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Abstract 
In today’s competitive market place, companies seek an efficient structure of supply chain so as to provide 

customers with highest value and achieve competitive advantage. This requires a broader perspective than 

just the borders of an individual company during a supply chain. This paper investigates an aggregate 

production planning problem integrated with distribution issues in a supply chain so as to simultaneously 

optimize characteristics of these supply chain drivers. The main contribution of this paper is to consider the 

aggregate production-distribution planning (APDP) problem jointly with multiple stage, multiple product, 

and multiple vehicle. Moreover, we considered both routing and direct shipment as transportation system 

which is not considered in APDP literature so far. A mixed-integer linear programming formulation is 

suggested for two distinct Scenarios: (i) when we have direct shipment in which all shipments are transported 

directly from manufacturer to customers, and (ii) when we have routing option in which the vehicles can 

move through routes to deliver products to more than one customer at a trip. A numerical analysis is 

performed to compare performance of problem in two above Scenarios. Moreover, to assess applicability of 

problem, some computational experiments are implemented on small, medium and large sized problems.  
 

 

Keywords: Mixed-Integer Programming; Production Planning; Production-Distribution, Transportation; 

Vehicle Routing; Setup Times. 

 

Received: June 2015-29   

Revised: July 2015-25 

Accepted: November 2015 -22 

 

                                                   

*
 Corresponding Author. 

1 Department of Industrial Engineering, University of Kashan, Kashan, Iran. 



H. Mokhtari 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol.2 , No.2  Page 56 

1.  Introduction  

The Aggregate Production Planning (APP) which is a class of mid-term planning can be defined as 

delineation of production quantity, inventory size and workforce level during a finite planning 

horizon. The APP can be carried out without need to get detailed material and capacity resource 

requirements for individual products. An APP can be categorized as a decision-making problem in 

tactical level of supply chain. Since minimum amount of detailed data is required in APP, it enables 

planners to update plan more frequently, and compensate disruptions occurring in product demand, 

costs, capacity and material supply. Because APP is one of the most critical areas of supply chain 

planning, it has attracted many attentions.  

One of the first studies on APP was presented by Holt et al. (1955). In order to establish a 

production plan with actual operational costs of a real paint factory, he investigated APP models. A 

pharmaceutical case was evaluated by Ashayeri and Selen (2003) considering an APP with strategic 

planning. Moreover, Wang and Liang (2004) investigated a multi-product APP in a fuzzy 

environment with a fuzzy multi-objective linear programming approach. Additionally, Wang and 

Liang (2005) presented a multi-objective APP with imprecise demand, and suggested an interactive 

possibilistic programming approach. Jain and Palekar (2005) introduced a configuration-based 

formulation with dissimilar machines and production lines. Jamalnia and Soukhakian (2009) 

considered an APP in a fuzzy environment and developed a hybrid fuzzy multi-objective nonlinear 

model. Moreover, Zhang et al. (2012) developed a hybrid heuristic for solving a mixed-integer 

linear model with capacity expansion and multiple centers. Ghasemi Yaghin et al. (2012) devised a 

hybrid fuzzy multiple-objective model for solving an integrated pricing and APP in a multi-period, 

multi-product environment. Karmarkar and Rajaram (2012) proposed a competitive extension of 

APP problem for process industries.  

To the best of our knowledge, as can be seen, the majority of research has studied the optimization 

of production plans inside a manufacturing company, and ignored distribution of products to 

customers. In a vast amount of researches, APP problem has been investigated in detail but without 

taking distribution into account. A new approach is to analyze production and distribution problems 

based on integration of decisions in production and distribution contexts in a two-echelon supply 

chain. However, the literature dealing with coordination problems between production and 

distribution is still scarce (Boudia et al. 2007). Fahimnia et al. (2013) presented a systematic 

literature review on distribution problems of produced items. Lee and Kim (2002) developed a linear 

model for production-distribution problem minimizing production, distribution, inventory, and 

shortage costs. Chan et al. (2005) considered a multi-factory production-distribution problem with a 

hybrid genetic algorithm and analytic hierarchy process. Demirli and Yimer (2006) suggested a 

mixed-integer fuzzy programming for a build-to-order environment with uncertain inventory and 

shortage costs. Besides, Rizk et al. (2006) investigated a mixed-integer model for planning problem 

of a manufacturing location and a distribution center with parallel machines and transportation costs. 

Nishi et al. (2007) introduced Lagrangian decomposition for a distributed production and 

distribution. Coronado (2008) studied a model with uncertainty at suppliers’ capacity with regular-

time and overtime production. In another study, Hamedi et al. (2009) constructed a mixed-integer 

model to analyze a real-world gas industry with multi-period and single-product. 
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 Recently, Raa et al. (2013) developed a matheuristic for solving an aggregate production–

distribution problem for a producer of plastic products. 

Table 1 shows a comparison among previous literature and present work at a glance. As can be seen, 

one of the major shortcomings in all of the above studies is that they just consider direct shipment of 

products to customers in generating distribution plan, and then discard vehicle routing aspects. The 

author could find very few papers such as Boudia et al. (2007) and Bard and Nananukul (2009) that 

considered production and routing decisions simultaneously. Not only the literature dealing with 

joint production planning and routing is very scarce, but also they just considered simplified models 

with single-product, single-vehicle and single-stage. Hence, to overcome these shortcomings, we 

will present a generalized production and distribution in current paper and formulate it as mixed 

integer linear programming problems. There are many successful applications of mathematical 

programming formulation for addressing scheduling problems in literature (e.g., Wong et al., 2012; 

Karimi-Nasab and Fatemi Ghomi, 2012; Ma et al. 2013; Wong et al., 2014).  

The reminder of this paper is organized as follows. Section 2 defines suggested APDP problem. The 

mathematical formulations are presented in Section 3. Section 4 describes a numerical analysis. 

Finally Section 5 concludes paper.  
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Table 1. Characteristics of existing models 

Paper 
products period stage vehicles customers setup times transportation 

single multiple single multiple single multiple single multiple single multiple machine vehicle direct routing 

Lee and Kim (2002)               

Chan et al. (2005)               

Demirli and Yimer 

(2006) 
              

Rizk et al. (2006)               

Nishi et al. (2007)               

Coronado (2008)               

Hamedi et al. (2009)               

Raa et al. (2013)               

Boudia et al. (2007)               

Bard and Nananukul 

(2009) 
              

Aliev, Rafik A., et al. 

(2007) 
              

Niknamfar, et al., 

(2015) 
              

Perumal et al., (2013)               

Pathak and Sarkar 

(2012) 
              

Moghaddam et al., 

(2012) 
              

Moattar Husseini et al. 

(2015) 
              

Torabi and Moghaddam 

(2012) 
              

Proposed research               
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2.  Scope of APDP problem    

In this section, the Aggregate Production-Distribution Planning (APDP) problem suggested in 

current paper will be described. This problem is relevant to integration between production planning 

and vehicle transportation with multi-stage, multi-product and multi-vehicle systems in a two-

echelon supply chain. The production part of our APDP is an extended version of classical APP 

problem with several machines and setup decisions. A manufacturer seeks a cost effective 

production level, inventory level, backorder level, and overtime and subcontract productions. It is 

also interested to find best workforce level including number of hired and laid-off workers. In 

addition, each product has a setup on machines. At each stage of production system, a number of 

products received from last stage and some other purchased parts are assembled to establish one unit 

of a product in current stage. The production system in our APDP is depicted in Figure 1. 
 

 

 

 

 

 

 
 

 

 

Figure 1. Production stages within a specific time period 

 

After last stage is completed, finished product is transported to customers by vehicles. A maximum 

number of vehicles, with limited capacities, are available to transport products from manufacturer to 

customers. In addition to direct shipment, vehicles can moved through a route in order to deliver 

products to more than one customer during a trip. It is also assumed that each vehicle is responsible 

for satisfying demand of all customers on route. A route is a sequence of customers in which a 

vehicle delivers product from a single manufacturer to multiple customers. A customer should be 

visited before its due date time. The route time of a vehicle is the sum of total traveling time and 

service time taken to visit on-route customers. The main characteristics of proposed problem are 

given in Table 2. 
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Table 2. Main characteristics of proposed APDP problem 

Feature Proposed APDP Model 

Number of products Multiple 

Number of periods Multiple 

Number of stages Multiple 

Number of vehicles Multiple 

Number of customers Multiple 

Backorder Allowed 

Routing delivery Allowed 

Subcontracting option  Considered 

Overtime option Considered 

Labor hiring Considered 

Labor lay off Considered 

Machine setup times Considered 

Vehicle setup times Considered 

Machine capacity Considered 

Workforce legal limitations Considered 

Objective components (Costs):  

 Production Considered 

 Overtime Considered 

 Subcontract Considered 

 Inventory Considered 

 Setup time Considered 

 Backorder Considered 

 Workforce Considered 

 Transportation Considered 

 Vehicles Considered 

 

3.  MILP formulation  

In this section, suggested APDP problem will be formulated. In order to cope with complexity of 

problem, we formulate suggested APDP via two Scenarios. At first, a situation is considered in
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which manufacturer makes direct shipments to each customer and routing decision is not 

incorporated. Next, we investigate second Scenario in which vehicles move through a route to 

deliver products to more than one customer. The parameters and variables are summarized below.  
 

Problem parameters  

𝑖, 𝑗 Index of product type 𝑖, 𝑗 = 1, … , 𝑁𝑘 

𝑘 Index of production stage 𝑘 = 1, … , 𝑅 

𝑡 Index of time period 𝑡 = 1, … , 𝑇 

𝑚 Index of machine 𝑚 = 1, … , 𝑀 

𝑞 Index of part type required for producing products 𝑞 = 1, … , 𝑄 

𝑛, 𝑐, 𝑑, 𝑒 Index of customers 𝑛, 𝑐, 𝑑, 𝑒 = 1, … , 𝑁 

𝜉 Index of routs and associated vehicles 𝜉 = 1, … , 𝐸 

𝐶𝑉 Maximum capacity of each vehicle 

𝜛 Vehicle setup time factor 

𝜃𝑛 Service time of customer 𝑛 

𝑑𝑢𝑛
𝑡  Preferred due date of customer 𝑛 at period 𝑡 

𝑡𝑐𝑑 Travel time between customers 𝑐  and 𝑑 

𝜌𝜉𝑡 Vehicle setup time associated with route 𝜉 at period 𝑡 

𝐷𝑖𝑡
𝑛 Demand of customer 𝑛 for product type 𝑖 at period 𝑡 

𝑇𝐶𝑣 Transportation cost of vehicle 𝑣 (Scenario I) 

𝑇𝐶𝜉 Transportation cost of vehicle associated with route 𝜉 (Scenario II) 

𝐹𝐶𝜉 Fixed cost of vehicle associated with route 𝜉  

𝑀𝑇𝑇 Maximum travel time allowed for each vehicle (units of time at each period) 

𝑓 Working hours of a worker at each stage of each period 

𝑝𝑖𝑡
𝑘  Regular time production cost of product type 𝑖 in stage 𝑘 of period 𝑡 
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𝑜𝑖𝑡
𝑘  Over time production cost of product type 𝑖 in stage 𝑘 of period 𝑡 

𝑐𝑖𝑡
𝑘  Subcontracting cost of product type 𝑖 in stage 𝑘 of period 𝑡 

ℎ𝑖𝑡
𝑘  Inventory cost of product type 𝑖 at end of stage 𝑘 in period 𝑡 

𝑏𝑖𝑡
𝑘  Backorder cost of product type 𝑖 in stage 𝑘 of period 𝑡 

𝑤𝑠𝑡
𝑘 Salary cost of a worker in stage 𝑘 of period 𝑡 

𝑤𝑡𝑡
𝑘 Cost to hire one worker in stage 𝑘 of period 𝑡 

𝑤𝑙𝑡
𝑘 Cost to lay off one worker in stage 𝑘 of period 𝑡 

𝐻𝑡𝑘
𝑚𝑎𝑥 The maximum workforce level available for hiring in stage 𝑘 of period 𝑡 

𝑊𝑡𝑘
𝑚𝑎𝑥 The maximum overall workforce level in stage 𝑘 of period 𝑡 

𝑊𝑡
𝑚𝑎𝑥 The maximum overall workforce level in period 𝑡 

𝐿𝑚𝑎𝑥 The maximum workforce level can be laid off during 𝜇 periods 

𝑟𝑖𝑡
𝑚𝑘 The setup cost of product type 𝑖 on machine 𝑚 in stage 𝑘 of period 𝑡 

𝐴𝑖𝑗
𝑘  

Number of product type 𝑖 in stage 𝑘 that is needed for producing one unite of product type 𝑗 in 

stage 𝑘 + 1 

𝜎𝑖𝑘
𝑞

 
Number of other purchased part type 𝑞 that is needed for producing one unite of product 

type 𝑖 in stage 𝑘 

𝑈𝑡𝑘
𝑞

 Maximum available number of part type 𝑞 in stage 𝑘 of period 𝑡 

𝑑𝑖𝑚
𝑘  Capacity of machine 𝑚 that is needed for producing one unit of product type 𝑖 in stage 𝑘 

𝑓𝑖𝑚
𝑘  

Capacity of machine 𝑚 that is used for setting up in producing one unit of product type 𝑖 in 

stage 𝑘 

𝐶𝑎𝑚𝑡
𝑘  Total available capacity of machine 𝑚 in regular time of stage 𝑘 in period 𝑡 

𝛽𝑚𝑡
𝑘  A fraction of capacity of machine 𝑚 that is available in over time of stage 𝑘 in period 𝑡 
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𝐶𝑡𝑘
𝑚𝑎𝑥 Maximum number of products which can be subcontracted in stage 𝑘 of period 𝑡 

𝛿𝑖𝑘
𝑠𝑝𝑎𝑐𝑒

 Amount of warehouse space occupied by one unit of product type 𝑖 at end of stage 𝑘 

𝑃𝑡𝑘
𝑠𝑝𝑎𝑐𝑒

 Maximum warehouse space that is available after stage 𝑘 in period 𝑡 

𝑒𝑖𝑡
𝑘  Worker hours required per unit of product type 𝑖 in stage 𝑘 of period 𝑡 

𝛾𝑡
𝑘 

The ratio of regular time working hours of a worker available for use in over time in stage 𝑘 

of period 𝑡 

𝐵𝑖𝑔𝑀 An arbitrary big positive number 

 

 

Problem variables 

𝑃𝑖𝑡
𝑘 Units of product type 𝑖 produced in regular time of stage 𝑘 in period 𝑡 

𝑂𝑖𝑡
𝑘  Units of product type 𝑖 produced in over time of stage 𝑘 in period 𝑡 

𝐶𝑖𝑡
𝑘  Units of product type 𝑖 subcontracted in stage 𝑘 of period 𝑡 

𝐼𝑖𝑡
𝑘  The inventory level of product type 𝑖 at end of stage 𝑘 in period 𝑡 (WIP) 

𝐵𝑖𝑡
𝑘  The backorder level of product type 𝑖 in stage 𝑘 of period 𝑡 

𝑊𝑡
𝑘 The overall workforce level in stage 𝑘 of period 𝑡 

𝐻𝑡
𝑘 The number of workers hired in stage 𝑘 of period 𝑡 

𝐿𝑡
𝑘 The number of workers laid off in stage 𝑘 of period 𝑡 

𝑌𝑖𝑡
𝑚𝑘 

A binary variable that indicates setup decision of product type 𝑖 on machine 𝑚 in stage 𝑘 of 

period 𝑡 

𝑋𝑣𝑐
𝑡  

A binary variable that indicates whether vehicle 𝑣 is allocated to customer 𝑐 at period 𝑡 

(Scenario I) 

𝑡𝑐
𝑣𝑡 Start time of service at customer 𝑐 by vehicle 𝑣 in period 𝑡 (Scenario I) 

𝑋𝑐𝑑
𝜉𝑡

 A binary variable that indicates whether (𝑐, 𝑑) is in route 𝜉 at period 𝑡 (Scenario II) 

𝑍𝑐
𝜉𝑡

 A binary variable that indicates whether customer 𝑐 visited in route 𝜉 at period 𝑡 (Scenario II) 
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𝑡𝑐
𝜉𝑡

 Start time of service at customer 𝑐 in route 𝜉 of period 𝑡 (Scenario II) 

𝑡0
𝜉𝑡

 Start time of route 𝜉 at period 𝑡 (Scenario II) 

𝑉𝜉𝑡 
A binary variable that indicates whether vehicle associated with route 𝜉 is selected at period 𝑡 

(Scenario II) 

 

3.1. Scenario I: APDP with Direct Shipment 

The mixed integer linear programming (MILP) model for Scenario I of suggested APDP problem, 

called 𝑷𝟏, is presented in this section. The objective function seeks to minimize total cost of 

production and transportation. At first we define the parts of production cost. The costs of regular 

time production, overtime production and subcontracting for all product types is as presented below. 

∑ ∑ ∑(𝑝𝑖𝑡
𝑘 𝑃𝑖𝑡

𝑘 + 𝑜𝑖𝑡
𝑘 𝑂𝑖𝑡

𝑘 + 𝑐𝑖𝑡
𝑘 𝐶𝑖𝑡

𝑘)

𝑇

𝑡=1

𝑁𝑘

𝑖=1

𝑅

𝑘=1

 (1) 

 

The total inventory cost including work-in-process (WIP) inventory and finished product inventory 

costs is formulated as follows. 

∑ ∑ ∑(ℎ𝑖𝑡
𝑘 𝐼𝑖𝑡

𝑘 )

𝑇

𝑡=1

𝑁𝑘

𝑖=1

𝑅

𝑘=1

 (2) 

 

The setup costs for all product types on associated machines are formulated in following way. 

∑ ∑ ∑ ∑(𝑟𝑖𝑡
𝑚𝑘𝑌𝑖𝑡

𝑚𝑘)

𝑇

𝑡=1

𝑁𝑘

𝑖=1

𝑀

𝑚=1

𝑅

𝑘=1

 (3) 

 

Since real demand of customers is related to finished products in last stage, backorder quantity is 

associated to 𝑅th stage of period. Therefore backorder cost is expressed as follows. 

∑ ∑(𝑏𝑖𝑡
𝑅𝐵𝑖𝑡

𝑅) 

𝑇

𝑡=1

𝑁𝑅

𝑖=1

 (4) 

 

Due to fluctuation of market demand at each period, it is necessary to determine how many 

additional workers are required to handle extra production or how many workers are required to be 

laid off to reduce overheads. Total workforce cost including salary, hiring and laying off cost is as 

follows.
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∑ ∑(𝑤𝑠𝑡
𝑘𝑊𝑡

𝑘)

𝑅

𝑘=1

𝑇

𝑡=1

+ ∑ ∑(𝑤𝑡𝑡
𝑘𝐻𝑡

𝑘)

𝑅

𝑘=1

𝑇

𝑡=1

+ ∑ ∑(𝑤𝑙𝑡
𝑘 𝐿𝑡

𝑘)

𝑅

𝑘=1

𝑇

𝑡=1

 (5) 

 

Regarding production costs presented in (1)-(5), total production cost (TPC) is expressed as follows. 

𝑇𝑃𝐶 = ∑ ∑ ∑(𝑝𝑖𝑡
𝑘 𝑃𝑖𝑡

𝑘 + 𝑜𝑖𝑡
𝑘 𝑂𝑖𝑡

𝑘 + 𝑐𝑖𝑡
𝑘 𝐶𝑖𝑡

𝑘)

𝑇

𝑡=1

𝑁𝑘

𝑖=1

𝑅

𝑘=1

+  ∑ ∑ ∑(ℎ𝑖𝑡
𝑘 𝐼𝑖𝑡

𝑘 )

𝑇

𝑡=1

𝑁𝑘

𝑖=1

𝑅

𝑘=1

+ ∑ ∑ ∑ ∑(𝑟𝑖𝑡
𝑚𝑘𝑌𝑖𝑡

𝑚𝑘)

𝑇

𝑡=1

𝑁𝑘

𝑖=1

𝑀

𝑚=1

𝑅

𝑘=1

+ ∑ ∑(𝑏𝑖𝑡
𝑅𝐵𝑖𝑡

𝑅) 

𝑇

𝑡=1

𝑁𝑅

𝑖=1

+ ∑ ∑(𝑤𝑠𝑡
𝑘𝑊𝑡

𝑘)

𝑅

𝑘=1

𝑇

𝑡=1

+ ∑ ∑(𝑤𝑡𝑡
𝑘𝐻𝑡

𝑘)

𝑅

𝑘=1

𝑇

𝑡=1

+ ∑ ∑(𝑤𝑙𝑡
𝑘 𝐿𝑡

𝑘)

𝑅

𝑘=1

𝑇

𝑡=1

 

(6) 

We next define direct shipment transportation costs. The transportation cost which is associated to 

total transportation among customers and manufacturer can be formulated as follows. 

∑ (𝑇𝐶𝑣 ∑ ∑(𝑡0𝑐 + 𝑡𝑐0)𝑋𝑣𝑐
𝑡

𝑁

𝑐=1

𝐸

𝑣=1

)

𝑇

𝑡=1

 (7) 

Here 𝑡0𝑐 and 𝑡𝑐0 represents transportation time from manufacturer to customer 𝑐 and vice versa. 

Another important component of transportation cost is related to fixed cost of vehicles. Since 

number of vehicles is assumed to be determined in model, variable 𝑉𝑣𝑡 is defined to delineate 

whether corresponding vehicle is selected or not. Therefore total cost of vehicles, at all periods, is 

defined as follows. 

∑ ∑(𝐹𝐶𝑣 𝑉𝑣𝑡)

𝐸

𝑣=1

𝑇

𝑡=1

 (8) 

 

Therefore, total transportation cost (TTC) incurred in Scenario I can be expressed as follows. 

𝑇𝑇𝐶 = ∑ (𝑇𝐶𝑣 ∑ ∑(𝑡0𝑐 + 𝑡𝑐0)𝑋𝑣𝑐
𝑡

𝑁

𝑐=1

𝐸

𝑣=1

)

𝑇

𝑡=1

+ ∑ ∑(𝐹𝐶𝑣 𝑉𝑣𝑡)

𝐸

𝑣=1

𝑇

𝑡=1

 (9) 

 

Regarding two components of objective function presented in (6) and (9), total objective function is 

to minimize 𝑇𝑃𝐶 + 𝑇𝑇𝐶.  

Next, we aim at defining constraints considered in APDP model as follows.  
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𝑃𝑖𝑡
𝑅 + 𝑂𝑖𝑡

𝑅 + 𝐶𝑖𝑡
𝑅 + 𝐵𝑖𝑡

𝑅 − 𝐵𝑖(𝑡−1)
𝑅 + 𝐼𝑖(𝑡−1)

𝑅 − 𝐼𝑖𝑡
𝑅 = ∑ 𝐷𝑖𝑡

𝑛

𝑁

𝑛=1

 

𝑖 = 1, … , 𝑁𝑅 ,   𝑡 = 1, … , 𝑇 

(10) 

The constraint set (10) ensures that total amount of finished products (last stage 𝑅) including regular 

time and overtime production, subcontracting, and inventory level be equal to sum of total demand 

of product from all customers at current period and backorders from previous periods.  
 

𝑃𝑖𝑡
𝑘 + 𝑂𝑖𝑡

𝑘 + 𝐶𝑖𝑡
𝑘 + 𝐼𝑖(𝑡−1)

𝑘 − 𝐼𝑖𝑡
𝑘 = ∑ 𝐴𝑖𝑗

𝑘

𝑁𝑘+1

𝑗=1

(𝑃𝑗𝑡
𝑘+1 + 𝑂𝑗𝑡

𝑘+1) 

𝑖 = 1, … , 𝑁𝑘,    𝑘 = 1, … , 𝑅 − 1 ,    𝑡 = 1, … , 𝑇 

(11) 

 

The constraint set (11) is associated with requirement of production at each stage. It ensures an 

enough number of product type 𝑖 in stage 𝑘 needed for producing all products in stage 𝑘 + 1.  

∑ 𝜎𝑖𝑘
𝑞 (𝑃𝑖𝑡

𝑘 + 𝑂𝑖𝑡
𝑘 )

𝑁𝑘

𝑖=1

≤ 𝑈𝑡𝑘
𝑞   ,     𝑘 = 1, … , 𝑅  ,   𝑡 = 1, … , 𝑇 ,   𝑞 = 1, … , 𝑄 (12) 

The constraint set (12) indicates market limitation of parts required at each stage of periods.  

 

∑ 𝐶𝑖𝑡
𝑘

𝑁𝑘

𝑖=1

≤ 𝐶𝑡𝑘
𝑚𝑎𝑥  ,    𝑘 = 1, … , 𝑅 ,    𝑡 = 1, … , 𝑇 (13) 

∑(𝛿𝑖𝑘
𝑠𝑝𝑎𝑐𝑒𝐼𝑖𝑡

𝑘 )

𝑁𝑘

𝑖=1

≤ 𝑃𝑡𝑘
𝑠𝑝𝑎𝑐𝑒   ,    𝑘 = 1, … , 𝑅 ,    𝑡 = 1, … , 𝑇 (14) 

 

The constraint sets (13) and (14) express quantities of subcontracting and required shortage space 

should not exceed maximum number of products which can be subcontracted and maximum 

warehouse space available, respectively.  
 

𝑃𝑖𝑡
𝑘 + 𝑂𝑖𝑡

𝑘 ≤ 𝐵𝑖𝑔𝑀 ∑ 𝑌𝑖𝑡
𝑚𝑘

𝑀

𝑚=1

,   𝑖 = 1, … , 𝑁𝑘 ,   𝑘 = 1, … , 𝑅 ,    𝑡 = 1, … , 𝑇 (15) 

The constraint set (15) is relevant to setup decisions on machines. It expresses that it is not possible 

to produce any amount of a product (regular time and overtime) when none of corresponding 

machines are setup.  
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∑(𝑑𝑖𝑚
𝑘 𝑃𝑖𝑡

𝑘 + 𝑓𝑖𝑚
𝑘 𝑌𝑖𝑡

𝑘)

𝑁𝑘

𝑖=1

≤ 𝐶𝑎𝑚𝑡
𝑘  ,     𝑚 = 1, … , 𝑀 , 

𝑘 = 1, … , 𝑅 ,    𝑡 = 1, … , 𝑇 
 

(16) 

∑(𝑑𝑖𝑚
𝑘 𝑂𝑖𝑡

𝑘 )

𝑁𝑘

𝑖=1

≤ 𝛽𝑚𝑡
𝑘 𝐶𝑎𝑚𝑡

𝑘  ,     𝑚 = 1, … , 𝑀 , 

𝑘 = 1, … , 𝑅 ,    𝑡 = 1, … , 𝑇 

(17) 

 

The constraint sets (16) and (17) indicate machine capacity. Constraint (16) ensures that sum of 

processing times and setup times on a specific machine should not be greater than its regular time 

capacity, and constraint (17) ensures that processing time of overtime production does not violate 

machine overtime capacity.   
 

 𝑊𝑡
𝑘 = 𝑊𝑡−1

𝑘 + 𝐻𝑡
𝑘 − 𝐿𝑡

𝑘   ,   𝑘 = 1, … , 𝑅 ,    𝑡 = 1, … , 𝑇 (18) 

 ∑(𝑒𝑖𝑡
𝑘 𝑃𝑖𝑡

𝑘)

𝑁𝑘

𝑖=1

≤ 𝑓𝑊𝑡
𝑘 ,    𝑘 = 1, … , 𝑅 ,    𝑡 = 1, … , 𝑇 (19) 

 ∑(𝑒𝑖𝑡
𝑘 𝑂𝑖𝑡

𝑘 )

𝑁𝑘

𝑖=1

≤ 𝑓𝛾𝑡
𝑘𝑊𝑡

𝑘 ,    𝑘 = 1, … , 𝑅 ,    𝑡 = 1, … , 𝑇 (20) 

 𝑊𝑡
𝑘 ≤ 𝑊𝑡𝑘

𝑚𝑎𝑥 ,   𝑘 = 1, … , 𝑅 ,    𝑡 = 1, … , 𝑇 (21) 

 𝐻𝑡
𝑘 ≤ 𝐻𝑡𝑘

𝑚𝑎𝑥 ,   𝑘 = 1, … , 𝑅 ,    𝑡 = 1, … , 𝑇 (22) 

 ∑ 𝑊𝑡
𝑘

𝑅

𝑘=1

≤ 𝑊𝑡
𝑚𝑎𝑥  ,      𝑡 = 1, … , 𝑇 (23) 

 ∑ ∑ 𝐿𝜆
𝑘

𝑅

𝑘=1

𝜆+𝜇

𝑡=𝜆

≤ 𝐿𝑚𝑎𝑥   ,      𝜆 = 1, … , 𝑇 − 𝜇 (24) 

 

The constraint sets (18)-(24) state workforce limitations incurred due to technical and legal 

considerations. The first constraint (18) indicates flow conservation of workers and defines number 

of workers for each stage at each period. The next constraint sets (19) and (20) express limitation of
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working hours in regular time and overtime. They guarantee that amount of hours required for 

production in regular time and overtime should not exceed maximum working hours available, 

respectively. The constraint set (21) restricts overall workforce level to be less than a maximum 

threshold, while constraint set (22) ensures that hired workforce for each stage in each period should 

do not exceed maximum workforce level available. The constraint set (23) presents limitation of 

total workforce level in each period. The constraint (24) indicates legal limitation to laying off 

workers during 𝜇 periods. The total number of workers laid off should not exceed a legal threshold.  
 

 
∑ 𝑋𝑣𝑐

𝑡

𝐸

𝑣=1

= 1 ,    𝑐 = 1, … , 𝑁 ,   𝑡 = 1, … , 𝑇 (25) 

 ∑ 𝑋𝑣𝑐
𝑡

𝑁

𝑐=1

= 1 ,    𝑣 = 1, … , 𝐸 ,   𝑡 = 1, … , 𝑇 (26) 

 

The constraint set (25) ensures that demand of each customer should be satisfied at each period, and 

constraint set (26) enforces that each vehicle is assigned to exactly one customer.  
 

 
∑ 𝐷𝑖𝑡

𝑐 𝑋𝑣𝑐
𝑡

𝑁

𝑖=1

≤ 𝐶𝑉 ,    𝑐 = 1, … , 𝑁 ,   𝑡 = 1, … , 𝑇 ,   𝑣 = 1, … , 𝐸 (27) 

 

The constraint set (27) guarantees that total demand of a customer satisfied by vehicle allocated to 

that customer should not exceed vehicle capacity.  
 

 𝑡𝑐
𝑣𝑡 ≤ 𝑑𝑢𝑐

𝑡  𝑋𝑣𝑐
𝑡   ,   𝑐 = 1, … , 𝑁 ,    𝑣 = 1, … , 𝐸  ,    𝑡 = 1, … , 𝑇 (28) 

 

The constraint set (28) enforces vehicles to start service of customers before due date.  
 

 𝑡𝑐
𝑣𝑡 ≥ (𝜌𝑣𝑡 + 𝑡0𝑐)𝑋𝑣𝑐

𝑡  ,    𝑐 = 1, … , 𝑁 ,    𝑣 = 1, … , 𝐸  ,    𝑡 = 1, … , 𝑇 (29) 

 

In order to consider setup operation of vehicles, start time of customer service should be greater than 

sum of vehicle setup time and transportation time between manufacturer and customer. This 

constraint is indicated by Eq. (29). 
 

 𝜌𝑣𝑡 = 𝜛 ∑ 𝜃𝑐𝑋𝑣𝑐
𝑡

𝑁

𝑐=1

  ,   𝑣 = 1, … , 𝐸  ,    𝑡 = 1, … , 𝑇 (30) 

 

The constraint set (30) calculates vehicle setup time as a fraction of sum of service times of all 

customers on route.  
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 ∑ 𝑋𝑣𝑐
𝑡

𝑁

𝑐=1

≤ 𝑉𝑣𝑡 ,    𝑣 = 1, … , 𝐸  ,    𝑡 = 1, … , 𝑇 (31) 

 

The constraint (31) indicates whether a vehicle is employed in a period. If one of customers is 

allocated to vehicle 𝑣, vehicle 𝑣 is employed (𝑉𝑣𝑡 = 1). Otherwise, we have 𝑉𝑣𝑡 = 0.  

 

 ∑(𝑋𝑣𝑐
𝑡 (𝑡0𝑐 + 𝑡𝑐0))

𝑁

𝑐=1

≤ 𝑀𝑇𝑇 ,    𝑣 = 1, … , 𝐸  ,    𝑡 = 1, … , 𝑇 (32) 

 

The maximum travel time allowed for each vehicle is ensured by constraint set (32).     
  

 
𝑃𝑖𝑡

𝑘 ≥ 0,   𝑂𝑖𝑡
𝑘 ≥ 0,   𝐶𝑖𝑡

𝑘 ≥ 0,   𝐼𝑖𝑡
𝑘 ≥ 0,   𝐵𝑖𝑡

𝑘 ≥ 0,    
𝑊𝑡

𝑘 ≥ 0,   𝐻𝑡
𝑘 ≥ 0,   𝐿𝑡

𝑘 ≥ 0 , 𝑡𝑐
𝑣𝑡 ≥ 0,    

𝑌𝑖𝑡
𝑚𝑘 = (0,1),   𝑋𝑐𝑣

𝑡 = (0,1),    𝑉𝑣𝑡 = (0,1) 

(33) 

 
𝑖 = 1, … , 𝑁𝑘,     𝑡 = 1, … , 𝑇,   𝑘 = 1, … , 𝑅 ,   𝑚 = 1, … , 𝑀 

𝑣 = 1, … , 𝐸  ,   𝑐 = 0, … , 𝑁 + 1,   𝑑 = 0, … , 𝑁 + 1 
 

 

Finally, binary and non-negativity natures of variables are indicated by constraints in Eq. (33).  

 

3.2. Scenario II: APDP with Routing 

The mixed-integer linear programming (MILP) model for Scenario II of suggested APDP problem, 

called 𝑷𝟐, will be presented in this section. As mentioned before, vehicles can move through a route 

to deliver products to more than one customer in Scenario II. Therefore, production part of 

Scenarios I and II is identical, and transportation part should be revised. The transportation issue is 

appeared in two sections of mathematical formulation, i.e., (i) second term of objective function 

(TTC), and (ii) transportation related constraints. In sequel, we define routing costs considered in 

objective function.  

The first component of routing cost is total cost of transportation carried out from manufacturer to 

customers. This transportation cost which is associated to total transportation time and distance 

among manufacturer and customers on selected routes can be formulated as follows. 

∑ ∑ (𝑇𝐶𝜉 ∑ ∑ (𝑡𝑐𝑑𝑋𝑐𝑑
𝜉𝑡

)

𝑁+1

𝑑=0

𝑁+1

𝑐=0

)

𝐸

𝜉=1

𝑇

𝑡=1

 (34) 

 

Another important component of routing cost is related to fixed cost of vehicles. Since number of 

vehicles is assumed to be determined in model, variable 𝑉𝜉𝑡 is defined to delineate whether vehicle 

is selected or not. Therefore total cost of vehicles is presented as follows. 
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∑ ∑(𝐹𝐶𝜉  𝑉𝜉𝑡)

𝐸

𝜉=1

𝑇

𝑡=1

 (35) 

Hence, total transportation cost (TTC) considered in Scenario II is expressed as follows. 

𝑇𝑇𝐶 = ∑ ∑ (𝑇𝐶𝜉 ∑ ∑ (𝑡𝑐𝑑𝑋𝑐𝑑
𝜉𝑡

)

𝑁+1

𝑑=0

𝑁+1

𝑐=0

)

𝐸

𝜉=1

𝑇

𝑡=1

+ ∑ ∑(𝐹𝐶𝜉 𝑉𝜉𝑡)

𝐸

𝜉=1

𝑇

𝑡=1

 (36) 

 

  

Here we formulate transportation related constraints in Scenario II. According to definition of two 

different Scenarios, the objective function and all the constraints presented in Eq.s (10)-(24) are 

identical in both Scenarios. The transportation related constraints for Scenario II are as follows. 

 

 
∑ 𝑋𝑐𝑑

𝜉𝑡

𝑁+1

𝑑=0

= 𝑍𝑐
𝜉𝑡

 ,    𝑐 = 1, … , 𝑁  ,   𝜉 = 1, … , 𝐸  ,    𝑡 = 1, … , 𝑇 (37) 

 ∑ 𝑍𝑐
𝜉𝑡

𝐸

𝜉=1

= 1  ,    𝑐 = 1, … , 𝑁  ,    𝑡 = 1, … , 𝑇 (38) 

 ∑ 𝑋𝑐𝑒
𝜉𝑡

𝑁+1

𝑐=0

− ∑ 𝑋𝑒𝑑
𝜉𝑡

𝑁+1

𝑑=0

= 0,   𝑒 = 1, … , 𝑁 , 𝜉 = 1, … , 𝐸 ,   𝑡 = 1, … , 𝑇  (39) 

 ∑ 𝑋0𝑑
𝜉𝑡

𝑁+1

𝑑=1

= 1 ,    𝜉 = 1, … , 𝐸  ,    𝑡 = 1, … , 𝑇 (40) 

 ∑ 𝑋𝑐(𝑁+1)
𝜉𝑡

𝑁

𝑐=1

= 1 ,    𝜉 = 1, … , 𝐸  ,    𝑡 = 1, … , 𝑇 (41) 

 ∑ ∑ (𝐷𝑖𝑡
𝑛𝑍𝑛

𝜉𝑡
)

𝑁𝑅

𝑖=1

𝑁

𝑛=1

≤ 𝐶𝑉 ,    𝜉 = 1, … , 𝐸  ,    𝑡 = 1, … , 𝑇 (42) 

 
𝑡𝑐

𝜉𝑡
+ 𝜃𝑐 + 𝑡𝑐𝑑 ≤ 𝑡𝑑

𝜉𝑡
+ 𝐵𝑖𝑔𝑀 (1 − 𝑋𝑐𝑑

𝜉𝑡
)  ,   𝑐 = 0, … , 𝑁 + 1 

𝑑 = 0, … , 𝑁 + 1 ,    𝜉 = 1, … , 𝐸  ,    𝑡 = 1, … , 𝑇 
(43) 
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 𝑡𝑐
𝜉𝑡

≤ 𝑑𝑢𝑐
𝑡  𝑍𝑐

𝜉𝑡
  ,   𝑐 = 1, … , 𝑁 ,    𝜉 = 1, … , 𝐸  ,    𝑡 = 1, … , 𝑇 (44) 

 𝑡0
𝜉𝑡

≥ 𝜌𝜉𝑡  ,    𝜉 = 1, … , 𝐸  ,    𝑡 = 1, … , 𝑇 (45) 

 𝜌𝜉𝑡 = 𝜛 ∑ 𝜃𝑐𝑍𝑐
𝜉𝑡

𝑁

𝑐=1

  ,   𝜉 = 1, … , 𝐸  ,    𝑡 = 1, … , 𝑇 (46) 

 ∑ 𝑍𝑐
𝜉𝑡

𝑁

𝑐=1

≤ 𝑁 𝑉𝜉𝑡  ,    𝜉 = 1, … , 𝐸  ,    𝑡 = 1, … , 𝑇 (47) 

 ∑ ∑ (𝑡𝑐𝑑𝑋𝑐𝑑
𝜉𝑡

)

𝑁+1

𝑑=0

𝑁+1

𝑐=0

≤ 𝑀𝑇𝑇 ,    𝜉 = 1, … , 𝐸  ,    𝑡 = 1, … , 𝑇 (48) 

 

The constraint sets (37)-(48) are relevant to routing decisions in transportation of products from 

manufacturer to customers and substitute instead of Eq.s (25)-(32) in Scenario I to establish 

Scenario II. The constraint (37) defines relation between customer assignment variables 𝑋𝑐𝑑
𝜉𝑡

 and 𝑍𝑐
𝜉𝑡

. 

The constraint (38) ensures that each customer should be visited exactly once. Constraint (39) 

enforces each customer to be visited after and before other unique customers on a specific route. The 

constraints (40) and (41) define first and last customer on routes. The constraint (42) guarantees that 

total demand on a route should not violate vehicle capacity. The feasibility of vehicle schedules is 

ensured by constraints (43). The constraint (44) guarantees that customer demand should be met 

before due date. The constraint (45) restricts route start time to be greater than vehicle setup time. 

Constraint (46) calculates vehicle setup time. The constraint (47) indicates whether a vehicle is 

employed in a period or not. If at least one customer is selected for a specific route 𝜉 in each period 𝑡 

(∑ 𝑍𝑐
𝜉𝑡𝑁

𝑐=1 ≥ 1), vehicle should be employed in that period (𝑉𝜉𝑡 = 1). The constraint (48) ensures a 

maximum travel time is allowed for each vehicle. The variables 𝑡𝑐
𝜉𝑡

 and 𝑡0
𝜉𝑡

 are non-negative, and 

variables 𝑋𝑐𝑑
𝜉𝑡

, 𝑍𝑐
𝜉𝑡

 and 𝑉𝜉𝑡 are binary. 

 

4.  Numerical analysis  

In previous section, proposed APDP problem was formulated as MILP models for two different 

Scenarios. In sequel, we investigate performance of formulations. For this purpose, a numerical 

example with following structure has been considered:  

 Number of product types: 4 

 Number of time periods: 5 

 Number of stages at each period: 3 

 Number of machines at each stage: 3 

 Number of vehicles available: 3 

 Number of customers: 3 

 Number of routes possible: 3 
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 Number of required parts: 3 

 

The total demand of customers is given in Table 3. Tables 4-6 show unit cost of production, 

holding/backorder and workers respectively. 
 
 

Table 3. Information on customer demand 

Customer Product 
Period 

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 

𝑐 = 1 𝑖 = 1 50 200 150 250 400 

 𝑖 = 2 350 750 150 350 550 

 𝑖 = 3 400 850 50 150 750 

 𝑖 = 4 200 300 450 500 300 

 𝑖 = 5 100 350 250 400 200 

       

𝑐 = 2 𝑖 = 1 300 350 200 450 250 

 𝑖 = 2 850 600 400 650 900 

 𝑖 = 3 200 50 150 300 200 

 𝑖 = 4 850 400 600 750 450 

 𝑖 = 5 350 400 500 450 350 

       

𝑐 = 3 𝑖 = 1 200 150 50 400 200 

 𝑖 = 2 650 700 400 550 250 

 𝑖 = 3 450 400 650 850 950 

 𝑖 = 4 50 250 300 250 400 

 𝑖 = 5 650 150 200 250 350 

 

Table 4. The unit costs of production in regular time, over time and subcontracting 

Stage Product 
Period 

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 

𝑘 = 1 𝑖 = 1 (5,10,20) (10,15,20) (5,15,25) (10,20,20) (5,15,20) 

 𝑖 = 2 (20,30,35) (25,30,40) (20,35,45) (25,25,40) (20,25,35) 

 𝑖 = 3 (10,15,20) (10,10,20) (15,15,25) (5,15,25) (10,10,30) 

 𝑖 = 4 (40,50,55) (45,45,60) (50,55,55) (60,60,65) (40,50,50) 

 𝑖 = 5 (10,15,18) (10,15,18) (10,15,18) (10,15,18) (10,15,18) 

       

𝑘 = 2 𝑖 = 1 (40,40,55) (35,40,40) (50,55,60) (40,50,55) (30,50,70) 

 𝑖 = 2 (10,30,30) (5,20,30) (20,35,40) (30,30,35) (10,30,40) 

 𝑖 = 3 (20,25,25) (35,40,50) (15,30,45) (5,20,30) (25,30,30) 

 𝑖 = 4 (55,55,75) (50,55,55) (40,45,55) (25,35,40) (15,30,45) 
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Stage Product 
Period 

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 

 𝑖 = 5 (30,40,55) (25,30,45) (35,45,50) (30,40,55) (20,25,35) 

       

𝑘 = 3 𝑖 = 1 (60,70,85) (30,45,55) (55,75,80) (35,50,60) (40,55,65) 

 𝑖 = 2 (10,20,25) (40,50,55) (25,30,35) (15,30,40) (35,55,65) 

 𝑖 = 3 (25,30,40) (50,55,55) (20,45,50) (20,30,45) (10,15,15) 

 𝑖 = 4 (30,40,40) (25,25,45) (35,45,60) (55,65,65) (45,50,50) 

 𝑖 = 5 (45,55,55) (25,35,50) (20,30,45) (35,45,50) (25,35,50) 

 

Table 5. The unit costs of holding and backorder (𝒉, 𝒃) 

Customer Product 
Period 

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 

𝑐 = 1 𝑖 = 1 (10,15) (5,20) (10,5) (25,15) (5,5) 

 𝑖 = 2 (15,25) (5,10) (10,10) (20,10) (10,25) 

 𝑖 = 3 (30,20) (20,10) (15,5) (25,10) (10,25) 

 𝑖 = 4 (25,30) (5,20) (20,30) (15,5) (25,20) 

 𝑖 = 5 (20,30) (5,15) (20,10) (15,25) (15,10) 

       

𝑐 = 2 𝑖 = 1 (5,20) (25,10) (15,30) (20,10) (5,15) 

 𝑖 = 2 (10,20) (25,5) (15,10) (15,5) (5,25) 

 𝑖 = 3 (15,10) (20,10) (25,5) (30,10) (5,5) 

 𝑖 = 4 (20,10) (30,25) (20,30) (10,30) (10,10) 

 𝑖 = 5 (25,25) (10,20) (30,15) (20,20) (15,30) 

       

𝑐 = 3 𝑖 = 1 (25,20) (15,10) (25,10) (15,30) (5,30) 

 𝑖 = 2 (20,5) (15,15) (5,10) (20,15) (30,30) 

 𝑖 = 3 (15,5) (5,20) (25,15) (5,20) (30,10) 

 𝑖 = 4 (5,20) (30,10) (15,15) (30,5) (10,25) 

 𝑖 = 5 (5,10) (10,30) (25,10) (10,5) (30,20) 
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Table 6. The unit costs of worker salary (𝒘𝒔𝒕
𝒌), hiring (𝒘𝒕𝒕

𝒌) and lay off (𝒘𝒍𝒕
𝒌) 

Parameter Stage 
Period 

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 

𝑤𝑠𝑡
𝑘 𝑘 = 1 1070 1210 1450 1390 1480 

 𝑘 = 2 1320 1020 1420 1460 1340 

 𝑘 = 3 1380 1370 1190 1320 1080 

       

𝑤𝑡𝑡
𝑘 𝑘 = 1 398 390 430 442 451 

 𝑘 = 2 356 436 432 333 324 

 𝑘 = 3 400 492 369 418 345 

       

𝑤𝑙𝑡
𝑘 𝑘 = 1 276 226 251 270 290 

 𝑘 = 2 296 255 214 215 226 

 𝑘 = 3 285 226 282 225 293 

 

The transportation times among manufacturer and customers are presented in Table 7. 
 

Table 7. Transportation times 

 Manufacturer Customer 𝑘 = 1 Customer 𝑘 = 2 Customer 𝑘 = 3 

Manufacturer 0 150 275 225 

Customer 𝑘 = 1 150 0 225 300 

Customer 𝑘 = 2 225 250 0 200 

Customer 𝑘 = 3 275 350 300 0 

 

Table 7 shows capacity of machines needed for producing one unit of products and carrying out 

setup (𝑑𝑖𝑚
𝑘 , 𝑓𝑖𝑚

𝑘 ).
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Table 8. Required capacity of machines for production and setup 

Stage Product 
Machine 

𝑚 = 1 𝑚 = 2 𝑚 = 3 

𝑘 = 1 𝑖 = 1 (6,2) (6,4) (11,3) 

 𝑖 = 2 (13,3) (15,2) (7,4) 

 𝑖 = 3 (11,3) (10,3) (6,3) 

 𝑖 = 4 (9,3) (7,2) (13,2) 

 𝑖 = 5 (9,2) (11,2) (7,2) 

     

𝑘 = 2 𝑖 = 1 (12,2) (8,4) (12,4) 

 𝑖 = 2 (12,4) (13,3) (10,3) 

 𝑖 = 3 (6,3) (8,4) (15,3) 

 𝑖 = 4 (7,2) (14,4) (11,3) 

 𝑖 = 5 (15,2) (6,3) (10,2) 

     

𝑘 = 3 𝑖 = 1 (7,2) (15,4) (6,4) 

 𝑖 = 2 (13,3) (14,2) (14,2) 

 𝑖 = 3 (6,3) (9,4) (8,2) 

 𝑖 = 4 (14,2) (10,2) (15,3) 

 𝑖 = 5 (7,4) (8,3) (7,3) 
 

 

Table 9 indicates total available capacity of machines in regular time 𝐶𝑎𝑚𝑡
𝑘  and a ratio of regular 

time capacity in overtime 𝛽𝑚𝑡
𝑘 .  
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Table 9. Information on machines’ capacity (𝑪𝒂, 𝜷) 

Stage Machine 
Period 

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 

𝑘 = 1 𝑖 = 1 (7920, 0.78) (5760, 0.80) (4450, 0.67) (5040, 0.66) (5640, 0.94) 

 𝑖 = 2 (6380, 0.51) (5050, 0.89) (6420, 0.91) (6850, 0.85) (4890, 0.54) 

 𝑖 = 3 (4470, 0.61) (5190, 0.65) (5280, 0.80) (5700, 0.56) (6040, 0.82) 

       

𝑘 = 2 𝑖 = 1 (5230, 0.54) (6040, 0.79) (6050, 0.72) (7280, 0.85) (7180, 0.82) 

 𝑖 = 2 (6580, 0.91) (5520, 0.90) (7250, 0.65) (6140, 0.81) (5410, 0.58) 

 𝑖 = 3 (7760, 0.51) (7510, 0.83) (6210, 0.72) (6490, 0.71) (6350, 0.90) 

       

𝑘 = 3 𝑖 = 1 (4840, 0.77) (5210, 0.78) (5890, 0.86) (4930, 0.75) (7380, 0.58) 

 𝑖 = 2 (4780, 0.60) (4910, 0.89) (4690, 0.51) (4920, 0.72) (5750, 0.71) 

 𝑖 = 3 (5250, 0.51) (7700, 0.80) (5730, 0.52) (4740, 0.53) (7620, 0.73) 

 

The preferred due date of customers at each period is presented by Table 10. 
 

 
Table 10. Customer due dates 

Customer 
Period 

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 

𝑐 = 1 520 730 860 770 580 

𝑐 = 2 650 690 900 570 850 

𝑐 = 3 760 660 580 680 700 

 
Two MILP models are implemented in a commercial solver LINGO 11.0. Based on the attained 

results, the main significant difference between two Scenarios is that direct shipping provides the 

benefit of eliminating intermediate warehouses, whereas routing causes lower transportation cost by 

shipment to multiple customers on a single vehicle and the use of routing mode results in better 

utilization of the vehicles. According to the results, the inventory cost of Scenario I is obtained 

487652, while that of Scenario II is calculated 623902. Moreover, transportation cost incurred by 

Scenario I is 329113, while this value is 148294 by Scenario II.  

In addition to above analysis, to assess the performance of the proposed MILP models, some 

computational experiments will be conducted and implemented in the sequel. Different test 

problems were designed in three classes: small, medium and large sizes. Table 10 shows the 

structure of test problems in different classes. The MILP models were run on a PC with 2.81 GHz 

processor and 1 GB of RAM under Microsoft XP operating system. In order to illustrate complexity 

of the problems, the total number of variables including total number of integer variables and total 

number of continuous variables, and total number of constraints are recorded. In addition, the CPU 

times are also recorded to assess the efficiency of models. The computational results are shown in 

Tables 12 and 13 for Scenarios I and II separately. Additionally, the increasing trend of problems’ 

dimension (variables and constraints) and resulting CPU time are depicted in Figures 2-4.
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Table 11.  Structure of test problems 

Class Problem Periods Stages Products Machines Customers Vehicles Parts 

Small P1 5 2 2 1 5 2 2 

 P2 5 2 2 1 10 2 2 

 P3 5 2 3 2 15 2 4 

 P4 5 2 3 2 20 2 4 

         

Medium P5 8 3 4 4 25 4 5 

 P6 8 3 4 4 30 4 5 

 P7 8 3 5 6 35 4 7 

 P8 8 3 5 6 40 4 7 

         

Large P9 10 4 8 8 45 6 8 

 P10 10 4 8 8 55 6 8 

 P11 10 4 10 10 60 6 10 

 P12 10 4 10 10 80 6 10 

 

Table 12. The computational results for Scenario I 

Class Problem 
Number of Variables Number of 

Constraints 
CPU(s) 

Integer Continuous 

Small P1 180 70 333 32 

 P2 230 120 458 48 

 P3 330 210 643 59 

 P4 380 260 768 106 

      

Medium P5 1352 1184 2646 331 

 P6 1512 1344 3006 456 

 P7 1792 1840 3558 538 

 P8 1952 2000 3918 603 

      
Large P9 4420 5260 8048 1205 

 P10 5020 5860 9348 1458 

 P11 5720 7600 10398 1672 

 P12 6920 8800 12998 2192 
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Table 13. The computational results for Scenario II 

Class Problem 
Number of Variables Number of 

Constraints 
CPU(s) 

Integer Continuous 

Small P1 190 330 333 98 

 P2 240 1130 458 121 

 P3 340 2470 643 155 

 P4 390 4270 768 198 

      

Medium P5 1384 21216 2646 714 

 P6 1544 30176 3006 794 

 P7 1824 41072 3558 846 

 P8 1984 53232 3918 1015 

      

Large P9 4480 126820 8048 2025 

 P10 5080 187420 9348 2463 

 P11 5780 223660 10398 2584 

 P12 6980 392860 12998 3454 

 
As can be seen, total number of constraints is equal in both Scenarios and varies from 333 to 12998. 

It can be verify from enumeration of number of constraints in both models. In Scenario I, the total 

number of integer variables varies from 180 to 6920, while in Scenario II it varies from 190 to 6980. 

Therefore, it can be concluded that the total number of integer variables for a specific problem in 

Scenario II is slightly greater than that value of same problem in Scenario I. In addition, it is 

observed that there is a significant difference in total number of continuous variables between 

Scenario I and II.  The minimum and maximum number of continuous variables in Scenario I is 700 

and 8800, while those values of Scenario II is 330 and 392860. The increasing behavior of number 

of variables and constraints of Scenario I and II is depicted by Figures 2 and 3 respectively. There is 

obviously a high difference between two Scenarios. As indicated in Figure 3, the total number of 

continuous variables in Scenario II exceeds the figure limit (12000) in medium and large classes of 

problems.   

Moreover, Tables 12 and 13 reports the CPU time for each Scenario separately. In both Scenarios, 

the increasingly trend of number of variables and number of constraints causes the solution time to 

increase. Since the number of variables in Scenario II is much greater than that number of Scenario 

I, the run process of Scenario II is more time consuming than Scenario I. As the results reveal, 

LINGO solver could find high quality solutions, but when the problem sizes become larger, the CPU 

time shows an increasing trend. Figure 4 depicts this trend graphically.  
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Figure 2. Problem dimension versus problem size in Scenario I 

 

 
Figure 3. Problem dimension versus problem size in Scenario II 
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Figure 4. The CPU time versus problem size 

  

5.  Conclusion 
In this paper we introduced an aggregate production-distribution planning problem, consisting of 

two sub-problems, aggregate production planning problem and distribution planning problem in a 

two-echelon supply chain. The suggested APDP aims to jointly optimize production, inventory, 

subcontracting, and transportation decisions in order to supply and deliver demand of geographically 

dispersed customers while minimizing total cost of system. Unlike most of past researches, an 

extended version of sub-problems with multi-stage, multi-product, multi-vehicle including several 

shop-floor machines and setup decisions was considered. We also introduced two distinct scenarios 

for distribution decisions, i.e., direct shipment and routing, and formulated each one as MILP 

models. An illustrative numerical example and some test problems were employed and comparison 

results of MILP models on number of constraints, number of variables and CPU time were reported.  
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