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Designing a new multi-objective fuzzy stochastic DEA model 

in a dynamic environment to estimate efficiency of decision 

making units (Case Study: An Iranian Petroleum Company) 
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Abstract 

This paper presents a new multi-objective fuzzy stochastic data envelopment analysis model          

(MOFS-DEA) under mean chance constraints and common weights ot estimate the efficiency of decision 

making units for future financial periods of them. In the initial MOFS-DEA model, the outputs and inputs 

are characterized by random triangular fuzzy variables with normal distribution, in which data are 

changing sequentially. Since the initial MOFS-DEA model is a complex model, we convert it to its 

equivalent one-objective stochastic programming by using infinite-norm approach. To solve it, we design 

a new hybrid meta-heuristic algorithm by integrating Imperialist Competitive Algorithm and Monte Carlo 

simulation. Finally, this paper presents a real application of the proposed model and the designed hybrid 

algorithm for predicting the efficiency of five gas stations for the next two periods of them, with using 

real information which gathered from credible sources. The results will be compared with the Qin’s 

hybrid algorithm in terms of solution quality and runtime. 

Keywords: Data envelopment analysis; Random fuzzy variable; Dynamic stochastic programming; 
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1. Introduction 

Evaluating and comparing performance of similar decision making units is an important part of 

the responsibilities of each organization management. Data envelopment analysis (DEA) is a 

managerial tool for evaluating and improving the efficiency of decision making units (DMUs). 

DEA which was initially proposed by Charnes, Cooper and Rhodes (1978), has been widely 

applied to evaluate the relative efficiency of DMUs. Since then hundreds of papers have been 

published in this field. However, this method has some major shortcomings such as inability to 

predict the performance of DMUs and also impossibility to consider stochastic variations in the 

data. The first stochastic DEA model was developed by Cooper, Huang and Li (1996). Also, we 
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usually obtain fuzzy data from DMUs; Sengupta (1992) is the first one who considered fuzziness 

both in constraints and objective function in fuzzy DEA models. Since in real world problems, 

decision makers may encounter an uncertain environment where fuzziness and randomness 

coexist in a DMU, they represent the outputs and inputs in these DMUs by random fuzzy 

variables to characterize the hybrid uncertainty. The random fuzzy variable (Kwakernaak  1978), 

possibility theory (Z.Q. Liu and Y.K. Liu 2010), credibility and mean chance theories (Liu 2014) 

have been presented to treat fuzzy phenomena existing in real world problems. Wang and 

Watada (2009) discussed the analytical properties of critical value functions of random fuzzy 

variables and mean chance distribution functions in CCR model. A new fuzzy DEA approach 

based on parametric programming was developed by Razavi, Amoozad and Zavadskas (2013). 

The basic idea of the proposed method is applying the notion of α-cuts. Based on these studies, 

all papers focused on analyzing current performance of DMUs, without considering the need of 

predicting efficiency for future planning of them. So, this paper proposes a new fuzzy multi-

objective stochastic DEA model to predict the performance of decision making units. 

The rest of this paper is organized as follows: Section 2 surveys the literature review on DEA 

models with common weights in dynamic and static environments. Section 3 presents some basic 

fuzzy theories, which are useful for modeling the proposed model in the next section. Section 4 

presents a new multi-objective fuzzy stochastic DEA model with common weights in dynamic 

environment (MOFS-DEA). In Section 5, we first convert the expected values of objective 

functions and mean chance constraints of initial MOFS-DEA model to their equivalents 

stochastic representations, and we then convert the initial MOFS-DEA model to one objective 

stochastic model with using infinite-norm approach. In section 6 we integrate Monte Carlo (MC) 

simulation and Imperialist Competitive Algorithm (ICA) to design a new hybrid meta-heuristic 

algorithm (ICA-MC) for solving the proposed model. Section 7 provides a real example to 

express the idea and effectiveness of the designed approach to predict the efficiency of DMUs. 

Finally in this section, we compare our results with the results of hybrid algorithm which was 

proposed by Qin and Liu (2010). Section 8 draws the concluding remarks and suggestions. 

2. Literature review  

The application of multi-objective linear programming (MOLP) procedure to select the preferred 

outputs and inputs was proposed by Golany (1988). He attempted to present a new model to 

improve the discriminating power in classical DEA models. Thanassoulis and Dyson (1992) 

presented a new data envelopment analysis model which incorporated the preferences over 

input–output improvements to reach the preferred input–output target. The first classic multi-

objective stochastic DEA models in dynamic environment were proposed by Sengupta (1995) 

and the framework of dynamic DEA by Nemoto and Goto (2003).  Sueyoshi and Sekitani (2005) 

presented a new type of dynamic DEA with common weighs set. They used concept of returns to 

scale (RTS) in the dynamic DEA of Nemoto and Goto (2003). Teimoori (2006) proposed a new 

multi-objective DEA model in dynamic environment which produced aggregate performance of 

the total planning horizon. An equivalence model between multi objective linear programming 

and dynamic DEA models was presents by Yang, Wong, Xu and Stewart (2008).  Omrani (2013) 

proposed a new method to find common weights set in DEA with imprecise data. Ramezani and 

Khodabakhshi (2013) proposed a new approach to rank decision making units in dynamic DEA 

with using common weights set. Wang, Lu and Liu (2014) proposed a new two stage multi-

objective fuzzy DEA model in dynamic environment for evaluating the performance of US bank 

holding companies. Yaghoubi, Amiri and Safi- Samghabadi (2015) presented a new Stochastic 

DEA model to predict performance of DMUs. They designed a new hybrid algorithm by 

integrating genetic algorithm and MC simulation to solve the proposed model.  
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The crisp outputs and inputs in traditional DEA models become random fuzzy variables in fuzzy 

stochastic environment, and modeling with such data is meaningless directly because the 

meanings of the constraints and the objective function are not clear at all. So, in order to obtain a 

meaningful model in such environments, we employ the expected value to objective function and 

the mean chance theory to constraints to propose a new multi-objective fuzzy stochastic DEA 

model (MOFS-DEA) in dynamic environment. In general, the mean chance functions in the 

constraints and expected value in objective function are difficult to compute, so we convert them 

to their equivalent stochastic representations. As a consequence, the initial MOFS-DEA model 

can be converted to its equivalent stochastic programming one.  A summary development of the 

above literature and the characteristics of the proposed model in this paper are listed in Table 1. 

 
Table 1. A summary development of the review literature 

Authors 
Method Inputs & Outputs Environment Objective  

DEA SDEA Precise Imprecise Static Dynamic Single Multiple 

Golany (1988) ×  ×  ×   × 

Sengupta (1992)  ×  × ×  ×  

Thanasolis (1992) ×   × ×  ×  

Sengupta (1995)  × ×   ×  × 

Cooper (1996)  ×  × ×  ×  

Sueyoshi (2005) ×  ×   ×  × 

Teimoori (2006) ×  ×   ×  × 

Yang et al. (2008) ×   ×  ×  × 

Qin et al. (2010)  ×  × ×  ×  

Omrani (2013) ×   × ×   × 

Ramezani (2013) ×  ×   ×  × 

Wang et al. (2014) ×   ×  ×  × 

Yaghoubi (2015)  ×  ×  × ×  

proposed model  ×  ×  ×  × 

      

     As it can be observed in Table 1, the previous researches have not proposed any model based 

on multi-objective SDEA model with using imprecise inputs and outputs in a dynamic 

environment to predict the performance of DMUs, however, in this paper provided. 

3. Preliminaries                      

3.1. Credibility approach 

Let ξ be a fuzzy variable with a possibility distribution function μ. The credibility of a fuzzy 

event {ξ ≥r} for Rr  is defined as (Qin and Liu 2010): 
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     The mean chance of random fuzzy event {ξ ∈B} when ξ be n-dimensional random fuzzy 

vector, and B be a subset of R, is defined as: 
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3.2. Mean chance distributions for random triangular fuzzy variables 

Theorem 1. Let ),,( bXXaX   be a continuous random triangular fuzzy variable, in which X 

is a random variable, and a,b being positive numbers. If ),(~ 2NX  then we have: 
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where )0(  is the probability distribution of  standard normal distribution function (Qin and Liu 

2010). 

Theorem 2. Let ),,( iiiiii bXXaX   be mutually independent triangular fuzzy variables. If 
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where 
ix , (i=1,2,...,n) are nonnegative real numbers (Qin and Liu 2010). 

Theorem 3. Let ),,( bXXaX  and ),,( dYYcY   be two mutually independent random 

triangular fuzzy variables. If ),(~ 2

11 NX , ),(~ 2

22 NY  and dcba ,,,  being positive 

numbers, then we have (Qin and Liu 2010): 
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where 1x  and 2x  are nonnegative real numbers and at least one of them is nonzero. 
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(5) 
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Theorem 4. Suppose ),,( bXXaX  and ),,( dYYcY   are two mutually independent 

triangular fuzzy variables, in which X,Y∈R and dcba ,,,  being positive numbers, then we have 

(Qin and Liu 2010): 
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4. Multi-objective fuzzy stochastic DEA model (MOFS-DEA) formulation       

In a dynamic environment, it is assumed that there are "n" DMUs and these are surveyed in T 

periods. In the t-th period, each DMUj uses two kind of inputs: 1tK  (an l dimensional vector of 

quasi-fixed inputs) and tX  (an m dimensional vector of inputs) in order to produce two kind of 

outputs: tY  (an r dimensional vector of inputs) and  tK  (an l dimensional vector of quasi-fixed 

outputs). In Fig. 1, the vertical axis indicates the order of DMUs and the horizontal axis denotes 

the order of periods. As shown in this figure, the output vector ( tK ) in the t-th period is used as 

the quasi-fixed or feedback input vector (link data) at the next (t+1) period. The conventional 

dynamic CCR model is built as: 
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where t

jX  , t

jY   are the column vectors of random fuzzy inputs (outputs) of DMUj (j=1,..,n) in 

period t, respectively. t

jK  is the quasi–fix random fuzzy outputs column vector of DMUj at 

period t and the quasi–fix random fuzzy inputs column vector of DMUj in period t+1 (link data). 
1t

jK  is the quasi–fix random fuzzy inputs column vector of DMUj  at  period t and the quasi–fix 

random fuzzy outputs column vector of DMUj in  period  t-1 (link data). Also t  and 1t  are the 

weights vectors of t

jK
 
and 1t

jK , respectively. Model (7) is used to evaluate the relative efficiency 

( tZ0
) of DMU0 with precise inputs and outputs at period t. However, in many cases, the data 

cannot be known with certainty, and are always derived by statistic or given by experts according 

to their experience, so randomness and fuzziness may exist simultaneously in these data. In many 

cases, we can only obtain the possibility distributions of the inputs and outputs. Thus in this 

paper, we assume that the inputs and outputs are random triangular fuzzy variables with normal 

distributions, following as: 

(7) 

Fig. 1. Execution of the DEA model in dynamic framework 
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which are predicted by decision maker for the next financial period to predict the efficiency of 

each DMU. In this case, the objective function of model (7) is also a random fuzzy variable, but 

the meaning of the model (7) is not clear. If we consider the efficiency ratio for all DMUs, we 

can then establish the multiple objectives programming which uses common weights set to 

efficiency measurement (Lozano and Villa 2007). To build a meaningful model, we utilize the 

expectation value in objective functions and the mean chance theory in the constraints to 

formulate the initial proposed MOFS-DEA model with common weights: 
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where t

j
 
is considered as a risk criterion of failing to satisfy the j-th constraint at period t 

  1,0t

j .  This model contains "n" objective functions and the purpose is to seek a common 

weights set ),,,( 1tttt VU  with the maximum value of each objective function at period t 

(t=1,..,T), while the fuzzy events  0)()( 11   t

j

tt

j

tt

j

tt
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confidence level )1( t
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for j=1,..,n.     

5.  Equivalent stochastic programming representation of MOFS-DEA model 
 

5.1. Equivalent stochastic representation of the constraints 

According to Theorems (2) and (3) and with considering the defined inputs and outputs (8), the   

j-th constraint of initial proposed MOFS-DEA model can be transformed to the following 

equivalent stochastic one: 
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5.2. Equivalent stochastic representation of objective functions

 

 

Suppose t

jX , t

jY , t

jK
 
and 1t

jK  are random triangular fuzzy vectors of DMUj at period t as (8), then 

we have:  











































L

l

t

lj

t

l

t

j

L

l

t

lj

t

l

t

j

L

l

t

lj

t

l

t

j

L

l

t

lj

t

l

t

j

s

r

t

rj

t

r

t

j

s

r

t

rj

t

r

t

j

m

i

t

ij

t

i

t

j

m

i

t

ij

t

i

t

j

L

l

lj

t

lj

L

l

lj

t

lj

s

r

rj

t

rj

m

i

ij

t

ij

L

l

t

lj

t

l

t

j

L

l

t

lj

t

l

t

j

s

r

t

rj

t

r

t

j

m

i

t

ij

t

i

t

j

ffeBeffee

dudcucbvbava

uv

uv

tttttttt

1

111

1

111

11

1111

1

212

1

22

1

22

1

22

1

111

111

11







 

According to Theorem (4), the j-th objective function of initial MOFS-DEA model (9) has the 

following equivalent representation: 

 

(10) 
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So, the initial proposed MOFS-DEA model (9) was transformed to its equivalent              multi-

objective stochastic programming model as follows: 
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where ),,,( 1t

l

t

l

t

i

t

r

t

j vug   and  t

jZ  are  determined by (10) and (11), respectively.  

 

5.3.  Final representation of MOFS-DEA model  

The proposed equivalent multi-objective stochastic model (12) has "n" objective function in each 

period and is established by individually maximizing the efficiency of each DMU which 

consumes much computational time. It can be converted to equivalent one objective stochastic 

model by using infinite-norm approach, so model (12) can be rewritten as following: 

(11) 

(12) 
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Where w is the percent which all DMUs reach to optimum efficiency level. Also (  ) shows the 

weights control constraints and A is the real number as 10  A . On the other hand, 
lir www ,,  

and 
lw   are preferred weight for inputs and outputs which are determined by the decision makers. 

Model (13) is the equivalent one objective stochastic model or the final representation of 

proposed MOFS-DEA model. Since the stochastic constraints (10) in this model are still in form 

of the integral, we cannot solve the proposed model (13) via the exact optimization algorithms. 

In order to overcome the difficulty, in the next section we design a new hybrid algorithm to solve 

it by incorporating ICA and MC simulation, in which MC simulation will employ to compute the 

integrals involved in the constraints and ICA will use to find the optimal of problem.  

 

6. Solution methodology 
According to Atashpaz-Gargari and Lucas (2007), ICA is a new socio-politically motivated 

global search strategy that has recently been introduced for dealing with different optimization 

tasks. Hence, in addition to develop mathematical model, comparing the results to other well-

known techniques in terms of solution quality and running time is also considered in this paper. 

So, ICA can be considered as a very practical tool to solve and exloring the solution space of 

complex problems such as the MOFS-DEA model, successfully. The procedure of proposed 

hybrid algorithm for solving the final MOFS-DEA model (13) is summarized as follows.  

 

6.1.  Solution representation   

Each solution in the ICA is in a form of an array. Each array consists of variables which should 

be optimized. This array is called country. Suppose there are pop-size countries in the 

population, representing the solutions of the final proposed MOFS-DEA model (13), in which 

the decision variables include )1,0(,,, 1 t
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is characterized as a country to show a decision array at 

period t. 

 

 

(13) 
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6.2.  Initialization process                                  

Generate randomly 1,,, t

l

t

l

t

i

t

r vu   from the interval (0,1). Compute ),,,( 1t

l

t

l

t

i

t

r

t

j vug   and t

jZ
 
via 

formulas (10) and (11) respectively, where the integrals which applied in t

jZ
 
are approximated 

by MC simulation that will discribe in next section. If tR  satisfies the constraints, then it is 

feasible and take it as an initial country. Repeat this process until pop-size initial feasible 

countries t

sizepop

tt RRR ,..., 21  
are produced. After generating countries, the best solutions are selected 

from population as the imperialists and the remaining countries are colonies. For calculating the 

cost value of each imperialist, the value of objective function is obtained for each imperialist. 

Then, the cost value for objective function is computed by:

 

 

 

tt

t

best

t

n
n

WW

WW
C

minmax 


  (14) 

where Cn is the normalized value of  objective function for imperialist n. tt

best WW max,
 
and tWmin  

are 

the best, maximum and minimum values of the objective function in each iteration, respectively. 

The power of each imperialist is calculated after obtaining the normalized cost as shown below 

and the colonies distributed among the imperialist according to power of each imperialist 

country.  





impN

i

inn CCP
1

/  (15) 

Then, the initial number of colonies of an empire will be as follows: 

 colnn NProundNC .  (16) 

where NCn is the initial number of colonies of the n-th imperialist, and Ncol is the number of all 

colonies. We randomly select NCn of colonies and give them for each imperialist.  

6.3.   Moving the colonies of an empire toward the imperialist  

After dividing colonies between imperialists, colonies are moved toward their related imperialist. 

This movement is shown in Fig. 2, in which X is the distance between colony and imperialist. 

                                                                                                                                                     

Fig. 2. Moving colonies toward the imperialist with a random angle  

α is a random variable with a uniform distribution between 0 and β × X , in which β is a number 

greater than 1. The direction of movement is shown by , which is a uniform distribution 

between -  and .      
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6.4. Exchanging positions of the imperialist and a colony  

While moving toward the imperialist, a colony might reach to a place with lower cost than the 

imperialist. In this case, the imperialist and the colony change their positions. 

 

 

6.5.    Total power of an empire      

The total power of an empire is calculated as below:  

    

)()(cos nnn empireofcoloniesmeantimperialistTC    (17) 

 

where TCn denotes the total cost of the n-th empire and zeta (ζ) is positive number which is less 

than 1. The cost of imperialist and colonies are calculated by Equations (14) and (15). 

6.6.    Imperialistic competition   

All empires competition is to take the possession of the weakest colony of the weakest empire. 

This competition is modeled by just selecting one of the weakest colonies of the weakest empires 

and then for calculating the possession probability of each empire first the normalized total cost 

is obtained as follows: 

  nin TCTCNTC  max  (18) 

where NTCn is the normalized total cost of n-th empire and TCn is the total cost of n-th empire. 

Having the normalized total cost, the possession probability of each empire is calculated by: 





impN

i

inpn NTCNTCP
1

/  (19) 

6.7.    Eliminating the powerless empires               
Powerless empires will collapse and their colonies are distributed among other empires in the 

imperialistic competition. In this paper, when an empire loses its colonies, we consider it is 

collapsed. 

 

6.8.    Stopping criteria 

In the proposed model, the state in which there is only one empire between all countries is 

considered as stopping criterion. 

 

6.9.    Monte Carelo simulation   

MC simulation is a method to deal with the stochastic behavior in complex systems (Chuen ,

Kuan  dna Wai 2012). In order to solve the final proposed MOFS-DEA model (13), for any given 

solution ( tR ), we need to check its feasibility. Since the some constraints (11) include integrals 

which cannot solve via the conventional optimization algorithm, so we should approximate their 

values by MC simulation. This method, firstly changes variable in the integral
 
to convert infinite 

interval to finite interval as following (Gander and Gautschi 2000): 
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So, the process of MC simulation is described as follows: 
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Procedure: MC simulation for approximating (20)                                                                                                                                                                                                                     

begin 

n←number-simulation                                                                                                                                                                            

for i =1 to n do                                                                        

hi←Generate a uniform distributed random point in the interval [a,b]=[-1,1]                                                  

Determine the average value of the function: 



n

i

ihf
n

f
1

^

)(*
1                                                                                            

Compute the approximation to the integral:   
^

)()( fabdxxf 




                                             

end 

     By integrating ICA and MC simulation, we design a new hybrid algorithm (ICA-MC) for 

solving the proposed model (13) which summarized as follows: 

 Initialize the empires and their colonies positions randomly whose feasibility must be 

checked by MC simulation in the constraints of model (13).   .  

 Moving the colonies towards the imperialist’s position. 

 Compute the total cost of all empires. Pick the weakest colony (colonies) from the 

weakest empire and give it (them) to the empire that has the most likelihood to possess it 

(Imperialistic competition).  

 Eliminate the powerless empires.  

 If there is just one empire, then stop else continue. 

 Check the termination conditions. 

 Select the best country as an optimal solution.
 
 

                                

7.   Practical example 
This section compares computational efforts of the proposed model and ICA-MC algorithm with 

the results of hybrid GA algorithm which was proposed by Qin and Liu (2010) in terms of 

solution quality and runtime. We used the real example which was proposed by Yaghoubi, Amiri 

and Safi (2015) in their paper as a benchmark. In this real example, the outputs and inputs are 

characterized by random triangular fuzzy variables; like the outputs and inputs in the proposed 

model in this paper. The problem consists of five Gas stations (DMUs) with two input 

parameters, one output parameter, and one quasi-fixed input parameter. It is assumed that there 

are two prediction periods for efficiency of DMUs (t=1, 2): Autumn (first period) and Winter 

(second period) of 2013. 

     To present the effectiveness of the solution methodolgy and the modeling idea, the final 

proposed MOFS-DEA model (13) and ICA-MC algorithm are used to predict the efficiency of 

five DMUs. Table 2 documents the predicted efficiency values under 5.0  for the next two 

periods. This practical experiments are performed on a personal computer, using the Microsoft 

Windows 7 operating system, and ICA-MC algorithm is written by C++ programming language. 

In this paper, appropriate tuning of the parameters has been carried out for optimizing the 

behavior of the proposed algorithm. For this purpose, response surface methodology (RSM) is 

employed. RSM is defined as a collection of mathematical and statistical method-based 

experiential, which can be used to optimize processes (Azizmohammadi et al. 2013). So the 

tuned parameters of the ICA-MC algorithm are obtained as follows: pop-size=30, B=0.65, =0.5, 

Nimp=5. From the solution results for each period, we can see the information about each DMU. 

For example in the first period, DMU2 has the biggest α-expected efficient value 0.991, followed 

by DMU4, DMU1, DMU3 and DMU5. 
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Table 2. The predicted efficiency scores for both periods under 5.0  in June 2013 

                                

  

  

  

                         

   

 

 

 

 

 

     Table 3 presnts the total amount of real inputs and outputs for the Autumn and Winter of 

2013 which was gathered in January 2014 in order to survey whether the predicted efficiencies 

are different from actual efficiency values. So, the results of actual efficiencies that have been 

achieved by conventional dynamic CCR model (7) and real data which are shown in Table 3 for 

DMUs. Generally there are three types of classification: (a) 5.0  is conservative, (b) 5.0
 

is risk-natural and (c) 5.0  is risk-taking in DEA. It is easily thought that the conventional 

use of DEA belongs to the risk-natural (Nemoto and Goto 2003). This finding can be easily 

confirmed by comparing the actual efficiencies with the predicted efficiencies  under 5.0 . 

The two approaches exhibit very similar results on ranks scores and efficiencies.  

 

Table 3. The real inputs and outputs of DMUs with their actual and predicted efficiencies for both periods 

 
 

      

 

 

 

 

 

 

 

 

 

 

 

 

 For example in second period from table 3, three DMUs (the 1th, 2th, 5th gas stations) are 

efficient based on real efficiencies and have been in the first place, while they are in the first to 

third place and separated based on the predicted efficiency scores. Also, the high Pearson 

correlation rates have obtained (0.91 and 0.92) for both periods between predicted and real 

efficiencies under 5.0 . 

Period DMU  Optimal solution ( 1

11211 ,,,, ttttt vvu  ) 
α-expected 

efficient value 

t=1 

1 (0.281 , 0.102 , 0.874 , 0.341 , 0.178) 0.964 
2 (0.478 , 0.162 , 0.741 , 0.821, 0.103) 0.991 

3 (0.251 , 0.625 , 0.881 , 0.373 , 0.425) 0.962 

4 (0.654 , 0.431 , 0.879 , 0.332 , 0.834) 0.988 

5 (0.439 , 0.286 , 0.8113 , 0.956 , 0.161) 0.9 

t=2 

1 (0.352 , 0.135 , 0.828 , 0.199 , 0.171) 0.96 

2 (0.521 , 0.207 , 0.606 , 0.824 , 0.154) 0.997 

3 (0.198 , 0.725 , 0.902 , 0.474 , 0.524) 0.912 

4 (0.534 , 0.469 , 0.812 , 0.238 , 0.756) 0.922 

5 (0.544 , 0.072 , 0.518 , 0.806 , 0.105) 0.978 
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t=1 

 

1 4.01 2.15 7.85  3.95 8.16 0.98 0.964 2 3 

2 3.02 1.51 7.11  3.41 7.41 1 0.991 1 1 

3 4.6 2.34 9.07  4.91 9.52 1 0.962 1 4 

4 4.11 2.11 8.91  4.55 9.24 1 0.988 1 2 

5 5.12 3.03 9.89  5.19 10.2 0.96 0.9 3 5 

t=2 

 

1 4.12 2.21 8.16  4.01 8.61 1 0.96 1 3 

2 3.11 1.42 7.41  3.75 7.79 1 0.997 1 1 

3 4.78 2.48 9.52  4.61 9.68 0.97 0.912 3 5 

4 4.15 2.15 9.24  5.3 9.39 0.98 0.922 2 4 

5 5.28 3.22 10.2  5.92 10.6 1 0.978 1 2 
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In order to show the validation of the results, we compare these results with the results of the 

similar hybrid GA algorithm which was proposed by Qin and Liu (2010). The computational 

results of the predicted efficiency scores for DMU1 are reported in Table 4, in which parameter 

“CPU(s)” is the computational time consumed by the two hybrid algorithms to get (near) optimal 

predicted efficiency score ( *

1Z ). It can be from Table 4 that the proposed hybrid algorithm solves 

all instances optimally in average of less than 61s of CPU time requirement for both periods. As 

a result, we conclude that the designed hybrid algorithm outperforms the Qin’s hybrid GA 

algorithm in terms of CPU time. In addition, the predicted efficiencies are closer than the results 

of the Qin’s hybrid algorithm to the actual efficiency scores.    

 

Table 4. Comparison between the results of ICA-MC and Qin’s hybrid GA algorithms 
 

 

 

 

 

 

 

 

 

      

 

 

Fig. 3 shows the comparison between the actual and predicted efficiencies under 5.0  for 

DMU1 in the first period.                                                                                              

 

Fig. 3.  Comparison between real efficiencies with predicted efficiencies 

According to study which was proposed by Qin and Liu (2010), to further test the effectiveness 

of the proposed hybrid algorithm, a careful variations about the parameters B and  in ICA-MC 

is made in view of the identification influence on the solution quality for DMU1 under 5.0  at 

the first period (t=1). The computational results are collected in Table 5. To compare these 

results, we give the relative error as follows:  

Period  

ICA-MC  

algorithm  

 Qin’s  hybrid  GA 

algorithm 
*

1Z  CPU(s)  *

1Z  CPU(s) 

t=1 

 

0.05 0.823 51.301  0.784 107.412 
0.1 0.841 50.147  0.816 108.521 

0.2 0.868 52.332  0.847 107.217 

0.5 0.964 50.124  0.881 109.698 

0.8 0.962 53.418  0.901 110.665 

Average  0.891 51.464  0.846 108.701 

t=2 

 

0.05 0.921 59.124  0.775 108.701 

0.1 0.942 58.412  0.796 107.942 

0.2 0.956 60.663  0.824 109.432 

0.5 0.960 62.127  0.897 110.121 

0.8 0.979 61.202  0.932 110.789 

Average  0.951 60.305  0.845 109.397 
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%100
 valueefficient   expexted- optimal

 valueefficient   expexted-  actual -    valueefficient   expexted-  optimal





 (21) 

Table 5. Comparison the solutions for DMU1 under different ICA’s parameters in                                                                       

first period under 5.0  

 

 

 

 

where the optimal α-expected efficient value is the maximum one of the five α-expected efficient 

values in  Table 5. Generally, findings from the above tables can be summarized as follows: 

Finding 1: Table 3 shows the high correlation rates have obtained for both periods (0.91 and 

0.92) between predicted and real efficiencies; it can represents the validity of the proposed 

MOFS-DEA model.  

Finding 2: The comparsion between predicted and real efficienies in Table 3 reveals significant 

improvement in discriminating power between efficient DMUs. 

Finding 3: Table 4 shows that the designed ICA-MC algorithm outperforms the Qin’s hybrid 

GA algorithm in terms of solution quality and CPU time.                                                                                                                     

Finding 4: It can be shown from Table 5 that the relative errors do not exceed 5%, which 

implies that the designed ICA-MC algorithm is robust for parameters selection. 

8.   Conclusions 
This paper attempted to present a new multi-objective fuzzy stochastic DEA model              

(MOFS-DEA) to predict efficiency of DMUs for the next financial periods. The previous 

researches have not proposed any model based on multi-objective SDEA model with using 

imprecise data in a dynamic environment to predict performance of DMUs, however, in this 

paper provided to get closer to real-world problems. The major results of the paper include the 

following several aspects: (i) A new multi-objective DEA model was built in uncertain and 

dynamic environment, in which the outputs and inputs are characterized by random traingular 

fuzzy variables. Under this assumption, the initial proposed MOFS-DEA model transformed to 

its equivalent multi-objecyive stochastic model. (ii) In order to simplify during the solution 

process, the equivalent multi objecyive stochastic model converted to one objective stochastic 

model by infinite-norm approach. (iii) To solve the final MOFS-DEA model, this paper designed 

a new hybrid meta-hueristic algorithm by integrating ICA and Monte Carlo simulation. Finally, 

the MOFS-DEA model was used to predict efficiencies for five gas stations in an Iranian 

petroleum company for the next two periods. The  results showed that the designed ICA-MC 

algorithm outperforms the hybrid GA algorithm which was proposed by Qin and Liu (2010) in 

terms of solution quality and CPU time. It is suggested to be used another continuous 

distribution (other than normal) for the inputs (outputs) of DMUs  in modeling. Also, we used 

ICA algorithm as an evolutionary algorithm to optimize the proposed model, but it is possible to 

use another  evolutionary algorithm such as GA, SA, TS, ACO, that it can future research task. 

 

    α-expected efficient value Realative error (%) 

0.2 0.3 0.959 0.5 

0.3 0.4 0.948 1.7 

0.5 0.2 0.915 5 

0.6 0.1 0.930 3.5 

0.7 0.6 0.964 0 
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