18,27,31,24,2 
4 16,6,10,5,1,26,23 
5 4,2,28,3,34,40,35,12,8 

In addition, Table 6 shows the order by which each crisis center is visited by each vehicle in 

the first sample problem. For example, according to the first row, the first vehicle visits crisis 

centers number 32,7,33,13,30,36,25,37,17 respectively.  

Table 6. Arranges to meet up a crisis center in the first sample problem 

vehicle Arrange to meet up crisis centers 

1 32,7,33,13,30,36,25,32,17 
2 9,11,19,14,15,22,29,38 
3 39,21,18,27,31,24,2 
4 16,6,10,5,1,26,23 
5 4,20,28,3,31,40,35,12,8 

5.1. Sensitivity analysis 

5.1.1. GA algorithm 

The proposed genetic algorithm has six parameters, Max It  ،N pop  ،P Crossover  ،P Mutation, 

Pressure Selection (PS) and Size Selection Tournament (SST). The most important parameters 

are mutation and crossover that will be set by changing and recording the results. In order to 

tune the rate of crossover and mutation parameters, the value of the objective and the time for 

solving the model are compared in three different states: the crossover rate is greater than the 

mutation rate, the two rates are equal, and the crossover rate is lower than the mutation rate. 

The best answer is given by solution time in the first state. Selection Pressure and Selection 

Size are related to intensification and diversification of features of the algorithm, which are 

calculated after their values are changed, and the convergence of the algorithm is observed. To 

tune these two parameters the maximum number of iterations and the initial population, the 

speed with which the algorithm proceeds decrease tremendously with the increase in initial 

population size, but the quality of the results improves.  With the increase in the number of 

iterations, it is observed that after some number of iterations, improvements in the solution is 

slow and minimal. Therefore, considering the three factors of quality of the solution, time to 

reach the solution, and the maximum number of iterations in which the solution is fixed; the 

two parameters are specified. In what follows, sensitivity analysis is done on the results of the 

sample problem in three states expressed through crossover and mutation rates.  

As shown in Table 7, the quality of solutions in the case where the crossover rate is higher than 

mutation’s is higher. Moreover, the time it takes to reach the solution is longer, but given the 

higher quality of the solution found and the importance of this factor; the optimized solution 

for the parameters is the second row in the previous table.  
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Table 7. Sensitivity analysis 

Max It N Pop P Crossover P Mutation SP aT SS Function value 
Time 

solution(second) 

200 50 0.9 0.3 10 3 297 11,31 

200 50 0.8 0.3 10 3 286 10,26 

200 50 0.6 0.3 10 3 305 9,22 

200 50 0.5 0.3 10 3 321 9,01 

200 50 0.5 0.5 10 3 355 8,99 

200 50 0.7 0.7 10 3 349 10,58 

200 50 0.8 0.8 10 3 331 15,03 

200 50 0.3 0.9 10 3 292 9,21 

200 50 0.3 0.8 10 3 369 8,77 

200 50 0.3 0.6 10 3 341 8,52 

200 50 0.3 0.5 10 3 368 8,11 

The convergence of the proposed algorithm is shown in Figure 5. As apparent by the figure, 

increasing the number of repetitions of the implementation of the genetic algorithm, objective 

function’s values decrease, and after iteration 140, there is no longer a change in the objective 

function value, and the problem has converged.  

 
Figure 5. Show how the convergence of the algorithm 

5.1.2. Demand 

We solve the problem with different amount of demand in variance of -20%, -10%, base case, 

10%, 20% for checking the effect of demand on the objecting function behavior. Result of 

sensitivity on demand has been shown in Figure 6. Due to the Figure 6, 10% tolerance in 

demand cannot has an effect in objective function. On the one hand decreasing the 20% in 

demand leads to increase 14% in objective function and on the other hand decreasing 20% can 

decrease 16%.  
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Figure 6. The demand’s effect  on the objective function 

5.1.3. Capacity of vehicle 

In this section, investigate the capacity of vehicles tolerance in this problem. Different value of 

capacity and results are analyzed for this model. Figure 7 shown the resulted of vehicle 

capacity’s sensitivity analysis. This figure is shows clearly that by decreasing of capacity leads 

to increasing the objective function and vice versa.  

 

Figure 7. The vehicle capacity effect  on the objective function 

6. Conclusions  

Synchronization of logistics after a crisis is an operational level decision and needs to be made 

and adopted promptly, which is why in this paper a genetic metaheuristic algorithm is used that 

proposes an appropriate response for the vehicle routing problem and allocation of relief 

stations to crisis centers in a short time while considering in-demand location uncertainty. The 

GA algorithm simultaneously solves the allocation and routing problems using a bi-level 
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chromosome structure and through several kinds of mutations and crossovers for optimization 

of proposed model. Implementation of this method on several sample issues concluded that the 

solution has highly acceptable results and functionality, therefore can be used by planners and 

officials of organization after a crisis has occurred. Since the genetic algorithm used is 

population-based, this model is suitable for problems that are compounds with several states. 

For future studies, the authors suggest dynamic routing of the same model could be used for 

more accurate results which can be solved using a simulation-optimization technique. 

simultaneous consideration of uncertainty in location and demand, planning for other types of 

survivors, road destructions and use of different vehicles are other topics for future research.  
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