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Abstract 

Scheduling is a vital part of daily life that has been the focus of attention since the 1950s. Knowledge of scheduling is a very 
important and applicable category in industrial engineering and planning of human life. In the field of education, scheduling, 
and timetabling for best results in classroom teaching is one of the most challenging issues in university programming. As each 
university has its own rules, policies, resources, and restrictions a unique model of scheduling and timetabling cannot implement. 
This can cause more complexity and challenging point which needs to be considered scientifically. This study presents a sound 
scientific model of timetabling and classroom scheduling to improve faculties’ desirability based on days, times, and contents 
preferences. A sample in Parand branch of Islamic Azad university   chooses using the Bat metaheuristic algorithm. By consid-
ering the limitations, some unchangeable constraints regarding the specific rules and minimal linear delimitation of the soft 
constraints of the model, using the appropriate meta-heuristic algorithm to reduce the model run time to a minimum. The results 
show that the algorithm achieves better results in many test data compared to other algorithms due to meeting many limitations 
in the problem coding structure. The Bat algorithm is compared with four other algorithms while comparing the results of solving 
the proposed mathematical model with five metaheuristic algorithms to evaluate the performance. In this research, a multi-
objective model is presented to maximize the desirability of professors and to solve the model using Bat, Cuckoo Search, Artificial 
bee colony, firefly, and Genetic algorithms. In this research 40 different runs of each algorithm were compared, and conclusions 
were drawn. Modeling has been solved with GAMS and MATLAB software and using the bat meta-heuristic algorithm. It is 
concluded that in this model, the bat algorithm is the most appropriate algorithm with the shortest time, which has caused the 
satisfaction of the professors of the educational departments of this academy. 
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1. Introduction

Timetabling problem, in short, means allocating activities to limited resources (human, instrumental, spatial, and 
temporal (available to optimally perform tasks in a way that prevents duplication) (Veenstra and Vis 2016).Types 
of timetabling problem  are classified in different ways, one of which includes: 1- Course timetabling problem (Post 
et al., 2014) Examinations timetables problem ( Di Gaspero et al., 2007)Project scheduling problem (Agarwal, Colak 
and Erenguc, 2011) Employee service scheduling problem(Barrera, Velasco & Amaya, 2012) Transportation and 
public transport scheduling problem (Shafia et al, 2012) scheduling  of call centers and Post 7 - Flight scheduling( 
Pita, Barnhart and Antunes, 2012 ) schedule of Police Centers 9 schedule of Medical Services(Jafari and Salmasi, 
2015)1510 - schedule of Sports Competitions(Lewis and Thompson, 2011). 
Although university timetabling has been studied a lot, but its clinical application has been less of an area of atten-
tion.  
One of the issues in which timetabling problem is very important is the issue of timetabling problem of university 
courses, which is a complex decision-making issue and carries some limitations as well. Since the most important 
factors to achieve a successful curriculum planning and programming in each university are its faculties’ satisfac-
tion of their schedule and timetabling based on their preferences without any overlapping or, program interfer-
ence. To prevent the time interference of the two programs with each other, certain restrictions should be met, and 
the satisfaction of the employer and the client should be obtained (Ahmed, Özcan, & et al. 2012). 
. in this study we aimed to provide a suitable mathematical model according to the available resources and limita-

tions, to increase the satisfaction of faculties of Parand School of Humanities as a sample of this case study, based 

on three criteria (day, time, and subjects). As in multi-objective optimization problems, the goals may conflict with 
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each other and the optimization of one goal will weaken the other goals. Therefore, a logical approach to multi-

objective problems can be considered as obtaining a set of Pareto optimal solutions instead of a single solution 

(Akkan, and018 Gulcu 2). Since the weekly planning courses of each unit is based on various factors such as: uni-

versity policies and rules, number of units in each curriculum (Maine and elective), number of available classes in 

each time, days of availability of faculties and their subject expertise, capacity and prerequisites of each course, 

student groups and variety of fields and educational levels. in some cases, the need to change the curriculum and 

multi-objective model to ensure the desirability of professors and their preferences, encouraged us to use mathe-

matical modeling based on research objectives and limitations and to use meta-heuristic algorithms. five Meta-

heuristic algorithm and the Bat Algorithm, which has advantages and shorter implementation times than other 

run algorithms. Considering its importance in generalizing to other faculties and university units, the Faculty of 

Humanities of the Islamic Azad University, Parand unit, where Mr. Ariyazand taught as one of the researchers 

from 2010 to 2015, was selected for case study. MATLAB and GAMS software were used for solving the model and 

analyzing the results. 

2. Literature review 

This group behavior-based metacognitive optimization algorithm is widely used to solve multi-objective optimi-
zation problems and is currently used as one of the most powerful methods for solving many complex optimization 
problems. This nature-inspired algorithm was first introduced in 2010 by Yang, X.S35 to simulate the collective 
behavior of bats, the only winged mammals that use sound reflection to hunt their prey. The bat algorithm is based 
on the use of sound reflection in a natural environment as an optimization algorithm based on collective intelli-
gence and intelligent behavior of bats. The bats find the exact path and location of their prey by sending sound 
waves and receiving its reflection, and when sound waves return to the transmitter (bat). 

This bird can use the desired waves to draw an acoustic image of obstacles in front of its surroundings and even 

in complete darkness to identify its surroundings well and recognize moving objects around the environment such 

as insects and fixed objects in the environment like trees by using this system. This algorithm is based on the echo 

detection feature of micro bats. Bats are generally classified into two types: large-bats and micro-bats. The micro-

bats use echo reflection (sound reflection) to fly at night and hunt, which is a perceptual system in which ultrasonic 

waves are generated to echo. The bat's brain and nervous system can compare the transmitted waves and the 

reflected waves, create an image of the surrounding space with its details and identify its prey in complete darkness 

with the help of this ability.  

The wave intensity produced by the bat is 130 decibels, which uses a frequency of 15 to 20 KHz to hunt prey. The 

range of human hearing is from 20 Hz to 20 KHz. In order to be able to identify the data obtained, bats must 

separate the sound produced by them from its echo. Micro-bats can do this in two ways: 1- Echo detection (sound 

reflection) with cycles with short time intervals: This group of bats can distinguish their sent sound from the re-

flected sound with the help of timing. 2- Echo detection (sound reflection) with cycles with long time interval: This 

group of bats, while producing long-term continuous sound, separates the pulses and echoes by changing the 

frequency, and this group of bats are able to change each production frequency based on the flight speed of the 

pulse so that the received echo is still in the appropriate hearing range. 

The ideal rules of the bat algorithm include the following three rules: 

A) All bats use echo detection feature Sound reflection (can estimate distance and difference between food) Prey 

and fixed obstacles ahead.  

B) Bats randomly at Vi speed in location Xi with constant frequency fmin with variable wavelength  and loudness 

sound A0 are in search of prey and can fully automatically adjust the wavelength of their emitted pulses and match 

their pulse emission rate that is r(0,1) based on the proximity of their prey. 

C)Although the volume can be changed in different ways, it is assumed that this volume changes from a large 

(positive value) A0 to a minimum constant value of Amin, and generally the frequency f is in the distance [fmin – 

fmax] which corresponds to the wavelength spectrum as [min-max]. 

The bat algorithm is introduced to solve continuous optimization problems, but if it is necessary to search in dis-

crete space, we use the correct type of bat algorithm and use a decimal fraction transfer function to convert the 

particle position to zero or one and the new position of the bats is updated as an integer. 

Despite extensive studies and research in the field of timetabling problem, according to experts in this field, there 

are still many shortcomings that these shortcomings are addressed in two ways: 1- Developing models closer to 

real problems 2- Improving timetabling problem solving methods. Considering the comparison of the present 

study with the researches done in the past, it is observed that the present study, in addition to trying to improve 

the timetabling problem of courses of Parand Faculty of Humanities, tries to provide maximum satisfaction to the 
professors of this faculty. This will address one of the shortcomings in this area. While the bat algorithm is new 

and efficient for solving the problem of timetabling problem of university courses, considering the shortcomings 
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in solving the problem of timetabling problem of university courses under conditions of limited resources, it can 

be concluded that there is a need to develop models close to real problems. The present research tries to eliminate 

this shortcoming by creating a suitable model for the mentioned problem. Here are some of the researches that 

have been done so far on the issue of lesson timetabling problem under conditions of limited resources. In general, 

during more than half a century, various types of university course timetabling problems have been presented, 

which are different in terms of the university in question and the rules and methods of solving many models, such 

as mathematical, computer, graph, etc. It has been presented in the past that the purpose of all of them is to provide 

a program that by entering new information, the optimal program is tailored to the goals, needs and resources of 

the Research University. This ideal optimal program is a big topic on the basis of operations research. This is being 

used, in train travel times, city traffic control, or at schools or universities. Both time and place play a role in this 

matter. Efforts should be made to make best use of all classes and resources. This situation is slightly different at 

school versus university. At university, allocating classes to students and faculty is different compared to school. 

At university, until schedule day, no one knows what service are available and also there are many more units at 

university compared to school The mathematical models, especially linear models, have a special place in this field, 

and in 1998, Wood and Whitaker. Presented a Nonlinear model for timetabling problem of high school classes. In 

2001, Dimopoulou and Miliotis12 introduced an integer programming model for assigning courses to time periods 

and classes with the aim of increasing the desirability of assigning training programs to time intervals. University 

course timetabling, is one of the most important topics of resource allocation.  

In 2004, Daskalaki10 et al. proposed a method for calculating the Zero-One and one-time timetabling problems for 

university course timetabling problem, in which the desirability of assigning courses to different time periods var-

ies. Daskalaki has set aside time to allocate courses for certain time periods and seeks to minimize these costs. The 

issues of timetabling problem of university courses from the aspect of modeling research in operations of artificial 

intelligence are very attractive for researchers, which has led to a lot of research in this field in recent years (Bolaji 

et al. 2014)9. In general, the timetable of university courses includes the timetable of courses, students, professors 

and classes in a fixed number of time periods, taking into account the limitations of the university Branch (Basir, 

Ismail, & Norwawi 2013). Marriott & Stuckey mentioned the ability to plan constraints to execute applications 

using more than 3,000 constraints as one of the superior features of constraint planning. In his research, Lü & Hao18 

presented a comparative forbidden search algorithm to solve the lesson timetabling problem in 2010, which re-

sulted in the optimization of this algorithm by implementing a specific data set and comparing it with other algo-

rithms (Lü, Z., & Hao, J.-K. 2010). Daskalaki is one of the people who has made a lot of efforts in modeling class-

room integers. He first solved the problems of timetabling problem of high school classes and then presented the 

integer programming models of timetabling problem of university courses and implemented them as a case study.   

Ranjbar and Rostami (2012) developed a model for university timetabling in Ferdowsi university. They used a 

linear absolute number model for their timetabling25. 

(Badoni, Gupta & Mishra 2014) proposed a new linking algorithm combining genetic and local search algorithms 

to define events based on grouping students with algorithm performance based on values of different factors (pop-

ulation, combination and crossover) to solve timetabling problem problems. Turning the problem into three 

smaller problems allocating, distributing, and timetabling problem of courses so that the solution space decreases 

and speeds it up (Rangel-Valdez et al.2014). Development of Link Bee Community Optimization Algorithm Solv-

ing University Lesson Timetabling Problems Presented by Alzaqebeh& et al (2015). Phillips et. al. described a 

university timetabling model in Auckland university. They used this model to solve the problem of assigning 

classes in larger scale university settings using an absolute number model (Phillips et. al. 2015). University profes-

sors in Brazil (Pereira and Gomes Costa, 2016). Vermonten et. al. looked at using an absolute number model to 

decrease the movement of students from class to class while marinating faculty satisfaction and reducing the num-

ber of days that faculty would need to work. This was achieved by allocating lessons to specific time periods and 

available classes (Vermonten et. al).  In 2017, Song et al, developed a timetabling problem algorithm that helps 

college administrators and planners save energy on campus. In 2017, Goh and colleagues combined two local al-

gorithms to solve the post-enrollment timetable. Fonseca13 et al., 2017, proposed new sections and preprocessing 

techniques and modified the original formula for the curriculum problem. Since the purpose of the timetable prob-

lem is to assign a set of lessons to retransmission and class, Bagger et al., 20186, divided these issues into two parts: 

timetabling problem and class assignment. They used the port algorithm to generate gaps that linked class timeta-

bling problem and allocation, Nagata also used local search in 2018 to solve the post-enrollment timetable problem. 

In 2020, Landir16 et al. developed an integer programming model in which high school parallel collaboration and 

faculty preferences were assigned by allocating lessons to time periods and available classes. Teachers were also 

assigned to periodic lessons to maximize teacher’s satisfaction and productivity. Shahmoradi et. al. explained time-

tabling for university lessons using AHP method by means if OPL program on Cplex. They considered soft 
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limitations of the model and assumed minimal distraction from other models (Shamoradi et. al. 2018). Tavakoli 

has looked at two different mathematical models for university timetabling. One model was a general model while 

the other considered some limitations and specifics. Such specifics were: knowledge superiority of some professors 

compared to others, time assigned to each professor, faculty consultation to students, quality of teaching. They 

found out that the model that considered specifics, was superior (Tavakoli et. al. 2018). 

3. Problem statement 

In many cases, the issue of timetabling problem of university courses has been studied in theory. However, in the 
form of practical planning of courses, it is observed that not only paying attention to the limitations and resources 
to solve such problems is enough, but also the preferences of professors and universities should be considered in 
the timetable. Considering that the planning of weekly courses of university Branches is based on various factors 
such as country laws, university policies, large volume of courses, many resources and restrictions such as availa-
ble classes, time limitation for classes, access to professors and their free hours, variety of basic courses , Main and 
optional, facilities and facilities required for each course, capacity and prerequisites of each course, student groups 
and variety of fields and educational levels and in some cases the need to change the curriculum and multi-objec-
tive model to ensure the desirability of professors and their preferences, encouraged us to use mathematical mod-
eling based on research objectives and limitations and to use meta-heuristic algorithms to solve models. 
The purpose of the problem is to present the model of timetabling problem of university courses in a faculty in 
such a way that the desirability of professors is maximized during the classes and the courses offered within the 
existing constraints. 
While observing the number of course credit per class, 16 hours of educational hours (45 hours per educational 
hour) during a semester is considered, which includes 6 working days per week and each day includes six times a 
day Two hours each time from 8am to 8: 30pm. 
In setting up the model, we are faced with the limitations of available resources such as professors, classrooms, 
and timetabling, including working days and one-day time periods, and it is not possible to deviate from the fol-
lowing basic rules: 
In general, the Mathematical model limitations included in the model are as follows: 

1- Classes with specific facilities and capacity are considered and the number of students in each classroom cannot 
exceed a final ceiling based on the capacity of the class. 
2- The time of presence of professors at the university, the courses they are able to teach and the teacher's preference 
for teaching the course are specified by default. 
3- All time periods are the same and the days of classes are clear and fixed. 
4- Course groups and lessons related to each course group are clear and fixed. 
5- Non-interference of classes, lessons, lecturers and class groups. 
6- Professors are different in terms of different criteria (academic rank, service history and teaching of the desired 
course, type of employment, etc.) and have different weights, and the number of students in each department is 
specific and fixed. 
In addition, soft restrictions should be observed as much as possible, although in some cases, professors or depart-
ments may be violated for some courses, which are usually accompanied by fines, such as maximizing the desira-
bility of professors, offering different courses, minimizing disruption in the program. Minimize relocation and 
change of classes and teachers and the like. 
Planning constraints (regulations limitations in timetabling design) include: 
A) All sessions related to a lesson and group must be assigned to a teacher. 
B) The minimum and maximum number of sessions allowed for each professor in the current semester must be 
observed according to the laws of the Ministry of Science and the policies of the university and the relevant faculty, 
which can be different for different professors. 
C) All sessions related to a lesson and group must necessarily be assigned to one teacher. 

4- Mathematical model of the problem: 

removes unacceptable combinations from the problem by defining each activity based on them. An example of an 
unacceptable combination is a professor or group of students that are not defined for a specific class or lesson. The 
final result of this reduces the problem size and the number of variables dramatically.  

In this section, model is formulated through multi-objective binary integer programming, in which each activity 

includes a professor, a day, a course, a class group of students in a specified period of time, and the required 

facilities are assigned to each course. In case of interference, planning is not feasible and due to interference, it will 

not be possible to hold classes. For example, if more than one professor or a group of students is assigned to a 
classroom in a period of time, it will interfere and it will not be possible to hold a course in that classroom. 

The sets parameters and decision variables are presented: 



  

99 A. Aryazand et al. 

 

 

 

Sets: 
r={1,…,R}               The set of classrooms 
d ={1,…,D}            The set of classes’ day  per week 
 t ={1,…,T}             The set of periods Of Time (time intervals) of classes per day 
 c ={1,…,C}            The set of courses 
p ={1,…P}              The set of professors 
g ={1,…,G}            The set of students’ groups 
f ={1,…,F}               The set of Facilities required for each course 
Parameters: 
vpc:                         Desirability of   professor p to choose a course c 

vpd:                        Desirability of   professor p to choose the day d 

ap:                         The importance of professor p for university  

nc:                         The  Number of units of course c 
lp:                          The Minimum number of units assigned to professor P   

up:                          The Maximum number of units assigned to professor p 

hmax
p

:                    The Maximum number of units can be assigned to professor p in one day 

hmin
p

:                      The Minimum number of units can be assigned to professor p in one day 
igr:                          The Maximum capacity of students’ group g in classroom r 

jpd  {
1                           
0      Otherwise 

 If the professor p has the class on the day d Otherwise 

bpc {
1                           
0      Otherwise 

 If the professor p presents the course c  

qpd {
1                           
0      Otherwise 

 If the professor p is present on the day d 

ecd {
1                           
0      Otherwise 

  If course c is available to be presented on day d 

φrf {
1                           
0      Otherwise 

 If the classroom r has facilities f 

zcf{1                           
0    Otherwise 

 If course c requires facilities f 

Variable: 

xcpgtdr: A binary variable that if professor p presents course c for students’ group g in period of time t of day d in 

classroom r, value will be 1, otherwise will be 0. 
The objective functions: 

Maxf1 = ∑ ∑ ∑ ∑ ∑ ∑ ap. vpc. xcpgtdr

R

r=1

D

d=1

T

t=1

G

g=1

P

p=1

C

c=1

 (1) 

Maxf2 = ∑ ∑ ∑ ∑ ∑ ∑ ap. vpd. xcpgtdr

R

r=1

D

d=1

T

t=1

G

g=1

P

p=1

C

c=1

 (2) 

1-Objective function (1): Maximizes professors’ desirability in selecting the courses to be taught Objective 
function. 
2- Objective function (2): Maximize professors’ desirability in choosing the working days Teaching 
Constraints: 

∑ ∑ ∑ ∑ xcpgtdr ≤ igr

D

d=1

T

t=1

P

p=1

C

c=1

;  ∀g, r (3) 

Constraint (3) ensures that the number of students in the students’ group assigned to each class must be less than 
or equal to the capacity of that class. 

∑ ∑ ∑ ∑ ∑ xcpgtdr ≤ t

R

r=1

D

d=1

c

t=1

G

g=1

P

p=1

 ;  ∀t (4) 

Constraint (4) ensures that all courses must be timetabled according to the number of daily time’s periods 
(ultimately equal to the daily time periods). 

∑ ∑ xcpgtdr ≤ 1

P

p=1

G

g=1

 ;   ∀c, d, t, r (5) 

Constraint (5) confirms that only one lesson is offered in a classroom at a time of a day. 

∑ ∑ ∑ xcpgtdr ≤ 1

R

r=1

G

g=1

C

c=1

 ;  ∀p, t, d (6) 

Constraint (6) ensures that a professor must deliver only one course at a period of Time in a day.  

∑ ∑ ∑ xcpgtdr ≤ 1

R

r=1

P

p=1

C

c=1

 ;  ∀g, t, d (7) 

Constraint (7) ensures that each group of students could only be in one classroom at a specific time in a day. 
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∑ ∑ ∑ ∑ xcpgtdr ≤ bpc

R

r=1

D

d=1

T

t=1

G

g=1

 ;  ∀p, c (8) 

Constraint (8) ensures that a course will not be assigned to a professor that does not wish to teach that course. 

∑ ∑ ∑ ∑ ∑ xcpgtdr. nc ≥ lp

R

r=1

D

d=1

T

t=1

G

g=1

C

c=1

 ;  ∀p (9) 

Constraint (9 according to university rules, units assigned to each professor should be greater than or equal to the 
minimum units assigned to each professor(Lp). 

∑ ∑ ∑ ∑ ∑ xcpgtdr. nc ≤ up

R

r=1

D

d=1

T

t=1

G

g=1

C

c=1

 ;  ∀p (10) 

Constraint (10) according to university rules, units assigned to each professor should be less than or equal to the 
maximum units assigned to each professor (Up). 

∑ ∑ ∑ ∑ xcpgtdr. zcf ≤ φrf

D

d=1

T

t=1

G

g=1

P

p=1

 ;   ∀c, r, f 

Cons Constraint (11) ensures that a course requiring special facilities should be held in a class classroom that 
had the desired facilities. 

(11)     

∑ ∑ ∑ ∑ xcpgtdr. nc ≤ jpd. qpd. hmax
p

R

r=1

T

t=1

G

g=1

C

c=1

 ;  ∀p, d (12) 

Constraint (12) indicates that if the professor p attends the university on day d, if he / she has a course, he / she will be 

assigned maximum of Hmax
p

  units. 

∑ ∑ ∑ ∑ xcpgtdr. nc ≥ jpd. qpd. hmin
p

R

r=1

T

t=1

G

g=1

C

c=1

 ;  ∀p, d (13)   

Constraint (13) indicates that if the professor p attends the university on day d, if he / she has a course, he / she 

will be assigned minimum of Hmin
p

units. 

∑ ∑ ∑ ∑ xcpgtdr ≤

R

r=1

T

t=1

G

g=1

P

p=1

 ecd. r. t ;  ∀c, d 

Constraint (14) indicates that course c could only be offered on day d if the group manager allows it 
on that day. 

 (14)     

5. Solution approach 

Since the studied problem is known as NP-Hard type, a novel meta-heuristic algorithm is suggested. As the pro-
posed mathematical model is multi-objective study problem, multi-objective optimization methods should be em-
ployed. Thus, the Bat algorithm method is developed.  
For this reason, in this research, the problem with bat algorithms, cuckoo search algorithm, Artificial bee colony 
algorithm (MOABC), firefly algorithm (MOFA) and genetic algorithm (MONSGA-II) solved and after comparison, 
according to the results obtained the bat algorithm, MOBAT better results and had less running time than other 
algorithms. The bat algorithm is based on tracking characteristics and search method of bat hunting. 
Bats can track and prey on their prey in complete darkness by emitting sound and receiving it, and the following 
three rules are used to develop this algorithm. 
●All bats use sound reflection to detect distances and know the difference between food and obstacles in front of 
them. 
●Bats fly of stochastically vt speed in xt place at a constant frequency fmin   and different wavelengths λ and loud-
ness 𝐴0 for prey hunting. They can automatically propagate waves and adjust their transmitted pulse rates (rϵ[1,0]) 

according to the proximity of their prey. 
●Given that the volume may vary in many different ways, we assume that the volume varies from R0 (maximum 
value) up to Rmin to minimum value (variable). 

Based on the above rules, the location xi
t and velocity vi

t   for each virtual bat 𝑖 are calculated in repetition t and 
frequency fi based on the following formulas: 
fi = fmin + (fmax − fmin)β                                                                                                                                                                                 (15)  

vi
t = vi

t−1 + (xi
t − x∗)                                                                                                                                                                                                                 (16)  

xi
t = xi

t−1 + vi
t                                                                                                                                                                                                                              (17) 

It should be noted that βϵ[0,1]  is a random vector with a uniform distribution and 𝑥∗ is the best current location 
selected in each iteration after comparison with the virtual bat position. 
The frequency f is considered with 𝑓𝑚𝑖𝑛 = 0 and 𝑓𝑚𝑎𝑥 = 100 in the local search in each iteration one of the answers is 
selected as the best answer and the new position of each bat is updated locally and in a random step with the 
following formula: 
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xnew = xold + εa0
t                                                                                                                                                                                                                                          (18)   

Where 𝜀𝜖 [−1,1] is a random number and ai
t is the average loudness of bats is in repetition t and the loudness of ai 

and the pulse rate sent r per repetition are updated with the following formulas: 
ai

t+1 = αai
t                                                                                                                                                                                                                                                                                       (19) 

ri
t+1 = ri

0[1 − exp(−γt)]                                                                                                                                                                                                                                                             (20) 

The values 𝛼 and γ are fixed values that 0 <𝛼 <1 and γ > 0 that  

ri
t+1 → ri

0 when t → ∞  and  ai
t+1 → 0 And we have: 

In addition, in order to enhance the search in the problem-solving space. Crossover and mutation users are also 
being used. Also since the mathematical model is multi-objective  Four different other algorithms have been used 
to solve the problem and achieve the best Pareto surface.  

 
Figure 1. The Flowchart of the proposed Bat metaheuristic algorithm  

6. Algorithm comparison and results 

This article, while paying attention to the general educational environment and existing laws and regulations in 
Iran, examines the multi-objective mathematical model of university course planning with the aim of maximizing 
the satisfaction and desirability of Parand Azad University's humanities faculty members. It is attractive, but there 
are limitations in the parameters, such as the topics of a course that may vary during different semesters (depend-
ing on the time of the semester) or the level of satisfaction of the professors, which is actually a relative factor. 
It should be noted that the augmented ɛ-constraint method is coded by the GAMS software package. Table1 indi-
cates the results obtained by both augmented ɛ-constraint method and Bat algorithm for five small scale instances. 
All data, for small scale instances, are generated randomly.                                                                           

Table 1. The results of augmented ɛ-constraint and BAT Algorithm for small scale instances 

Instance augmented ɛ-constraint BAT Algorithm 

OF 1 OF 2 OF 1 OF 2 

1 11.5106 5.9987 11.4991 6.0003 
2 9.8901 6.0031 9.7608 5.9563 
3 11.3029 6.4201 10.9013 6.3408 
4 10.6349 5.8031 9.6937 5.5136 
5 8.7091 5.0384 8.9743 4.9604 

 
From Table 1, which is solved using GAMS software, two important results are obtained. First, the mathematical 
model developed for the problem has sufficient validity. Second, the chosen meta-heuristic algorithm (Bat) has the 
necessary efficiency for issues related to increasing global desirability. Now, the proposed algorithm is solved by 
examining the case study, using MATLAB software, and the results of solving the model with the Bat meta-heu-
ristic algorithm will be compared with four other meta-heuristic algorithms to evaluate the effectiveness of this 
algorithm compared to other algorithms. Required software in one semester in the Faculty of Humanities of Islamic 
Azad University, Parand Branch are provided: 
In the studied semester, 2132 students are studying in this faculty in the form of 5 educational groups (3 discipline 
in associate degree, 2 discipline bachelor's degree, 5 Bachelor's degree and 3 discipline in master's degree).   
Classes of this faculty are held six days a week (from Saturday to Thursday) with 41 classes. The time of each 
session in this research is 150 minutes, 135 minutes for the class, and 15 minutes to change classes. One hour a day 
is dedicated to worship (lunchtime & prayer), Thus, 4 periods are considered. The lessons presented in the semester 
included 489 lessons per week which are offered by 146 professors including: laws 42 lecturers, accounting 51 
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lecturers, English language21 lecturers, physical education 17 lecturers and public management 15 lecturers The 
classes are divided into 726 class groups will be taught in the current semester. 
Class facilities including: white boards, maps and graphs, audio recordings, video, computer, video projectors, 
workshop and gym, these are divided into 24 different forms of facilities for holding educational classes at the 
Faculty of Humanities, Islamic Azad University, Parand branch, The minimum numbers of units allowed (re-
quired) is 16 hours per week for an instructor, 15 hours for an assistant professor, 14 hours for an associate profes-
sor and 12 hours for a professor. However, at the discretion of the university, they can participate in other non- 
educational activities for up to half of these hours, and faculty members can teach up to 8 hours in the mentioned 
unit, and invitee lecturers can teach up to 18 hours in a university branch. Have teaching hours per week. 
To compare the algorithms from each of the algorithms of bat, cuckoo, bee, genetics and firefly forty different run 
with a npop 10 and maxiter 100 are solved with MATLAB software version 2018 and after solving the algorithms, 
issues such as Time required to run the algorithm run, Number Of Solutions(Pareto surface points)(NO),the mean 
ideal distance (MID), the maximum spread of diversity(MD) and spacing have been compared and each multi-
objective algorithm with its best objective value and the minimum time required for converge of each algorithm 
was tested. The Bat algorithm, considering the coefficients A = 0.9 and r = 0.5 among the solution results of the five 
algorithms in total, had less solution time and better results than the other algorithms. This algorithm is able to 
find the most Pareto surface between 6 to 8 points (with the shortest running time among the five algorithms 
(between 74.1737 to 127.0692) with an average time of 118.974 seconds). While it also offers the best maximum 
distribution range and ideal distance, and the implementation of this algorithm on the planning of the Faculty of 
Humanities, Islamic Azad University, Parand branch (as a case study) increased the satisfaction of the professors 
of this university branch. The results are shown in Tables 2-6. 

Table 2. The results of MO-Cuckoo Search (Npop10, Maxiter100) 

Row No MID MD Spacing Min Objs Max Objs Running time (s) 

1 4 4.8013 2.0952 0.65617 8.2864,6.1495 10.4203,6.85692 363.783461 
2 5 4.0774 4.614 1.1122 5.4921,5.5734 10.6914,6.63733 400.8565 
3 4 3.005 1.8616 0.61355 9.5201,5.2458 10.6248,6.66725 79.568108 
4 3 2.8457 1.6096 0.49226 9.9842,5.4259 11.383,6.72893 379.645034 
5 4 3.005 1.8616 0.61355 9.5201,5.2458 10.6248,6.66725 103.847153 
6 4 4.8013 2.0952 0.65617 8.2864,6.1495 10.4203,6.85692 91.761645 
7 3 2.7873 1.6347 0.49447 9.7217,4.8321 10.7213,6.56012 328.675304 
8 4 4.8013 2.0952 0.65617 8.2864,6.1495 10.4203,6.85692 376.872618 
9 4 3.005 1.8616 0.61355 9.5201,5.2458 10.6248,6.66725 369.742382 

10 4 3.2965 1.5524 0.66155 9.4901,6.3407 10.8263,6.58821 391.487532 
11 4 3.005 1.8616 0.61355 9.5201,5.2458 10.6248,6.66725 378.784195 

12 3 5.0446 2.0603 0.40945 8.4195,5.961 10.743,7.15195 76.424295 
13 5 4.4695 2.0975 0.69355 8.9306,6.1848 10.1304,7.34639 384.097853 
14 3 3.4505 1.4627 0.47734 9.8328,5.8146 10.1869,7.19569 349.861074 
15 4 3.3386 2.5232 0.89747 8.2823,5.8396 10.7437,6.30606 389.540619 
16 4 4.8013 2.0952 0.65617 8.2864,6.1495 10.4203,6.85692 369.817604 
17 3 3.1526 1.4521 0.49995 9.3597,5.2993 9.803,6.6217 381.019625 
18 4 4.8013 2.0952 0.65617 8.2864,6.1495 10.4203,6.85692 439.730608 
19 4 3.005 1.8616 0.61355 9.5201,5.2458 10.6248,6.66725 354.851006 
20 4 4.8013 2.0952 0.65617 8.2864,6.1495 10.4203,6.85692 379.907516 
21 3 4.4857 1.7376 0.49928 8.3075,6.3384 10.4623,6.67999 349.590827 
22 3 3.4505 1.4627 0.47734 9.8328,5.8146 10.1869,7.19569 372.874516 
23 4 4.8013 2.0952 0.65617 8.2864,6.1495 10.4203,6.85692 393.700625 
24 3 3.7186 2.1084 0.57048 8.3705,6.0552 10.8797,6.49637 426.716495 
25 3 5.0446 2.0603 0.40945 8.4195,5.961 10.743,7.15195 369.008306 
26 4 3.005 1.8616 0.61355 9.5201,5.2458 10.6248,6.66725 381.746105 
27 3 2.8457 1.6096 0.49226 9.9842,5.4259 11.383,6.72893 358.872615 
28 3 4.381 2.2562 0.81377 8.9004,6.2806 11.3158,7.45174 364.392583 
29 4 3.005 1.8616 0.61355 9.5201,5.2458 10.6248,6.66725 372.493578 
30 3 5.0446 2.0603 0.40945 8.4195,5.961 10.743,7.15195 369.902864 
31 3 2.8457 1.6096 0.49226 9.9842,5.4259 11.383,6.72893 371.703165 

32 3 5.0446 2.0603 0.40945 8.4195,5.961 10.743,7.15195 381.740935 
33 4 3.005 1.8616 0.61355 9.5201,5.2458 10.6248,6.66725 376.876551 
34 3 2.8457 1.6096 0.49226 9.9842,5.4259 11.383,6.72893 69.871425 
35 4 4.8013 2.0952 0.65617 8.2864,6.1495 10.4203,6.85692 423.782506 
36 3 5.0446 2.0603 0.40945 8.4195,5.961 10.743,7.15195 375.374643 
37 4 4.8013 2.0952 0.65617 8.2864,6.1495 10.4203,6.85692 374.640291 
38 3 5.0446 2.0603 0.40945 8.4195,5.961 10.743,7.15195 391.0829745 
39 4 3.3386 2.5232 0.89747 8.2823,5.8396 10.7437,6.30606 376.375914 
40 4 3.005 1.8616 0.61355 9.5201,5.2458 10.6248,6.66725 348.302416 

According to Table 2, The results of Cuckoo Search algorithm, the average time of forty Runs is 340.983 seconds. 
The No in this algorithm is between three to five points (with an average of 3.63). The average of MD in this algo-
rithm is 1.996. The average of MID is 3.896, that is better than other algorithms. The average of spacing in this 
algorithm is 0.599 that is better than NSGA-II, MOFA, and MOBAT algorithms. 
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Table 3. The results of MOABC 

Row No MID MD Spacing Min Objs Max Objs Running time (s) 

1 2 3.9818 0.65718 0 7.5451,5.3692 7.9252,5.5743 246.8326 
2 5 6.1223 3.6139 0.73828 5.755,5.1076 10.2547,6.38378 317.3508 
3 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 289.6528 
4 2 2.8371 0.80157 0 8.5495,5.315 9.1761,5.4571 341.7492 
5 5 6.1223 3.6139 0.73828 5.755,5.1076 10.2547,6.38378 243.7891 
6 2 3.1845 1.0636 0 8.5055,5.0231 7.3763,5.0919 302.6487 
7 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 246.8645 
8 5 6.1223 3.6139 0.73828 5.755,5.1076 10.2547,6.38378 236.9035 
9 2 3.3889 1.0455 0 8.4808,4.9227 8.3409,6.0068 251.3849 
10 5 6.1223 3.6139 0.73828 5.755,5.1076 10.2547,6.38378 239.8963 
11 4 5.4175 2.0127 0.66577 6.1937,4.97 8.2104,5.3709 328.648 
12 5 6.1223 3.6139 0.73828 5.755,5.1076 10.2547,6.38378 293.0384 
13 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 311.5831 
14 2 12.108 1.7153 0 6.0457,5.5746 8.9866,5.6608 246.9031 
15 3 12.304 2.03 0.49886 6.5483,4.953 8.8454,6.2509 243.4152 
16 2 4.7807 1.1914 0 7.728,4.6578 7.3844,6.0349 281.5482 
17 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 232.1736 
18 2 3.8733 1.0321 0 7.6152,5.5497 8.6732,5.6735 331.6457 

19 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 274.6281 
20 5 6.1223 3.6139 0.73828 5.755,5.1076 10.2547,6.38378 314.7106 
21 2 2.8371 0.80157 0 8.5495,5.315 9.1761,5.4571 243.5279 
22 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 294.3614 
23 2 3.3889 1.0455 0 8.4808,4.9227 8.3409,6.0068 297.1641 
24 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 318.4102 
25 2 2.8371 0.80157 0 8.5495,5.315 9.1761,5.4571 263.796 
26 5 6.1223 3.6139 0.73828 5.755,5.1076 10.2547,6.38378 313.0461 
27 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 271.0485 
28 2 3.9818 0.65718 0 7.5451,5.3692 7.9252,5.5743 233.6597 
29 5 6.1223 3.6139 0.73828 5.755,5.1076 10.2547,6.38378 217.0465 
30 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 306.8954 
31 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 258.6743 
32 2 3.2261 1.3764 0 7.995,5.6 9.8892,5.662 242.7538 
33 2 3.3889 1.0455 0 8.3409,4.9227 8.4808,6.0068 238.4281 
34 5 6.1223 3.6139 0.73828 5.755,5.1076 10.2547,6.38378 251.4095 
35 2 5.565 1.2487 0 6.5583,5.3901 8.1138,5.4967 281.3724 
36 3 3.5288 1.83 0.51297 7.4733,4.5978 9.0416,5.8339 264.4271 
37 5 6.1223 3.6139 0.73828 5.755,5.1076 10.2547,6.38378 231.7639 
38 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 271.7643 
39 2 3.9818 0.65718 0 7.5451,5.3692 7.9252,5.5743 246.8761 
40 5 4.4098 2.129 0.73161 7.0002,4.6831 8.6273,5.7906 259.315 

According to Table 3, The results of Artificial bee colony algorithm, the average time of forty Runs is 272.028 sec-
onds, that is better than MOCS and NSGA-II algorithms. The No in this algorithm is between two to five points 
(with an average of 3.75) that is better than MOCS algorithm. The average of MD in this algorithm is 2.068 that is 
better than MOCS algorithm. The average of MID is 4.969 that is better than NSGA-II and MOFA algorithms. The 
average of spacing in this algorithm is 0.445993 that is better than other algorithms. 

Table 4. The results of NSGA-II (Npop10, Maxiter100) 

Row No MID MD Spacing Min Objs Max Objs Running time (s) 

1 6 5.5912 3.7882 0.77765 7.7609,5.8515 11.9039,7.13208 178.8173 
2 7 6.4592 4.564 0.8562 5.6175,5.3947 10.4446,7.18135 299.5238 
3 6 5.4452 2.7528 0.94042 8.0627,6.1289 10.5885,6.97081 228.02845 
4 5 3.9181 2.8683 0.70012 8.0683,4.7999 10.5764,6.6487 116.9831 
5 7 4.6879 3.7751 0.92378 7.3946,5.9659 11.3059,6.5856 138.9473 
6 6 4.0077 3.5917 0.7201 8.4707,4.6429 11.9317,7.20338 189.0438 
7 6 21.077 3.5561 0.78867 7.2995,5.4479 10.6692,7.20104 201.7542 
8 6 3.3512 3.8905 0.85921 7.8537,5.6416 11.2213,6.47552 159.5432 

9 7 6.4592 4.564 0.8562 5.6175,5.3947 10.4446,7.18135 176.0841 
10 6 5.5912 3.7882 0.77765 7.7609,5.8515 11.9039,7.13208 148.6306 
11 7 6.4592 4.564 0.8562 5.6175,5.3947 10.4446,7.18135 263.0528 
12 6 5.4452 2.7528 0.94042 8.0627,6.1289 10.5885,6.97081 214.3905 
13 5 3.9181 2.8683 0.70012 8.0683,4.7999 10.5764,6.6487 137.8793 
14 7 4.6879 3.7751 0.92378 7.3946,5.9659 11.3059,6.5856 199.6931 
15 6 4.0077 3.5917 0.7201 8.4707,4.6429 11.9317,7.20338 186.0841 
16 6 21.077 3.5561 0.78867 7.2995,5.4479 10.6692,7.20104 205.7654 
17 8 3.8018 3.5799 0.79243 8.7077,4.861 10.7445,7.26843 393.8657 
18 5 3.391 2.1665 0.86032 9.9962,5.3578 10.7906,7.39146 531.2945 
19 7 16.0888 3.8328 0.85107 5.9392,5.6395 10.1077,7.41005 498.7253 
20 6 3.2371 3.7244 0.78799 9.0366,5.311 12.424,7.1722 506.6341 
21 7 2.935 2.8852 0.81116 9.8125,5.359 11.6404,6.99803 403.6436 
22 6 21.077 3.5561 0.78867 7.2995,5.4479 10.6692,7.20104 486.7231 
23 5 4.1015 2.5362 0.74556 8.422,6.269 11.2025,6.77113 523.6573 
24 6 4.4439 3.8968 0.77636 7.5828,5.3655 12.3226,6.72705 459.1923 
25 6 21.077 3.5561 0.78867 7.2995,5.4479 10.6692,7.20104 432.1958 
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26 6 5.5912 3.7882 0.77765 7.7609,5.8515 11.9039,7.13208 194.2984 

27 6 5.4452 2.7528 0.94042 8.0627,6.1289 10.5885,6.97081 214.2842 
28 4 3.8595 2.2698 0.61121 9.0961,5.748 10.9224,7.27629 193.2781 
29 6 2.8936 1.6485 0.72279 10.664,6.36713 11.3328,6.89602 201.5963 
30 5 3.5989 1.9087 0.69614 8.9175,5.9949 10.1635,6.60344 187.1594 
31 8 4.248 3.8987 0.94461 8.1551,6.0233 10.9129,7.04679 216.3928 
32 8 3.8018 3.5799 0.79243 8.7077,4.861 10.7445,7.26843 506.1983 
33 6 2.8936 1.6485 0.72279 10.664,6.36713 11.3328,6.89602 413.7824 
34 7 6.4592 4.564 0.8562 5.6175,5.3947 10.4446,7.18135 526.8257 
35 6 5.5912 3.7882 0.77765 7.7609,5.8515 11.9039,7.13208 482.5297 
36 4 7.4373 2.6886 0.64809 7.0484,6.0356 10.0677,6.53241 278.1065 
37 5 5.8652 2.5387 0.74632 7.5319,5.7651 10.3406,6.65241 214.9583 
38 6 2.8936 1.6485 0.72279 10.664,6.36713 11.3328,6.89602 318.5873 
39 6 5.4452 2.7528 0.94042 8.0627,6.1289 10.5885,6.97081 213.8678 
40 8 3.8018 3.5799 0.79243 8.7077,4.861 10.7445,7.26843 461.3745 

 

According to Table 4, The results of NSGA-II algorithm, the average time of forty Runs is 297.585 seconds that is 
better than MOCS algorithm. The No in this algorithm is between five to eight points (with an average of 6.125) 
that is better than MOCS and MOABC algorithms. The average of MD in this algorithm is 3.222 that is better than 
MOCS and MOABC algorithms. The average of MID is 6.437. The average of spacing in this algorithm is 0.801 that 
is better than MOFA algorithm. 

Table 5. The results of MOFA (Npop10, Maxiter100) 

Row No MID MD Spacing Min Objs Max Objs Running time (s) 

1 5 3.9181 2.8683 0.70012 8.0683,4.7999 10.5764,6.6487 243.9682 
2 4 7.4373 2.6886 0.64809 7.0484,6.0356 10.0677,6.53241 246.8152 
3 5 5.8652 2.5387 0.74632 7.5319,5.7651 10.3406,6.65241 273.5682 
4 6 2.8936 1.6485 0.72279 10.664,6.36713 11.3328,6.89602 236.8675 
5 6 5.4452 2.7528 0.94042 8.0627,6.1289 10.5885,6.97081 158.3748 
6 8 3.8018 3.5799 0.79243 8.7077,4.861 10.7445,7.26843 178.3753 
7 6 5.1547 3.3873 0.79894 7.8203,5.817 11.3681,6.97566 191.4874 
8 6 4.5308 3.8622 0.77555 8.2265,5.561 12.2317,7.26957 289.0465 
9 6 21.077 3.5561 0.78867 7.2995,5.4479 10.6692,7.20104 203.4872 

10 6 2.2777 2.8134 0.88923 7.8203,5.817 11.3681,6.97566 195.4174 
11 7 6.4592 4.564 0.8562 5.6175,5.3944 10.4446,7.18135 156.6273 
12 4 7.4373 2.6886 0.64809 7.0484,6.0356 10.0677,6.53241 146.7423 
13 7 6.4592 4.564 0.8562 5.6175,5.3947 10.4446,7.18135 164.4036 
14 6 5.5912 3.7882 0.77765 7.7609,5.8515 11.9039,7.13208 172.859 
15 4 7.4373 2.6886 0.64809 7.0484,6.0356 10.0677,6.53241 142.6296 

16 5 5.8652 2.5387 0.74632 7.5319,5.7651 10.3406,6.65241 145.6072 
17 6 2.8936 1.6485 0.72279 10.664,6.36713 11.3328,6.89602 181.6187 
18 6 5.4452 2.7528 0.94042 8.0627,6.1289 10.5885,6.97081 167.0934 
19 8 3.8018 3.5799 0.79243 8.7077,4.861 10.7445,7.26843 137.6743 
20 6 5.1547 3.3873 0.79894 7.8203,5.817 11.3681,6.97566 142.7502 
21 6 4.5308 3.8622 0.77555 8.2265,5.561 12.2317,7.26957 170.0216 
22 6 21.077 3.5561 0.78867 7.2995,5.4479 10.6692,7.20104 148.8046 
23 6 2.2777 2.8134 0.88923 7.8203,5.817 11.3681,6.97566 184.9862 
24 7 6.4592 4.564 0.8562 5.6175,5.3944 10.4446,7.18135 149.6471 
25 6 5.5912 3.7882 0.77765 7.7609,5.8515 11.9039,7.13208 182.6485 
26 7 6.4592 4.564 0.8562 5.6175,5.3947 10.4446,7.18135 268.1749 
27 6 5.4452 2.7528 0.94042 8.0627,6.1289 10.5885,6.97081 161.9485 
28 6 3.2761 2.9969 0.77808 8.1045,4.7514 10.3654,6.3309 186.4569 
29 6 5.5912 3.7882 0.77765 7.7609,5.8515 11.9039,7.13208 149.5392 
30 7 6.4592 4.564 0.8562 5.6175,5.3947 10.4446,7.18135 174.0785 
31 6 5.4452 2.7528 0.94042 8.0627,6.1289 10.5885,6.97081 168.9434 
32 6 3.2761 2.9969 0.77808 8.1045,4.7514 10.3654,6.3309 146.4683 
33 7 4.6879 3.7751 0.92378 7.3946,5.9659 11.3059,6.5856 139.7149 
34 6 4.0077 3.5917 0.7201 8.4707,4.6429 11.9317,7.20338 147.8442 
35 6 21.077 3.5561 0.78867 7.2995,5.4479 10.6692,7.20104 154.8764 
36 6 21.077 3.5561 0.78867 7.2995,5.4479 10.6692,7.20104 126.8439 
37 5 4.1015 2.5362 0.74556 8.422,6.269 11.2025,6.77113 141.9847 
38 6 4.4439 3.8968 0.77636 7.5828,5.3655 12.3226,6.72705 158.9213 
39 6 21.077 3.5561 0.78867 7.2995,5.4479 10.6692,7.20104 179.8665 
40 8 3.8018 3.5799 0.79243 8.7077,4.861 10.7445,7.26843 173.8362 

According to Table 5, The results of Firefly algorithm, the average time of forty Runs is 177.276 seconds, that is 
better than MOCS, MOABC and NSGA-II algorithms. The No in this algorithm is between four to eight points 
(with an average of 6.15) that is better than MOCS, MOABC, and NSGA-II algorithms. The average of MD in this 
algorithm is 3.225 that is better than MOCS, MOABC, and NSGA-II algorithms. The average of MID is 6.421 that 
is better than NSGA-II algorithm. The average of spacing in this algorithm is 0.803. 
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Table 6. The results of MOBAT (Npop10, Maxiter100) 

Row No MID MD Spacing Min Objs Max Objs Running time (s) 

1 8 2.6082 2.4168 0.78436 10.4074,5.7045 11.7067,6.60454 122.0737 
2 8 4.4942 3.6871 0.83563 7.9794,5.1325 11.153,6.98907 120.1722 
3 6 3.9546 3.024 0.76773 7.671,4.8087 9.7713,6.3617 122.5063 
4 6 2.6953 2.4909 0.78537 10.1909,5.26984 11.6201,6.79966 124.3175 
5 8 2.9783 4.219 0.83763 9.0525,5.3886 12.6561,7.11805 118.1486 
6 7 5.1424 3.7966 0.80294 7.9295,5.1109 9.9115,7.0229 124.475 
7 8 2.9783 4.219 0.83763 9.0525,5.3886 12.6561,7.11805 119.2948 
8 7 5.2079 3.2339 0.7974 7.9191,5.3821 10.7043,6.95074 117.6195 
9 7 4.844 1.9245 0.90738 8.0468,5.8209 9.2141,6.4878 123.5522 
10 8 4.4942 3.6871 0.83563 7.9794,5.1325 11.153,6.98907 121.1945 
11 6 2.6953 2.4909 0.78537 10.1909,5.26984 11.6201,6.79966 124.1785 
12 7 5.2079 3.2339 0.7974 7.9191,5.3821 10.7043,6.95074 119.5752 
13 8 3.433 2.541 0.80308 8.2204,5.3453 9.3869,6.168 112.4115 
14 6 3.9546 3.024 0.76773 7.671,4.8087 9.7713,6.3617 117.0987 
15 7 4.3564 3.2339 0.7974 7.9191,5.3821 10.7043,6.95074 117.2135 
16 7 5.1424 3.7966 0.80294 7.9295,5.1109 9.9115,7.0229 127.0692 
17 8 3.433 2.541 0.80308 8.2204,5.3453 9.3869,6.168 115.2699 
18 7 5.1424 3.7966 0.80294 7.9295,5.1109 9.9115,7.0229 74.1737 

19 7 5.2079 3.2339 0.7974 7.9191,5.3821 10.7043,6.95074 119.5752 
20 6 2.6953 2.4909 0.78537 10.1909,5.26984 11.6201,6.79966 125.3264 
21 8 2.9783 4.219 0.83763 9.0525,5.3886 12.6561,7.11805 118.1708 
22 6 3.9546 3.024 0.76773 7.671,4.8087 9.7713,6.3617 120.282 
23 7 5.2079 3.2339 0.7974 7.9191,5.3821 10.7043,6.95074 118.4048 
24 8 2.9783 4.219 0.83763 9.0525,5.3886 12.6561,7.11805 117.2726 
25 6 3.9546 3.024 0.76773 7.671,4.8087 9.7713,6.3617 118.6684 
26 8 2.9783 4.219 0.83763 9.0525,5.3886 12.6561,7.11805 122.8511 
27 7 5.2079 3.2339 0.7974 7.9191,5.3821 10.7043,6.95074 116.9844 
28 6 3.9546 3.024 0.76773 7.671,4.8087 9.7713,6.3617 117.9403 
29 7 5.2079 3.2339 0.7974 7.9191,5.3821 10.7043,6.95074 118.9419 
30 8 2.9783 4.219 0.83763 9.0525,5.3886 12.6561,7.11805 119.8093 
31 6 2.6953 2.4909 0.78537 10.1909,5.26984 11.6201,6.79966 123.2292 
32 8 2.9783 4.219 0.83763 9.0525,5.3886 12.6561,7.11805 124.0004 
33 6 3.9546 3.024 0.76773 7.671,4.8087 9.7713,6.3617 117.5131 
34 7 5.1424 3.7966 0.80294 7.9295,5.1109 9.9115,7.0229 124.8175 
35 8 4.4942 3.6871 0.83563 7.9794,5.1325 11.153,6.98907 120.6327 
36 6 2.9439 1.0357 0.51964 8.6897,5.213 8.9963,5.7364 115.3263 
37 8 3.433 2.541 0.80308 8.2204,5.3453 9.3869,6.168 118.6181 
38 6 3.9546 3.024 0.76773 7.671,4.8087 9.7713,6.3617 117.6303 
39 7 5.1424 3.7966 0.80294 7.9295,5.1109 9.9115,7.0229 125.2062 
40 8 2.9783 4.219 0.83763 9.0525,5.3886 12.6561,7.11805 117.4162 

According to Table 6, The results of Bat algorithm, the average time of forty Runs is 118.974 seconds, that is better 
than other run algorithms (less than Cuckoo Search, Artificial bee colony, NSGA-IIand Firefly algorithms). The No 
in this algorithm is between six to eight points (with an average of 7.075) that is better (more) than the Pareto 
surface of other run algorithms. The average of MD in this algorithm is 3.945, that is better than MOABC, NSGA-
II and MOFA algorithms. The average of MID is 3.264 that is better than other run algorithms. The average of 
spacing in this algorithm is 0.799, that is better (less) than MOFA and NSGA-II algorithms. 
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Figure 2: indicates six different runs of the BAT Algorithm on Pareto front 

Figure 2 shows some examples of Pareto surface diagrams of answers of MATLAB software runs using bat meta-
heuristic algorithm. Due to the similarity of the output diagrams of the Pareto surface, diagram (a) related to the 
runs 1 is (with 8 points) and diagram (b) related to the runs 2,10 and 35 (with 8 points) and diagram(c) related to 
runs4,11,20and31(with 6 points) and diagram(d) for runs6,16,18,34 and 39 (with 7 points) and diagram(e) for 
runs5,7,21,24,26 ,30 32, and 40 (with 8 points) and the graph(f) related to the runs 3,14,22,25, 28,33and 38 (with 6 
points). 
The desired algorithm found these points effectively and in a short time and as observed in the review and com-
parison of the run 5 tables of the algorithms, the bat algorithm provides the most points of the Pareto surface with 
a minimum of 6points and a maximum of 8 points and the best maximum spread range of points of compared to 
other algorithms  which has the best and most effective output of the Pareto surface points among the five run 
algorithms. 

7. Conclusion 

University timetabling is a complicated multi objective topic that lacks an aim function and is not something that 
could be generalized to other universities. Limitations, regulations and other differences between universities or 
countries will make drawing any conclusion, difficult. Besides, personal preferences of faculty, students and uni-
versity staff is also different and will make things more complicated. In order to solve these problems, previous 
year timetabling or trial and error is used which has a lot of flaws and is a less than ideal method to solve the 
problem. These methods do not take into consideration, some limitations and thus, are not designed to achieve 
any desirability or satisfaction. In our research, prior to designing a model, we looked at faculty satisfaction and 
allocated a number to their satisfaction. Then a mathematical model was designed based on soft and hard limita-
tions using GAMS software as a trial run. Then 5 metaheuristic algorithms were used by MATLAB software to 
design the main model. Forty runs of each algorithm were performed and results were compared between the 
algorithms. We concluded that the Bat metaheuristic algorithm is superior to all other algorithms in time required 
to run the model, number of ideal answers, distribution and overall data gathering. This might not stand true in 
other models or other universities due to inter-university differences and other regulations. 
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7. Future research 

1.  Optimization of multi-objective mathematical model timetabling problem of university courses in order to re-
duce planning time and university preferences using new meta- heuristic algorithms. 
2. Optimization of multi-objective mathematical model timetabling problem of university courses with the aim of 
increasing the desirability of students, departments and university preferences in different academic levels in a 
university unit. 
3.  Optimization of multi-objective mathematical model of university course timetabling problem with the aim of 
increasing students' academic efficiency and their learning efficiency and the preferences of professors in depart-
ments in an academic unit. 
4. Presenting a mathematical model to minimize the waste of time holding educational classes and compressing 
the curriculum of the educational departments of university units. 
5. Optimizing the mathematical model of timetabling problem of university courses in order to minimize the use 
of educational space and classrooms for units such as scientific universities, applications that face space constraints. 
6. Presenting a two-stage mathematical model, including first assigning a course to each semester and then plan-
ning to increase the desirability of university students or to reduce the planning time and increase the desirability 
of the university unit. 
7. Presenting a mathematical model to determine the days of separate presentation of university courses for differ-
ent educational levels so that the collage days of students of each educational level become different from other 
levels. 
8. Presenting a mathematical model to determine the days of specialized and general courses related to each group 
and educational level based on the suggestions of students, especially in the graduate course. 
9. Timetabling problem of university courses using multi-stage models to facilitate model solving. 
10. Presenting a mathematical model of university course timetabling problem for the integration of common and 
specific course classes of university units that have not reached the quorum due to the lack of welcome from stu-
dents. 
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