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Abstract 
Nowadays, supply chains have been facing significant economic forfeitures because of unpredicted disruptions. Furthermore, 
managers try to design sustainable and reliable supply chains. In this paper, we present an inventory-location model to propound 
a reliable three echelon supply chain which includes a production plant, distribution centers, and retailers. The production plant 
distributes a single product to retailers through distribution centers that are at risk of disruption. We considered reactive (con-
sider backup distribution center for each retailer) and proactive (distribution center fortification) activates to enhance the supply 
chain's reliability. The proposed model indicates the location of distribution centers (DCs), the DCs that must be fortified, the 
allocation of retailers to DCs, and the inventory policy of DCs. The problem is formulated as a nonlinear integer programming 
model. Since our model is an NP-hard problem, we provide a Lagrangian relaxation algorithm to solve it. Numerical examples 
demonstrate the computational efficiency of the proposed solution algorithm. Results show that, with increasing the budget of 
fortification, the total expected cost will decrease. A higher inventory cost leads to an increase in the number of opened DCs, 
while higher ordering cost and the transportation cost from production plant to DCs decrease the number of opened DCs. Among 
other results, the number of opened DCs is positively affected by the cost of transporting from DCs to retailers.  

Keywords: disruption; location; inventory; Lagrangian relaxation; facility fortification. 
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1. Introduction

Increasing competition in global markets makes cost reduction and customer service improvement two critical 
challenges for firms. In this regard, firms try to design a more efficient supply chain by integrating tactical and 
strategical decisions. Inventory control and facility location are the two most important tactical and strategical 
decisions, respectively. These decisions are interconnected because a shift in the number or location of facilities 
can affect inventory costs and delivery time. Also, changing the inventory policy of facilities can influence location 
costs and allocation decisions. Hence, modeling the location-inventory problems has always been attractive for 
researchers, and many studies are being conducted in this field (Amiri-Aref et al., 2018; Bagherinejad and Najafi-
Ghobadi, 2019; Liu et al. 2020; Wu et al., 2021). In classical inventory-location models, it is assumed that the facilities 
will always work as planned, and they have never been disrupted. In the real world, however, firms face several 
unexpected events in their supply chain each year. In March 2000, a fire at Philips's semiconductor plant in New 
Mexico shut down the company for nine months. The shutdown caused $ 40 million in damage to Philips direct 
sales and $ 2.34 billion in losses to Ericsson's mobile division (Sheffi, 2005). The following year, the United States 
banned meat imports due to a possible outbreak of the foot-and-mouth disease in the United Kingdom. The ban 
affected four percent of US pork imports (Marquis, 2001; Reuters, 2001). In the events of 11 September 2001, US 
borders were closed due to the terrorist attack. As a result, Ford Motors was forced to close several assembly lines 
due to a shortage of overseas parts (Sheffi et al., 2005; Cundari et al., 2008). In 2003, the deadly SARS outbreak 
disrupted China's furniture production and reduced its exports to the United States by about 15 percent (Koncius, 
2003). Following Hurricane Katrina in 2005, crude oil production in the Gulf of Mexico was disrupted by 1.4 million 
barrels per day (Kotak, 2005; Mouawad and Romero, 2005; Strahan et al., 2005).  
The mentioned and other examples (Sheffi, 2001; Christopher and Peck, 2004; Wilson, 2005; Carpenter, 2010) reveal 
the severe need to design supply chains by considering the risk of disruption. There are very few resources and 
time to rebuild and repair the strategic network infrastructure when a network disruption occurs. Studies have 
shown that additional investment in the initial design can lead to optimal supply chain performance when disrup-
tion occurs. Disruption makes the strategic levels of the supply chain vulnerable and, of course, severely 
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overshadows the operational and tactical decisions. Therefore, considering disruption in designing supply chains 
are critical, and the questions that arise here are: 

• What factors and activities increase the supply chain reliability under disruption risk? 
• How to design a reliable supply chain taking into account inventory and location decisions? 
• How should firms manage sudden disruptions by making appropriate inventory and location decisions 

to reduce costs? 

Answering the above questions was our primary motivation to conduct this study. We design a reliable three 
echelon supply chain, including a production plant, distribution centers, and retailers. The production plant dis-
tributes a single product to retailers through distribution centers that are at risk of disruption. Our model optimizes 
distribution center (DC) locations to be opened, the DCs to be fortified, the allocation of retailers to opend DCs, 
and inventory policy to minimize inventory and location costs. We assume one primary opened DC and one reli-
able opened backup DC for each retailer. If the primary DC fails, the retail will be served by the backup DC. Be-
cause our proposed model is NP-hard, a Lagrangian relaxation algorithm is developed to solve it.  

2. Review of literature 

In the literature, two kinds of policies were proposed to increase the reliability of supply chains: considering 
some backup facilities for failed facilities and using a fortification budget to fortify facilities. Thus, we classified 
the reviewed studies into two categories: studies considering backup facilities and researches on allocating forti-
fication budget. 
 
2.1. Studies with considering backup facilities 

Facility location models have attracted more attention in researches of the supply chain under disruption (Ber-
man et al., 2007; Cui et al., 2010; Liberatore et al., 2011; Lim et al., 2010; Peng et al., 2011; Snyder & Daskin, 2005). 
At first, Drezner (1987) studied the facility location problem under disruption. He provided a neighborhood 
search heuristic algorithm to solve the proposed model. Snyder and Daskin (2005) modeled a facility location 
problem by assuming a primary server and some backup servers for each customer. If the primary server fails, 
the customer receives the service from the next server. They assumed that at least one of the assigned servers 
was reliable. The failure probabilities of facilities were supposed to be equal and independent. Berman et al. 
(2009) solved a location-allocation model by providing three heuristic algorithms: simulated annealing, tabu 
search, and ascent algorithm. Cui et al. (2010) expanded the Snyder and Daskin model by considering heteroge-
neous failure probabilities. Chen et al. (2011) investigated a reliable joint inventory-location model. Their goal 
was to determine distribution centers’ locations, inventory management decisions and allocate customers to DCs 
in a situation where DCs were at disruption risks. They considered R backup facilities for each customer. Peng 
et al. (2011) proposed a mixed-integer programming model to minimize the total cost in situations where there 
are no disruptions. They decreased the disruption risk by applying the p-robustness criterion. Rayat et al. (2017) 
studied a multi-period location-inventory-routing problem by considering disruption risks. The problem was 
presented as a bi-objective mixed-integer nonlinear model assuming stochastic demand. They provided a modi-
fied multi-objective simulated annealing algorithm for solving the model and numerical examples. Yun et al. 
(2017) proposed a “trial-and-error” strategy for modeling a reliable facility location problem. They assumed that 
facility failure probabilities varied across the space. Azizi (2017) modeled a hub location problem when hubs 
were subject to failure. In their model, each demand point was allocated to a primary hub and one backup hub. 
They formulated the problem as a mixed integer quadratic program and proposed three-particle swarm optimi-
zation-based meta-heuristics. Zhang et al. (2016) formulized a competitive location model that facilities were 
subject to disruption. They considered two players that competed with each other to capture market share. The 
competition was modeled as a Stackelberg game, and a variable neighborhood decomposition search heuristic 
was presented. Jabbarzadeh et al. (2018) studied the effect of disruption in the design of a close-loop supply by 
allowing lateral transshipment between facilities. Their model determined the location of facilities and the lateral 
transshipment quantities. A Lagrangian relaxation algorithm was provided to solve the model. Eskandari-
Khanghahi et al. (2018) proposed a multi-period and multi-objective model for a sustainable blood supply chain 
under the risk of disaster. Yahyaei and Bozorgi-Amiri (2019) modeled the design of relief logistics by considering 
the disruption of facilities. They assumed that the number of customers affected by the disruption of facilities is 
an uncertain parameter and used a robust approach to solve the model. The problem of designing a transporta-
tion network for hazardous materials under disruption was investigated by Ghaderi and Burdett (2019). The aim 
was to minimize the cost of transportation and risk. Diabat et al. (2019) provided a supply chain model for per-
ishable products. They considered facilities’ location and routes under distribution risk, and a Lagrangian relax-
ation algorithm was presented to solve the proposed model. Shen et al. (2020) proposed a mixed-integer linear 
programming model to address a hub location problem. They showed that although considering backup servers 
would slightly increase costs, they significantly increase the supply chain reliability. 
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2.2. Researches on allocating fortification budget 

In the event of a disaster, allocating customers to other servers may result in customers’ dissatisfaction. Custom-
ers expect that the servers have acceptable stability. Thus, managers must accomplish proactive activates such as 
investment in reliability improvement of existing facilities. Church and Scaparra (2007) modeled a location prob-
lem by considering a fortification budget. They aimed to allocate a fortification budget among a set of facilities 
to minimize the impact of disruption. Scaparra and Church (2008) also studied an r-interdiction median problem. 
The goal was to minimize the effect of the disruptive attacks on facilities through the most cost-effective ways to 
allocate protective resources among them. Li et al. (2013) investigated a location model under disruption by con-
sidering a finite fortification budget. Jabbarzadeh et al. (2016) designed a resistant supply chain when disruption 
probability was a function of fortification investment. They used a Monte Carlo simulation method to investigate 
the performance of the proposed model. Afify et al. (2019) developed an evolutionary learning algorithm to solve 
a location problem where distribution centers were under disruption risk. Their model indicated the location of 
facilities and a subset of facilities that should be fortified. Haghjoo et al. (2020) modeled a blood supply chain 
where the facility disruption depended on the initial budget allocated to open it. Two meta-heuristic algorithms, 
including invasive weed optimization and self-adaptive imperialist competitive algorithms, were provided. The 
reviewed literature is summarized in Table 1. 
 
2.3. Contributions of this study 

 
Based on reviewed literature and Table 1, we can mention our novelties as follows: 

1. A novel inventory-location model is proposed to determine the location of distribution centers, the dis-
tribution centers that must be fortified, the allocation of retailers to opened DCs, and inventory policy of 
DCs. 

2. Both fortification budget constraints and backup facilities are incorporated to increase the reliability of 
the supply chain. As a result, our model provides a more realistic supply chain and vouches that the 
obtained optimal solutions are consistent with the available reliability improvement resources. 

3. The proposed model can help the strategic decision-makers to evaluate the rate of return on investment 
in fortifications. It can help companies to determine the right amount of investment to strengthen their 
supply chain. 

4. A Lagrangian relaxation algorithm is developed to solve the model and numerical examples. 
 

Table 1: The summary of the reviewed literature 

 
 

 

Study 
Decision variable Type of increasing 

reliability 
Number of opened 

facilities 
Solution approach 

Location Inventory Backup 
facilities  

Fortification 
budget 

Limited Unlimited Heuristic Lagrangian 
relaxation 

Drezner (1987) *  *   * *  
Snyder and Daskin (2005) *  *  * *  * 

Church and Scaparra 
(2007) 

*   * *    

Scaparra and Church 
(2008) 

*   * *  *  

Berman et al. (2009) *    *  *  
Cui et al. (2010) *  *   *  * 

Chen et al. (2011) * * *   *  * 
Peng et al. (2011) *  *  *  *  

Li et al. (2013) *   * * *  * 
Jabbarzadeh et al. (2016) *   *  * *  

Zhang et al. (2016) *  *   * *  
Rayat et al. (2017) * * *   * *  
Yun et al. (2017) *  *   * *  

Azizi (2017) *  *  *  *  
Jabbarzadeh et al. (2018) *  *   *  * 
Eskandari-Khanghahi et 

al. (2018) 
* *    * *  

Yahyaei and Bozorgi-
Amiri (2019) 

*  *   *   

Ghaderi and Burdett 
(2019) 

*  *   * *  

Diabat et al. (2019) * * *   *  * 
Afify et al. (2019) *   * *  *  
Shen et al. (2020) *  *  *  *  

Haghjoo et al. (2020) *   *  * *  
Current paper * * * * *   * 
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3. Problem description and notations  

We consider a set of retailers with deterministic demand for a single product and a reliable production plant. The 
production plant provides the retailer's demand through DCs that are subject to heterogeneous disruption. Each 
retailer is allocated to a primary DC and a different backup DC to improve the supply chain's reliability. Also, 
according to the available budget, some of opened DCs are fortified. If a DC is fortified, it becomes reliable. It is 
desired to select DCs in the candidate locations to be opened, indicate which of DCs must be fortified, assign 
retailers to opened DCs and determine inventory policy in the opened DCs so that the sum of expected costs of 
inventory and transportation will be minimized (Fig. 1). 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: A sample solution of the proposed model  

 

The assumptions, notations, input parameters, and decision variables of the model are described in the follow-
ing. 
Assumptions 

1. The location of the retailers is fixed and known. 
2. The retailer’s demand must be satisfied with just one primary or backup DC. 
3. If the primary DC fails, the backup DC is reliable and will serve the assigned retailer. 
4. There is not any backlog at DCs. 
5. The number of DCs that can be opened is given (Li et al., 2013; Snyder and Daskin, 2005). 
6. The failures of DCs are independent of each other (Cui et al., 2010; Lim et al., 2010 and Snyder and 

Daskin, 2005). 
7. If a DC fails, it becomes unavailable 

 
Sets 

i: The set of retailers {1, 2... I} 
j: The set of potential DCs nods {1, 2…J} 
Parameters 
di: Demand of retailer i 
hi: Unit holding cost in DC j 
cj: Ordering cost of DC j 
qj: The probability that DC j failed 
sji: Unit transportation cost from DC j to retailer i 
sj: Unit transportation cost from production plant to DC j 
fj: Fortification fixed cost of each facility, including the costs of research and developments (R&D), personnel training, and 
contract negotiation  
rj: Variable fortification cost to decreases one unit of the failure probability of DC j 
B: Total budget that is considered to fortify DCs 
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P: Number of DCs that must be opened 
 
Decision variables 
 

 

Yj= 

 

 

Xij0= 

 

 

Xij1= 

 

 

Wj= 

 

 

4. Model formulation 

Let a distribution center that follows continuous inventory policy is located at node j. For this DC, its expected 
annual demand is the sum of retailers’ demand that are assigned to it and is: 

0 1 0
1

(1 (1 )) (1 )
I

i ij j j i ij ir r r
i r J

r j

d X q W d X X q W
= ∈

≠

 
 − − + −∑ ∑ 
                                                  (1) 

Where (1 − 𝑞𝑞𝑗𝑗(1 −𝑊𝑊𝑗𝑗)) and ∑ 𝑋𝑋𝑖𝑖𝑖𝑖0𝑞𝑞𝑟𝑟(1 −𝑊𝑊𝑟𝑟)𝑟𝑟∈𝐽𝐽,𝑟𝑟≠𝑗𝑗  are the probability that the DC j is available as the primary and 
the backup server, respectively. 
By considering ordering and holding costs as the annual inventory cost, we have: 

0 1 0
1
[ (1 (1 )) (1 )]

2

I

i ij j j i ij ir r r
i r j j

j j j
j

d X q W d X X q W Q
TIC c h

Q
= ≠

− − + −∑ ∑
= +

                                          (2) 
For any given DC and its retailer assignments, according to the EOQ trade-off, the optimal ordering quantity can 
gain as follows: 

* * 0.5
0 1 0

1

2
( )
2

[ (1 (1 )) (1 )]j

Ij
i ij j j i ij ir r r

i r jj

cD
Q Q

h

c
d X q W d X X q W

h = ≠
= ⇒ = − − + −∑ ∑

                                                    (3) 
Thus, under the optimal ordering quantities, the total expected inventory cost at node j by substituting (3) in (2) is: 

* 0.5
0 1 0( )2 [ (1 (1 )) (1 )]j j j i ij j j i ij ir r r

i I r j
TIC c h d X q W d X X q W

∈ ≠
= − − + −∑ ∑

                            (4)  
Then, the cost of transportation from DC j to assigned retailers is: 

0 1 0[ (1 (1 )) (1 )]i ij ij j j i ij ir r r
i I r J

r j

ijd q W d Y q Ws X s X
∈ ∈

≠

− − + −∑ ∑

                                                                    (5) 
So, we have the total transportation cost from DCs to retailers as follows: 

 

0 1 0[ (1 (1 )) (1 )]i ij ij j j i ij ij ir r r
j J i I r J

r j

d s X q W d s X X q W
∈ ∈ ∈

≠

− − + −∑ ∑ ∑

                                    (6) 
Also, the cost of transportation from production plant to DCs is: 

0.5
0 1 0

1

2
( [ (1 (1 )) (1 )])

Ij
j i ij j j i ij ir r r

j J i r jj

c
s d X q W d X X q W

h∈ = ≠
− − + −∑ ∑ ∑

                                          (7) 
According to equations (4), (6), and (7), we can present the objective function in equation (8).  

1    If a DC is opened at node j 

0       Otherwise 

1    If DC j is considered as the primary server of retailer i 

0       Otherwise 

1    If DC j is considered as the backup server of retailer i 

0       Otherwise 

1    If DC j is fortified 

0       Otherwise 
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   (8) 
 

0 1ij
j J

X i I
∈

= ∀ ∈∑
                                                                                                                                                   (9) 

1 1ij
j J

X i I
∈

= ∀ ∈∑                                                                                                                                                (10)     

0 1 ,ij ij jX X Y i I j J+ ≤ ∀ ∈ ∈                                                                                                                               (11) 

 
j

j J
Y P

∈

=∑
                                                                                                                                                                                          (12)

( )j j j j
j J

f r q W B
∈

+ ≤∑                                                                                                                                                             (13) 

{ }, 0,1j jY W j J∈ ∀ ∈                                                                                                                                           (14) 

{ }0 1, 0,1 ,ij ijX X i I j J∈ ∀ ∈ ∈                                                                                                                              (15) 

Equations (9) and (10) reveal that each retailer is allocated to only one primary and one backup DC, respectively. 
Two purposes are shown in equations (11). First, it ensures that each retailer is assigned to only an opened DC. 
Second, it also selects different primary and backup servers for each retailer. Equation (12) presents the maximum 
number of DCs that can be opened. The total available budget to fortify DCs is presented in equation (13). Finally, 
the variables Yj, Wj, Xij0, and Xij1 are binary and are expressed by (14) and (15).  

5. Solution approach 

Previous researches demonstrated that both the location-inventory and the location-allocation problems are NP-
hard (Daskin et al., 2002; Cooper, 1963). So, our model that is a combination of them belongs to NP-hard problems. 
Heuristic and Meta-heuristic algorithms are primarily used procedures to solve NP-hard problems. In literature, 
Lagrangian relaxation is the best approach for location models (Lee et al., 1996; Miranda and Garrido, 2008; Diabat 
et al., 2015; Beltran-Royo et al., 2012; Nezhad et al., 2013; Diabat et al., 2013). Thus, we motivate to provide a La-
grangian relaxation algorithm to solve the proposed model. The details of this algorithm proceed as follows. 

5.1.  Lagrangian relaxation 

One of the most widely used methods to solve constrained optimization problems, especially integer problems, is 
the Lagrangian relaxation (LR) method (Khorshidvand et al., 2021 a, b, and c). Held and Karp (1970-1971) first 
proposed an LR algorithm for solving the traveling salesman problem. The main idea of LR is to relax complicating 
constraints and multiply them into a factor called the Lagrange multiplier, and add them to the objective function. 
It is expected that solving the relaxed model will be easier than solving the primary model. By considering a fixed 
value for the Lagrange multipliers, the optimal solution of the relaxed model will be a lower bound for the primary 
model (in the minimization problem). On the other hand, if the obtained solution is a feasible solution to the main 
problem, it will be the upper bound. For this purpose, a heuristic algorithm is usually proposed to obtain a feasible 
solution (upper bound) from the lower bound solution. As a result, by maximizing the minimum of the relaxed model, 
a lower bound is obtained for the main model, and in a repetitive process, the resulting solution will be pushed to reach an 
optimal solution for it. 

5.1.1 Lower bound 

Using Lagrange multipliers 𝜆𝜆𝑖𝑖𝑖𝑖, we relax the set of constraints (11) to reduce the complexity of the proposed model 
and remove the decision variable Yj. After relaxing these constraints, the following sub-model has been obtained. 
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Subject to (9), (10), (12)–(15), and Xij0+Xij1≤1. 
For a fixed value of λij, we can find an optimal value for Yj by sorting (−∑ 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼 ). If (−∑ 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖∈𝐼𝐼 ) belongs to the P 
smallest sorted values, we set Yj=1; otherwise, Yj=0.  
In the following, we indicate which opened DCs must be fortified. First, we assume that the budget for fortification 
is zero by considering B=0. So, we have Wj=0 for all j, and constraint (13) will be omitted. The simplified model is: 

0 10

0.5 0.5 0.5
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∈

+  ∑ 
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Subject to (9), (10) and (15).  
It is noticeable that when constraint (11) is relaxed, a retailer may be allocated to a DC that is not opened. However, 
it is still guaranteed that each retailer is allocated to only one primary and one backup DC considering constraints 
(9) and (10). To allocate a primary and backup server to each retailer optimally, we separate the problem M1 in i. 
For retailer i, we select DCs v and t as the primary and backup server, respectively. Thus, the objective function of 
(M1) related to retailer i will be: 

0.5 0.5 0.5

0.5 0.5 0.5

2( , t) (1 ) ( ( ) (2 ) )( (1 ))

2( ( ) (2 ) )( )

v
i i iv v iv i it v iv v v v i v

v

t
t t t i v

t

cv d s q d s q s c h d q
h

cs c h d q
h

φ λ λ= − + + + + + − +

+ ×

   (16) 

We calculate ∅𝑖𝑖(𝑣𝑣, 𝑡𝑡)for all v, t ∈J and then compute ∅𝑖𝑖∗ = 𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣,𝑡𝑡{∅𝑖𝑖(𝑣𝑣, 𝑡𝑡)} to obtain the optimal allocation. 
In the following, we suppose B≠0. We again suppose that retailer i is allocated to DC v as primary DC and t as the 
backup DC. If we assume that DC v is fortified (i.e., Wv=1), the objective function of M1 (for retailer i) is: 

0.5 0.5 0.5( , ) ( )
2( ) (2 )i i iv iv it

v
v v v i

v
v t d S d

cs c h
h

λ λΨ = + + + +
         (17) 

Consider 
*( ) ( ( , ))i t iv Min v tΨ = Ψ  and Ei(v)=max {∅𝑖𝑖∗ − 𝛹𝛹𝑖𝑖

∗(𝑣𝑣), 0}. Ei(v) is the improvement for retailer i if DC v is 
fortified. Thus, our objective is to spend the fortification budget in a way that maximizes Ei(v) for all v∈J, for all 
retailers i∈I. In this line, we define the variable Kij as follows: 
 
 
Kij = 

 
 
By considering Kij, we can propose the following model. 
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i I j J
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∈ ∈
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Subject to 

,ij jK W i I j J≤ ∀ ∈ ∈                                                                                                                        (19) 
1ijK i I≤ ∀ ∈

                                                                                                                                 (20) 
( )j j j j

j J
f r q W B

∈
+ ≤∑

                                                                                                                                       (21) 

 { }0,1 ,ijK i I j J∈ ∀ ∈ ∈                                                                                                                          (22) 

 { }0,1jW j J∈ ∀ ∈
                                                                                                                                  (23) 

The objective function (M2) defined in (18) maximizes the total improvement from the fortification of DCs. To 
actualize improvement Ei (j), DC j as the primary server of retailer i must be fortified that is shown in constraint 
(19). Each retailer i must allocated to no more than one fortified server and is presented at constraint (20). The total 

1    If a fortified DC j is considered as the primary server of retailer i 

0       Otherwise 
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available budget to fortify DCs is presented in constraint (21). Kij and Wj are binary variables and are expressed 
by (22) and (23).  
It is noticeable that lots of software like GAMS can quickly solve M2 and the difference between the optimal objec-
tive function values of M2 and M1 is the optimal value of RM.  

 5.1.2 Upper bound 

In each LR iteration, a lower bound and an upper bound for M need to be provided. In the above section, the 
solution of RM is a lower bound, and it is also an upper bound if it is feasible. Then, this solution is the optimal 
solution of M. If the lower bound solution is infeasible, we obtain an upper bound by creating a feasible solution. 
For this reason, the following heuristic is proposed.  
The solution of RM indicates exactly P distribution centers that must be opened. We choose the nearest opened DC 
as the primary and the second nearest opened DC as the backup server for each retailer. To indicate which DCs 
should be fortified, we show the set of retailers who have DC j as the primary server with g (j). If DC j is not 
fortified, the expected cost for each retailer i∈g(j) by considering r as its backup server is:  

0.5 0.5 0.5 0.5 0.5 0.52 2
(1 ) ( (2 ) )( (1 )) (2 )( ) ( ( ) )j r

i ij j i ir j j j j i j j r r r
j r

i
c c

q d q s c h d q q s c h
h h

d s s d− + + + − + +               (24)  

If DC j is fortified, the expected cost is: 

0.5 0.5 0.52
( (2 ) )( )j

i ij j j j
j

i
c

s c h d
h

d s + +                                                                                                          (25) 

Thus, by fortifying DC j, we have the total expected cost reduction:  

 

( )

0.5 0.5 0.5

0.5 0.5 0.5

( )( )

( 1)( )

2
( ) (2 ) (1 )

2
( ) (2 )

j i ij j i ir j
i j

j

j
j j j i j

j

j
j j j i

j

d q d q s

q d

c
s s c h d q

h

c
s c h

h

∈Φ
Φ = − + + +∑

−

+ −

+

                                               (26) 

So, we should solve the following model to maximize the fortification budget over P opened DCs. (M3): 

{ }: , 0,1j j j j j
j J j J

Max c B WW W
∈ ∈
Φ ≤ ∈∑ ∑

 
 
 

                                                                                        (27) 

The above model is a knapsack problem, and software solutions such as GAMS can solve it. 

   5.1.3. Multiplier choosing 

The choice of initial multipliers can influence the performance of LR (Snyder, 2006). So, we examine the final mul-
tipliers of the situations that RM is solved optimality to get a good initial multiplier. For our problem, 
λ1ij=hi/||I|| generate efficient initial multipliers. We use the sub-gradient optimization proposed by Fisher 
(2004) to update λij as follows: 
𝜆𝜆𝑖𝑖𝑖𝑖𝐾𝐾+1 = 𝜆𝜆𝑖𝑖𝑖𝑖𝐾𝐾 + 𝑡𝑡𝑘𝑘(𝑋𝑋𝑖𝑖𝑖𝑖0 + 𝑋𝑋𝑖𝑖𝑖𝑖1 − 𝑌𝑌𝑗𝑗), 
tk is defined as the step size and we have: 

𝑡𝑡𝑘𝑘 =
𝛽𝛽𝑘𝑘(𝑍𝑍∗ − 𝑍𝑍(𝜆𝜆𝑘𝑘))

||𝑋𝑋𝑖𝑖𝑖𝑖0 + 𝑋𝑋𝑖𝑖𝑖𝑖1 − 𝑌𝑌𝑗𝑗||2 

Where βk is a constant at iteration k. Like Fisher (2004), we set 𝛽𝛽0 =2. When the multipliers are equal to λk, Z (𝜆𝜆𝑘𝑘) 
is the lower bound, and Z* is the best known upper bound.  
The algorithm ends by meeting any of the following criteria: 

• For a specified tolerance 𝜀𝜀, we have (Z*-Z (𝜆𝜆𝑘𝑘))/ Z*≤𝜀𝜀. 
• For some iteration limit kmax, we have K>kmax 

The pseudo-code of the proposed algorithm is provided in Figure. 2. 
 
{Input} 
       
       Define a feasible lower- bound (Z1) and a best bound (Z*) 
      Set k= 1, kmax, 𝜀𝜀, λij= λ1ij=hi/||I|| (initial vector of Lagrangian multipliers) 
{Initialization    }  
       
      While (Z*-Z (𝜆𝜆𝑘𝑘))/ Z*>𝜀𝜀 & K>kmax. Do 
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          Sort the values of ((−∑ 𝜆𝜆𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖∈𝐼𝐼 )); 
                  If (−∑ 𝜆𝜆𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖∈𝐼𝐼 ) belongs to the P smallest sorted values 
                     Yj=1; 
                 Else  
                     Yj=0; 
{Lower bound} 
          Set B=0; 
                  For i=1 to I 
                       Consider v and t as the primary and backup DC for retailer i and calculate ∅𝑖𝑖(𝑣𝑣, 𝑡𝑡) by using equation 

(16) ∀ v and    t= 1, 2…J; 
                        Compute ∅𝑖𝑖∗ = 𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣,𝑡𝑡{∅𝑖𝑖(𝑣𝑣, 𝑡𝑡)} ; 
                  End 
                  Set M1 = ∑ ∅𝒊𝒊∗𝒏𝒏

𝒊𝒊=𝟏𝟏  ; 
           Set B≠0 
                  For i=1 to I 

Consider v and t as the primary and backup DC for retailer i and calculate ( , )i v tΨ  in the situation that v is   forti-
fied by using equation (17)  ∀  v and t= 1, 2…J; 
                         Compute 𝛹𝛹𝑖𝑖∗(𝑣𝑣) =  𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡(𝛹𝛹𝑖𝑖(𝑣𝑣, 𝑡𝑡)) ; 
                   End 
                  Calculate the improvement for the retailer i if DC v is fortified Ei(v)=max {∅𝑖𝑖∗ − 𝛹𝛹𝑖𝑖∗(𝑣𝑣), 0};  
                  Solve the sub problem M2 (equations 18-23) by Games software; 
           Set Lower bound= Z (𝜆𝜆𝑘𝑘) = M2-M1; 
{Upper bound} 
           Choose the nearest opened DC as the primary and the second nearest opened DC as the backup server for 
each retailer; 
           Define the set of retailers who have DC j as the primary server with g (j); 
               If DC j is not fortified  
                 Calculate the expected cost for retailer i with considering r as the backup server by using equation (24);  
               Else  
                 Calculate expected cost for retailer i by using equation (25);                     
              Compute the total expected cost reduction by fortifying DC j by using equation (26); 
              Update the upper bound by solving M3 using equation (27); 
                  If upper bound< the best bound (Z*) 
                       Z*= upper bound;      
{Multiplier choosing} 
            Update 
                            𝜆𝜆𝑖𝑖𝑖𝑖𝐾𝐾+1 = 𝜆𝜆𝑖𝑖𝑖𝑖𝐾𝐾 + 𝑡𝑡𝑘𝑘(𝑋𝑋𝑖𝑖𝑖𝑖0 + 𝑋𝑋𝑖𝑖𝑖𝑖1 − 𝑌𝑌𝑗𝑗) ; 

                            𝑡𝑡𝑘𝑘 = 𝛽𝛽𝑘𝑘(𝑍𝑍∗−𝑍𝑍(𝜆𝜆𝑘𝑘))
||𝑋𝑋𝑖𝑖𝑖𝑖0+𝑋𝑋𝑖𝑖𝑖𝑖1−𝑌𝑌𝑗𝑗||2

 ; 

End while 
Figure. 2: The pseudo-code of the proposed algorithm 

 

6. Numerical examples 

We provide a numerical study to examine the proposed model and solution algorithm. Numerical examples are 
solved on one data set containing 88 nodes from Snyder and Daskin (2005). We use the Euclidean distance between 
the production plant and DC j and between retailer i and DC j as the transportation cost sj and sij, respectively. The 
holding cost (hj) is randomly generated from U ~(0, 50), and the ordering cost (cj) is equal to a constant value 5. 
We generate the probability of failure (qj) and the variable fortification cost (rj) randomly from U ~(0, 0.5) and 
U~(0, 3000), respectively. We change the values B between 0 and 450. The proposed algorithm is coded in matlab15 
and run on a Windows 10 with a 2.5GHz Core i7 CPU and 8 GB of physical RAM. For solving M2 and the knapsack 
problems in the algorithm, we use GAMS. We adopt 300 and 0.5% as the maximum number of iterations and the 
gap tolerance, respectively. 
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Table 2: The result of numerical examples to teste the proposed LR 

Number 
of nodes P B LB * UB** Location of DCs to be opened Location of DC to be fortify Time (s) Gap (in %) 

5 2 0 868.3 872.21 1,3 ------- 0.9 0.45 
5 2 30 729.47 732.46 1,3 3 0.11 0.41 
5 2 120 698 700.23 3,4 3,4 0.22 0.32 

10 2 0 1424.13 1429.98 1,3 ------- 0.99 0.41 
10 2 60 1358.66 1365.27 2,4 4 0.86 0.48 
10 2 120 1258.02 1262.36 3,5 3,5 1.20 0.34 
15 5 0 2565.11 2577.45 1,3,7,9,11 ------- 4.89 0.48 
15 5 60 2498.79 2502 1,3,7,9,15 3 9.96 0.12 
15 5 120 2427.45 2437.43 1,3,5,8,13 3,8 5.68 0.41 
15 5 240 2291.18 2301.76 3,5,9,11,15 5,9,15 6.23 0.46 
15 5 360 2026.97 2036.64 1,3,8,11,13 1,3,8,13 10.14 0.47 
20 5 0 3742.76 3762.14 1,4,6,11,17 -------- 40.63 0.50 
20 5 60 3561.48 3572.9 1,4,7,13,17 7 50.29 0.32 
20 5 120 3432.64 3449.95 1,4,8,11,18 8,11 70.45 0.50 
20 5 240 3394.29 3401.53 1,4,8,11,18 8,11,18 100.02 0.21 
20 5 360 3339.12 3346.47 1,4,10,13,17 4,10,13,17 123.78 0.22 
25 7 0 4978.25 4994.32 1,3,8,11,13,17,20 --------- 150.39 0.32 
25 7 60 4896.33 4917.81 1,2,3,8,11,18,21 3 169.68 0.44 
25 7 120 4785.45 4802.44 1,2,3,15,18,20,23 3,18 135.12 0.35 
25 7 240 4639.62 4662.16 1,2,4,5,9,11,19 1,4,9,19 163.54 0.48 
25 7 360 4599.8 4621.57 1,2,4,9,11,19,23 1,4,9,19,23 189.20 0.47 
30 7 0 6852.80 6882.95 1,2,3,8,15,18,25 --------- 210 0.44 
30 7 60 6800.40 6810.33 1,2,3,8,11,17,23 3 279.14 0.14 
30 7 120 6672.15 6695.92 1,2,3,8,9,15,19 3,8 263 0.36 
30 7 240 6577.92 6607.51 1,2,3,8,11,15,25 1,2,3,8,11 228.27 0.45 
30 7 360 6393.41 6425.26 1,2,4,5,6,11,17 1,2,4,5,6,11,17 309.49 0.49 
40 10 0 7489.67 7506.29 1,4,3,7,11,16,23,27,32,38 ---------- 315.56 0.22 
40 10 120 7346.32 7354.31 1,4,3,8,11,17,23,27,35,39 8, 23 395 0.11 
40 10 240 7149.46 7172.9 1,2,3,8,13,19,25,27,35,39 1,2,8,19 420.61 0.33 
40 10 360 7039.23 7064.62 1,2,3,8,11,17,25,27,32,39 1,2,8,17,27 487.12 0.36 
40 10 450 6815.88 7837.24 1,2,4,8,11,17,19, ,27,35,39 1,2,4,8,17,27 533.84 0.27 
50 11 0 8997.57 9042.24 1,2,4,8,17,25, 27,32,40,43,45 ----------- 579.75 0.49 
50 11 120 8863.26 8906.31 1,2,3,7,17,23, 25,32,40,43,45 2,3 620 0.48 
50 11 240 8694.65 8711.76 1,3,4,7,19,25, 27,32,42,44,49 1,3,4,19,42 661.49 0.20 
50 11 360 7984.93 8018.22 1,3,4,8,11,17,25,27,38,45,49 3,4,8,17,45 693.36 0.41 
50 11 450 7541.33 7645.33 1,2,3,8,11,17,25,27,38,43,45 1,3,4,8,17,25,45 728.74 0.50 
70 11 0 10631.44 10654.21 1,4,7,13,27,34,38,45,53,61,69 ---------- 994.22 0.21 
70 11 120 10439.57 10487.84 3,4,7,9,13,25,34,39,43,64,70 4,43 1010.07 0.46 
70 11 240 10231.92 10281.65 3,4,7,9,13,25,32,40,43,64,70 4,13,34,43 1264.67 0.48 
70 11 360 10094.87 10125.79 3,4,8,9,17,25,32,40,44,64,69 4,9,25,40,64 1166.32 0.30 
70 11 450 9976.07 9987.64 1,4,8,11,17,27,32,40,44,64,70 1,4,17,11,40,64 1329.19 0.11 
88 12 0 13828.75 13894.32 1,4,9,11,23,27,39,43,65,72,79,83 ----------- 1691.04 0.47 
88 12 120 13634.83 13651.85 1,3,7,11,25,27,39,45,67,75,79,86 11,45 1706.33 0.13 
88 12 240 13197.06 13246.44 1,4,9,17,25,27,40,43,65,74,79,86 4,17,25,43,65 1574.51 0.37 
88 12 360 13007.53 13071.91 1,3,7,17,23,27,32,40,65,72,79,81 3,17,27,40,65 1852.68 0.49 
88 12 450 12899 12946.67 3,4,11,19,25,27,32,43,66,72,75,86 3,4,19,25,43,72 1883.95 0.37 

*Lower bound, **Upper bound 

To show the performance of the proposed LR, we consider gap (in %) and CPU time (s). The gap (in %) is consid-
ered as the difference between the upper and lower bounds. The result of these measures is shown in Table 2. 
Results reveal that the proposed algorithm solved all of the examples to 0.50% optimality (not optimal). According 
to Table 2, it can be said that when the size of the problem increases, the CPU time enhances. This possibly confirms 
that by increasing the number of DCs and retailers, the computational effort to indicate the decision variables is 
more complex, and the algorithm needs more time to solve them. 
The optimal solutions exhibit a decrease in the total expected cost by increasing the budget of fortification. The 
total cost reduction is higher than the used budget. Thus, managers can use supply chain fortification as an effective 
way to reduce supply chain costs. 

6.1 Sensitivity analysis  

In this section, the sensitivity analysis is done to gain a profound insight into the proposed model and algorithm. 
We vary the value of one parameter by +50% and -50% at a time and hold the other parameter values unchanged 
(Table 3). The sensitivity analysis is done by considering the number of nodes equal to 15, P=5, and B=120. We 
drive the following results based on Table 3.   
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Table 3: Sensitivity analysis with respect to the model’s parameters 

Parameter % Change Location of DCs to be 
opened 

Location of DCs to be forti-
fied 

Upper bound Lower bound 

hi 
+50 1, 3, 6, 11, 13, 15 3, 6, 13 2693.84 2634.62 

0 1, 3, 5, 8, 13 3,8 2437.43 2427.45 
-50 1,3,8,12 3,6 2381.64 2315.11 

cj 
+50 3, 4, 8, 13 3,8 2567.92 2522. 18 

0 1, 3, 5, 8, 13 3,8 2437.43 2427.45 
-50 1, 3, 5, 7,8,13 3,7,8 2256.55 2148.37 

sji 
+50 1, 3, 5, 7, 8, 12, 13 1, 3, 7, 8 2794.06 2700.45 

0 1, 3, 5, 8, 13 3,8 2437.43 2427.45 
-50 1,3,8, 13 1,3 2018.28 1996.46 

sj 
+50 1,3,8 3,8 2522.51 2493.86 

0 1, 3, 5, 8, 13 3,8 2437.43 2427.45 
-50 1, 3, 5, 8, 9, 13  3, 8 2294.64 2200.44 

fj 
+50 1, 3, 5, 8, 13 3 2499 2454.17 

0 1, 3, 5, 8, 13 3,8 2437.43 2427.45 
-50 1, 3, 5, 8, 13 3, 8, 13  2386.77 2341.14 

• When the values of parameter hi increase, the number of opened DCs and costs will increase. This means 
that the inventory should be decreased in DCs in the situation that the holding cost is high.  

• In the case in which the ordering cost (cj) shifts up, the number of opened DCs should be decreased to 
reduce the total cost. It is reasonable that by increasing the ordering cost, fewer DCs are established, and 
more inventory is kept in them to meet the retailers’ demand. 

• The results show that if the cost of transporting from DCs to retailers (sji) increases, managers must create 
more DCs. In this case, the number of fortified DCs must also be increased to reduce the displacements. 

• Findings reveal that an increase in the transportation cost from the production plant to DCs leads to a 
decrease in the number of opened DCs. This is expected because this procedure reduces the shipping cost 
and, therefore, the total cost.  

• As shown in Table 3, the number of fortified DCs is relatively insensitive to changes in fortification fixed 
coefficient. 

7. Conclusion 

This paper provided an inventory-location model for a three-level supply chain by considering the disruption risk 
of distribution centers. We assumed that distribution centers are heterogeneous with independent failure proba-
bilities. Each retailer was allocated 
to two distribution centers, one as a primary server and another as a backup server. Also, we considered the forti-
fication budget to increase the supply chain reliability. When a distribution center was fortified, it became totally 
reliable. The model indicated the location of distribution centers, distribution centers that must be fortified, the 
allocation of retailers to distribution centers and inventory policy at distribution centers. The proposed model was 
a nonlinear integer programming model that we proved it is NP-hard. Thus, a Lagrangian relaxation algorithm 
was developed to solve it. Our findings revealed that the proposed algorithm is computationally efficient. The 
average time and gap to identify optimal bounds was 487.67 s and 0.36%, respectively.  
Furthermore, numerical examples showed that the utilization of fortification budget can reduce the cost of supply 
chain and it is beneficial for firm that using fortification budget to increase the reliability. Results highlighted that 
the number of opened distribution centers would be increased by increasing the inventory cost. When the cost of 
ordering and transportation from production plant to distribution centers are high, it is better to decrease the num-
ber of opened distribution centers. A higher transportation cost from distribution centers to retailers leads to an 
increase in the number of opened DCs.  
We recommend the followings issues for future researches. The proposed model can become more realistic by 
expanding it to a case with considering routing problem. We suppose that the demand of retailers is certain; how-
ever, it can be considered uncertain. Another way to increase the reliability of distribution network is placing safety 
stock at distribution centers, this research can be developed by considering this issue.  
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