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Abstract 

This research focuses on the integrated production-inventory-routing planning (PIRP) problem, which persuades necessary decisions to 
study the supply chains (SCs). Previous research studies confirm that corporations coping with production, inventory, and routing problems, 
can remarkably decrease the total costs and meet the customers' demands efficaciously. Currently, because of severe obligations, corpora-
tions must consider environmental factors and cost optimization in their activities. Accordingly, in this article, a green PIRP (GPIRP) is ad-
dressed using mixed-integer linear programming (MILP), which simultaneously takes into account the economic and social decisions of the 
SCs. Furthermore, because the SCs routing-oriented problems belong to the NP-hard categories, we propose a two-phase heuristic solution 
method; in the first phase, the inventory and production decisions are determined using MILP formulation. The second phase seeks to find 
optimal vehicle routing and transportation decisions using a genetic algorithm (GA). Two main deals leading to this paper's unique position 
are to develop a bi-objective MILP model for the GPIRP and present a novel hybrid two-phase heuristic solution method that sequentially 
utilizes the CPLEX solver and the proposed GA. To validate the computational performance of the proposed solution method, we conduct a 
case study from the Ahvaz Sugar Refinery Company in Iran to demonstrate the advantages of the formulated model. Moreover, we handle 
sensitivity analyses to study the effectiveness of the suggested method for the large-sized examples. 
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1. Introduction 

Nowadays, because of increasing competition, all supply chain (SC) activities, such as extraction of immature materials, pro-

duction, and distribution of products in the customer zones, need effective decision-making. Besides, SCs are preferred to 

integrate vital decisions to maximize the potential benefit and coordinate various parts of the network more efficiently.     

One of the various kinds of coordination among SC parts is coordinating both inventory and routing problems. In this sys-

tem, both decisions of inventory and routing are optimized concurrently. One of the applications of this problem is in the 

vendor-managed inventory (VMI) systems, which can result in a win-win solution for both supplier and customer. In the 

VMI systems, both parties can benefit by reducing inventory investment, transportation costs, and inventory management 

strategies' complexity.          

The connection between separate parts in each SC is realized through the transportation system. As a result, it is vital to de-

sign an efficient transportation system to improve the efficiency of SC. The correct choice of vehicle type and routes is one of 

the significant challenges in designing transportation systems. This concept was introduced as a vehicle routing problem 

(VRP) by Dantzig and Ramser (Dantzig and Ramser, 1959). 

Motivated by an essential and critical issue in the SC planning, optimal integration of operational decisions such as lot-sizing 

and cost-efficient product routing to the customers, we aim to develop an integrated model for the production-inventory-

routing problem. The model can be computationally efficient and solved by a heuristic solver based on mathematical pro-

gramming and meta-heuristic search. Although integration can always reduce supply chain costs and increase competitive-

ness, related integrated models often are intractable. They cannot be applied to a real-world scale of the SCs problems. Con-

sequently, in addition to integration, we should present a treatable solution method, which has an acceptable level of adap-
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tion to the model and is computationally efficient. Therefore, the primary motivation of this paper is to develop an integrated 

model for which a heuristic solver is suggested to solve the problem in large-scale instances.       

Literature has developed inventory-routing models by integrating both inventory control and routing problems. The classical 

inventory-routing problem (IRP) assumes that several vehicles with a limited capacity transport products from the producer 

to the customers, and optimal routes are selected based on the inventory level in the producer and customer. In these prob-

lems, the supplier must control the inventory level to minimize the probability of shortage. Thus, the concept of inventory 

adds a time dimension to the routing problem, making the problem complex to solve. 

 We can summarize the properties of the developed IRP models in the literature as follows: 

• Limited or unlimited planning horizon; 

• Deterministic or probabilistic production and consumption rates; 

• Discrete or continuous production and consumption time intervals. 

The general purpose of these problems is to find the best distribution strategy to optimize distribution and inventory costs 

for a long time. Today, most industries employ these models using the VMI approach, such as aerospace, airplane manufac-

turing, clothing, automotive, chemical products, assembly, home appliances, metal, petroleum, and printing and publishing 

industries. One of the challenging issues related to the distribution problem in the petroleum industry is the dangerous pol-

lution that can harmfully threaten global health (Brown and Graves, 1981). 

 Recently, the problem of global warming has become more dangerous; hence, reducing carbon production is the priority of 

all governments (Mirzapour Al-e-hashem and Rekik, 2014). Green transportation is one of the suitable strategies to decrease 

carbon emissions (Mirzapour Al-e-hashem and Rekik, 2014). Accordingly, researching the discussed matters in green SC has 

become crucial.  

Concisely, the main research questions are as follows: I- What is the formulation of an efficient mathematical optimization 

model for the PIRP problem in which environmental objectives are also considered? II- Regarding the complexity of the prob-

lem, are conventional mathematical programming models and classical solvers able to solve the problem? If not, how do we 

utilize a hybrid solution method with an acceptable level of computational performance? Finally, III- What is the best trade-

off between the economic and environmental objective function, and how can we discover the best Pareto solution?   Consid-

ering the mentioned research questions, the main aims of this paper are to develop an integrated PIRP model in a bi-level 

green SC and propose a hybrid two-phase solution method. The developed model and solution approach are respectively 

based on a mixed-integer program and a metaheuristic search to cope with the NP-hard complexity of the problem (Adul-

yasak, Cordeau, and Jans, 2015). Furthermore, we analyze the impact of maximum possible environmental effects on the cost 

minimization objective and propose the global Pareto front on which the decision-makers can select the best efficient solu-

tion. 

The rest of the paper is structured as follows: In Section 2, we present a review of significant studies in the field of PIRP. Sec-

tion 3 explains the developed GPIRP model, and Section 4 proposes the structure of the developed solution algorithm to 

solve the model. In Section 5, numerical experiments, including a case study, are carried out to evaluate the model and the 

solution approach. Finally, Section 6 includes the main conclusions. 

2. Literature review 

Studies on PIRP have quickly expanded in recent years due to the importance of the problem. The integration of production, 
inventory, routing, and distribution processes has been considered extensively in the SCs to achieve competitive advantages. 
In particular, this is very important for companies with limited capacity utilization and high distribution costs (Fumero and 
Vercellis, 1999; Brown et al., 2001; Gupta et al., 2002; Jabbarzadeh et al., 2016; Saeedi Mehrabad et al., 2017).  
Sindhuchao et al. (2005) proposed an integrated IRP for a multi-product replenishment with a limited vehicle capacity. They 
introduced a mathematical programming approach for integrating inventory and transportation decisions in a collection and 
distribution system. Lei et al. (2006) were among the first researchers who formulated the PIRP using a MILP approach. Their 
innovative method managed to determine the size of demands and routes simultaneously. Then, Boudia et al. (2006) solved 
the previous model by proposing a memetic algorithm, including a greedy randomized adaptive search procedure. Boudia et 
al. (2007) investigated the production routing problem (PRP) in a multi-period planning horizon in another study. Their ob-
jective was to minimize total production, inventory, and distribution costs. Yu et al. (2008) examined an IRP with a size con-
straint for a public transport fleet. Due to the complexity of their problem, they utilized a Lagrangian relaxation approach. 
Bard & Nananukul (2009) answered the critical question of the best replenishment strategy by analyzing a group of innova-
tive methods. Their objective function was to maximize the net income of delivering the shipment in a specific period. Bard & 
Nananukul (2010) proposed a MIP model for the PIRP to minimize production, inventory, and delivery costs in different 
phases of a production system. Their model included production facilitation and a group of customers with varying de-
mands over time. 
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Moin et al. (2011) proposed an IRP by considering the many-one distribution network of an assembly factory and some spe-
cific suppliers. They utilized a hybrid GA to solve the problem under a two-phase strategy. Coelho et al. (2012) introduced an 
IRP with transshipment, where vehicle routing and inventory decisions had to be simultaneously made. Coelho et al. (2014) 
presented a combination of production, inventory, distribution, and routing problems in another study. They prioritized 
production planning to determine the optimal quantity of production, considering inventory and vehicle-routing constraints. 
 The problem of collecting animals is a VRP considering the inventory control constraints used mainly in the animal slaugh-
ter industry. The objective is to determine the vehicle routes to collect animals from slaughterhouses. A group of fundamen-
tal limitations must be considered, such as production and inventory in the slaughterhouses. By taking into account these 
constraints for the problem, Oppen et al. (2010) employed exact solution methods based on the column-generation technique 
to solve the large-sized instances. In a study, Bertazzi et al. (2015) proposed an IRP where the objective function was minimiz-
ing the costs of shortage, holding, and transportation over a period. Adulyasak et al. (2015) presented a review of PIRP. They 
explained the problem and its basic modeling without considering the shortage and examined various solution methods. 
They implemented a two-phase approach in which they first estimated daily delivery quantities and then solved the routing 
problem.  
Yantong et al. (2016) formulated PIRP as linear programming for food products. They conducted the modeling based on the 
maximization of profit, considering product perishability. Agra et al. (2016) utilized a Lagrangian relaxation algorithm to 
solve a single product PIRP. Hasni et al. (2017) formulated a multi-product IRP and used a variable neighborhood search 
(VNS) to solve their complex model. Malladi & Sowlati (2018) presented a complete content analysis-based review of articles 
on IRP incorporating sustainability-related aspects. They selected and reviewed 40 papers by categorizing them into single-
objective and multiple-objective models. They also proposed studies with single-objective models, including waste manage-
ment, returnable transport item management, waste prevention and reduction, and emission reduction. 
Qiu et al. (2018) developed a MILP model for PRP with reverse logistics and remanufacturing for the first time in a closed-
loop SC. They proposed a solution approach based on a branch-and-cut algorithm. Fakhrzad & Alidoosti (2018) presented a 
practical perishability inventory model. Their proposed model added spoilage of products and variable prices within a peri-
od to the location-inventory-routing models to make it more realistic. Chitsaz et al. (2019) formulated a general model for the 
assembly PIRP as a MILP. They expanded a three-phase decomposition metaheuristic based on the iterative solution of dif-
ferent sub-problems. Zhang et al. (2019) presented an electric vehicle battery swap station LRP with stochastic demands. 
They attended to determine a minimum cost scheme, including the optimal number and location of stations with an opti-
mum route plan, and proposed a hybrid VNS. Adeli et al. (2019) investigated the integrated sourcing and inventory policy 
problem in a pharmaceutical distribution company. They considered the number of shortages as a separate objective. 
Bertazzi et al. (2020) studied an inbound IRP concerned with the minimal-cost collection of distinct components from a net-
work of suppliers and subsequent delivery to a manufacturing plant. They assumed known and constant production of end 
products at the plant and developed a branch-and-cut algorithm. Avci and Yildiz (2020) developed the classical PRP by con-
sidering transshipments, either from supplier to retailers or between retailers, the total cost further. They also proposed a 
mathematical programming-based heuristic to solve the problem. Chan et al. (2020) extended a model to build a unified 
planning problem for efficient food logistics operations. They considered four critical objectives, including minimizing the 
total expense of the system, maximizing the average food quality, minimizing the amount of CO2 emissions in transportation 
along with production, and total weighted delivery lead time minimization. Recently, Schenekemberg et al. (2021) introduced 
the two-echelon PRP to the literature. Their studied problem is motivated by the petrochemical industry, enlarging the sup-
ply chain integration by considering production, inventory, and routing decisions in the two-echelon vendor-managed in-
ventory systems. Aazami and Saidi-Mehrabad (2021) developed a new multi-period production-distribution planning for 
perishable products with a fixed lifetime in a seller-buyer system. They proposed a hierarchical heuristic approach based on 
Bender’s decomposition and GA. Peng et al. (2021) assessed the effectiveness of the physical internet for dealing with various 
disruptions in an integrated production-inventory-distribution system. They developed a two-stage stochastic programming 
model which incorporates pre-event and post-event mitigation strategies in an integrated way.  
In the green inventory-routing field, Mirzapour Al-e-hashem and Rekik (2014) defined a multi-period GIRP in a bi-echelon 
green SC in which products were transferred from multiple suppliers to a single plant. They assumed the demand as a de-
terministic case and did not consider any production constraints. Their objective function was the trade-off between transpor-
tation costs and greenhouse gas emissions. Also, Qiu et al. (2017) proposed a model for the PIRP, including carbon emissions 
minimization. They decomposed the problem into two main problems and then used an innovative algorithm based on Dan-
tzig–Wolfe decomposition to solve each main problem. Abad et al. (2018) developed an integrated model for coordination 
between decisions related to picking up the cargo, routing, allocation of vehicles, consolidation of cargo, and allocation of 
sorted cargo. They expanded some metaheuristics based on GA and PSO. Darvish et al. (2019) compared the effect of opera-
tional decisions on costs and emissions. They formulated some logistic problems considering new objectives. Besides, they 
studied two integrated systems dealing with PIRP decisions in which a product is shipped to the customers over a finite time. 
Yong et al. (2019) focused on freight distribution, introduced a transportation resource sharing strategy to consider the multi-
depot green VRP, and incorporated the time-dependency of speed and piecewise penalty costs for earliness and tardiness of 
deliveries, as well. They developed a bi-objective model to minimize operating costs and total carbon emission. 
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Karakostas, Sifaleras, and Georgiadis (2020) introduced the fleet-size and mix pollution IRP with a just-in-time replenishment 

policy and capacity planning considering capacity selection decisions and heterogeneous fleet composition. They adopted a 

general VNS-based framework to solve more realistic-sized problem instances. In recent studies on the green inventory-

routing field, Khorshidvand et al. (2021) addressed a novel two-stage model for a sustainable closed-loop SC. They provided 

a balance among economic aims, environmental concerns, and social responsibilities based on price, green quality, and ad-

vertising level. Their objectives were maximizing the profit of the whole SC, minimizing the environmental impacts of CO2 

emissions, and maximizing employee safety. Also, Khorshidvand, Soleimani, Sibdari, et al. (2021) offered a two-stage ap-

proach to model and solved a sustainable closed-loop SC, considering pricing, green quality, and advertising in another re-

search. They introduced suitable solution methods according to the scale of the problem, including the augmented ϵ-

constraint and a Lagrangian relaxation algorithm. Additionally, Khorshidvand, Soleimani, Sibdari, et al. (2021a) proposed a 

hybrid method in which SC coordination decisions and closed-loop SC objectives are simultaneously involved. They devel-

oped their model based on the sensitivity of the return rate to green quality and the customers' maximum tolerance, while the 

demands are uncertain. They used a robust optimization model to overcome the uncertain demands. Liu et al. (2021) pro-

posed an integrated multi-objective model of IRP for perishable products considering the factors of carbon emissions and 

product freshness. They analyzed the economic cost, carbon emission levels, and freshness of the perishable products. 

In this study, we use the formulation approaches proposed in (Mirzapour Al-e-hashem and Rekik, 2014), (Adulyasak, 
Cordeau and Jans, 2015), and (Qiu, Qiao and Pardalos, 2017)  as the base models to develop our new GPIRP. Table 1 lists the 
most relevant studies in this field, along with the present study, to show the contributions of our paper. In summary, the 
main contributions of the present study include: paying attention to the environmental consideration, developing an inte-
grated PIRP model in a bi-echelon green SC, proposing a two-phase GA by decomposing the main problem, and using the 
actual data of a manufacturing company. 
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 Table 1. Comparison of the most relevant studies

Researchers and Year 

Decisions  Production Level  Inventory Level  Routing Level 
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Brown et al. (2001) ✓ ✓ ✓  ✓ ✓ ✓ ✓   ✓   ✓   ✓  ✓ 

Sindhuchao et al. (2005)  ✓ ✓       ✓   ✓   ✓ ✓   

Lei et al. (2006) ✓ ✓ ✓    ✓ ✓  ✓ ✓  ✓ ✓   ✓  ✓ 

Boudia et al. (2007) ✓  ✓    ✓ ✓   ✓  ✓ ✓    ✓  

Yu et al. (2008)  ✓ ✓       ✓ ✓  ✓ ✓  ✓    

Bard and Nananukul (2009) ✓ ✓ ✓    ✓ ✓  ✓ ✓  ✓ ✓    ✓  

Bard and Nananukul (2010) ✓ ✓ ✓    ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓   

Moin et al. (2011)  ✓ ✓   ✓     ✓  ✓ ✓  ✓  ✓  

Coelho et al. (2012)  ✓ ✓       ✓ ✓  ✓ ✓   ✓   

Coelho et al. (2014)  ✓ ✓   ✓    ✓ ✓  ✓ ✓   ✓   

Mirzapour Al-e-hashem and Rekik (2014)  ✓ ✓   ✓     ✓  ✓ ✓ ✓ ✓   ✓ 

Bertazzi et al. (2015)  ✓ ✓        ✓  ✓ ✓  ✓    

Yantong et al. (2016) ✓ ✓ ✓    ✓ ✓  ✓ ✓  ✓ ✓  ✓    

Agra et al. (2016) ✓ ✓ ✓    ✓ ✓   ✓  ✓ ✓  ✓    

Hasni et al. (2017)  ✓ ✓   ✓     ✓  ✓ ✓   ✓   

Qiu et al. (2017) ✓ ✓ ✓    ✓ ✓  ✓ ✓  ✓ ✓ ✓  ✓   

Abad et al. (2018)   ✓   ✓  ✓     ✓  ✓   ✓  

Qiu et al. (2018)                    

Darvish et al. (2019)                    

Chitsaz et al. (2019)                    

Avci and Yildiz (2020)                    

Chan et al. (2020)                    

Liu et al. (2021)                    

Schenekemberg et al. (2021)                    

This Research ✓ ✓ ✓  ✓ ✓ ✓ ✓  ✓ ✓  ✓ ✓ ✓ ✓  ✓ ✓ 
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3. Problem definition  

In this section, firstly, the problem is defined, and then the proposed formulation of the problem as a MILP model is pre-
sented.    

Problem description  
We propose a bi-echelon SC problem, including a manufacturing factory in the first echelon and multiple DCs in the sec-
ond echelon. The factory can produce different products. There are constraints on each product's diversity and manufac-
turing quantity, considering the available production equipment. Products are stored in the factory warehouse and trans-
ferred to DCs via a fleet of heterogeneous vehicles. 
In each period, the factory starts producing products to satisfy customer demands through DCs. Some parts of the manu-
factured products may be stored in the warehouse to be supplied in the next period. Vehicles are heterogeneous with 
different capacities. Some properties of the vehicles, such as the load-carrying capacity, the type of fuel, and the volume 
of pollution per traveled distance unit, differ among them. 
It is assumed that vehicles are rented in each period. The company intends to reduce its costs in each period (e.g., a year) 
to minimize its total cost by the end of a limited planning horizon. These costs include:  
(1) Production costs (PC), i.e., variable PC (VPC) resulting from the production of one unit of each product and fixed PC 
(FPC) resulting from the activity of the factory in each period;  
(2) Transportation costs (TC), i.e., variable TC (VTC), which is proportionate to the traveled distance by different vehi-
cles, and fixed TC (FTC) resulting from renting each vehicle;  
(3) Holding cost (HC) of storing products in factory warehouses and DCs; and  
(4) Backorder cost (BC), resulting from failing to fully satisfy customers' demands in each period.   
Nowadays, considering the tremendous growth of different industries, environmental pollution is increasing. Green-
house gas emission is a type of pollution directly related to the trend of global warming. Thus, limitations and re-
strictions are applied to companies to prevent the excessive emission of these gases. Transportation has the highest share 
in emitting these gases (Mirzapour Al-e-hashem and Rekik, 2014). 
 Therefore, companies must control routing decisions to consider not only their economic activities but also environmen-
tal aspects for society. It must be noted that an optimal routing decreases traveling distance for vehicles and, thus, de-
creases transportation costs and greenhouse gas emissions. However, renting vehicles that conform to environmental 
purposes may violate economic objectives. Therefore, a proper trade-off between economic and environmental objectives 
must be considered.  
The company's objective is to minimize its total cost at the end of the planning horizon. Attaining this objective requires 
an optimal solution for PIRP. The operational constraints of GPIRP can be partitioned into the following categories: 

• Production capacity of the factory: Product diversity is limited, and production quantity for each 
product cannot exceed a certain level in each period.  

• Factory warehouse capacity: Inventory level must not exceed factory warehouse capacity. 

• DCs capacity: DCs inventory must not exceed their capacity. 

• Transportation capacity: In each period, a specific number of each vehicle type is available, and each 
vehicle type has a specific load-carrying capacity. 

• Greenhouse gas emissions limitation: In each period, the greenhouse gas emissions of the transporta-
tion process must not exceed its allowable limit. 
 

MILP formulation of the problem 
Notions used in the proposed MILP model are as follows:  

 



  

154 S. Razavi et al. 

 
Table 2. Nomenclatures 

Indices 

𝑭 = {𝟏, 𝟐, 𝟑, . . . , |𝑭|} Set of manufacturing factories 

𝑫𝑪 =  {𝟏, 𝟐, 𝟑, . . . , |𝑫𝑪|} Set of DCs  

{𝑶} Transportation fleet 

𝑵 = 𝑫 ∪ 𝑭 Set of  DCs and factories 

𝑬 = 𝑵 ×𝑵 Set of total edges between DCs and factories 

𝑻 = {𝟏, 𝟐, 𝟑, . . . |𝑻|} Set of time periods 

𝑲 = {𝟏, 𝟐, 𝟑, . . . , |𝑲|} Set of vehicles 

𝑷 = {𝟏, 𝟐, 𝟑, . . . , |𝑷|} Set of products 

Parameters 

𝒗𝒄𝒑𝒑 The variable production cost of each unit of product type  

𝒇𝒄𝒑𝒑 The fixed production cost of product type 𝒑 (resulting from the factory activities in each period) 

kv
 

The variable cost of the 𝒌𝒕𝒉 vehicle per unit of traveled distance     

𝒅(𝒊,𝒋)  Distance between factories and DCs per (𝒊, 𝒋) ∈ 𝑬 

kf  
Fixed cost of renting a vehicle 𝒌 

 𝒉𝒄𝒑,𝑭
𝒕  Holding cost for a unit of product type 𝒑 in a factory 𝑭 in period 𝒕      

𝒉𝒄𝒑,𝒅
𝒕  Holding cost for a unit of product type p in DC d in period t 

 𝒃𝒄𝒑 Backorder cost per unit of product p in DCs 

𝒄𝒂𝒑𝑭𝒑 Production capacity of product type p in factory      

𝑪𝒂𝒑𝑽𝒌 The load-carrying capacity of vehicle type k     

𝑺𝑷 Space occupied per unit of product type p     

CapSF Factory warehouse capacity 

𝑪𝒂𝒑𝑺𝑫𝒅 Warehouse capacity of DC 𝒅 

𝒅𝒆𝒎𝒑,𝒅
𝒕  The demand for product P from DC 𝒅 in period t 

𝑮𝑯𝒌 The volume of greenhouse gases emitted per unit of transportation of vehicle K 

𝑴𝒂𝒙𝑮𝑯𝒕 Maximum greenhouse gas emission in period t 

Decision variables 

𝒙𝒑
𝒕  The amount of product  type p produced in the period t 

𝒔𝒖𝒑𝒑,𝒅
𝒕  The amount of product  type p supplied from DC 𝒅 in period t  

𝒔𝒖𝒑𝑭𝒑
𝒕  The amount of product  type p supplied from the factory in period t 

𝒔𝒖𝒑𝑭𝒕 The total amount of product supplied from the factory in period t 

𝒓𝒆𝒄𝒑,𝒅
𝒕  The amount of product type p received from DC 𝒅 in period t 

𝑰𝒑,𝒅
𝒕  Inventory level of product p in DC 𝒅 in period t 

𝑰𝒑,𝑭
𝒕  Inventory level of product type p in a factory in period t 

𝒚(𝑶,𝑭),𝒌
𝒕  A binary variable representing renting (1) or not renting (0) of the vehicle k in period t (Binary variable representing moving (1) or not 

moving (0) of the vehicle k from the fleet to the factory in period t 

𝒚(𝒊,𝒋),𝒌
𝒕  A binary variable representing passing (1) or not passing (0) vehicle k from the edge (𝒊, 𝒋) ∈ 𝑬 in period t 

𝒐𝒑𝒆𝒏𝑭𝒕 A binary variable represents a working (1) or not working (0) factory in period t 

Total Cost  Total cost at the end of the planning horizon 

𝑷𝑪𝒕 Production cost in period t 

𝑽𝑷𝑪𝒕 Variable production cost in period t 

𝑭𝑷𝑪𝒕 Fixed production cost in period t 

𝑻𝑪𝒕 Transportation cost in period t 

𝑽𝑻𝑪𝒕 Variable transportation cost in period t 

𝑭𝑻𝑪𝒕 Fixed transportation cost in period t 

𝑯𝑪𝒕 Holding cost in period t 

𝑩𝑪𝒕 Backorder cost in period t 
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Objective function:  

 

Total Cost  =  ∑PC𝑡+TC𝑡+𝐻𝐶𝑡 +

𝑡∈𝑇

BC𝑡 
 (1) 

PC𝑡 = 𝑉𝑃𝐶𝑡 + 𝐹𝑃𝐶𝑡 =∑ 𝑣𝑐𝑝𝑝. 𝑝∈𝑃
𝑥𝑝
𝑡 + 𝑓𝑐𝑝𝑝 . 𝑜𝑝𝑒𝑛𝐹

𝑡   ∀𝑡 (2) 

HC𝑡    = ∑ℎ𝑐𝑝,𝐹
𝑡  . 𝐼𝑝,𝐹

𝑡

𝑝∈𝑃

+∑ ∑ ℎ𝑐𝑝,𝑑
𝑡  . 𝐼𝑝,𝑑

𝑡

𝑑∈𝐷𝐶𝑝∈𝑃

 ∀𝑡 (3) 

𝐵𝐶𝑡   =   ∑ ∑ 𝑏𝑐𝑝 . (𝑑𝑒𝑚𝑝,𝑑
𝑡 − 𝑠𝑢𝑝𝑝,𝑑

𝑡 )

𝑑∈𝐷𝐶𝑝∈𝑃

 ∀𝑡 (4) 

TC𝑡   =  𝑉𝑇𝐶𝑡 + 𝐹𝑇𝐶𝑡 = ∑ ∑𝑣𝑘 . 𝑑(𝑖,𝑗) . 𝑦(𝑖,𝑗),𝑘
𝑡

𝑘∈𝐾(𝑖,𝑗)∈𝐸

+∑𝑓𝑘  . 𝑦(𝑜,𝐹),𝑘
𝑡  

𝑘∈𝐾

 ∀𝑡 (5) 

 
 
Eq. (1) shows the objective function of GPIRP, including four parts: 1- fixed and variable production costs (Eq. (2)), 2- 
holding cost in the factory and the warehouses of DCs (Eq. (3)), 3- backorder cost (Eq. (4)), and 4- fixed and variable 
transportation costs (Eq. (5)). The total cost at the end of the planning horizon will be achieved by summing these costs in 
each period. 
 
Constraints:  

The constraints of the developed GPIRP include production capacity, transportation capacity, warehouse capacity, envi-
ronmental constraints (maximum greenhouse gas emission). Also, we have other constraints considering the specifica-
tion of the network, e.g., mass balance constraint in each node, dynamic relationship of inventory level in different peri-
ods, and allowable transportation route for vehicles. These constraints are explained in the following equations:  
 

(6) ∀𝑡, 𝑝 𝐼𝑝,𝐹
𝑡 = 𝐼𝑝,𝐹

𝑡−1 + 𝑥𝑝
𝑡 − 𝑠𝑢𝑝𝐹𝑝

𝑡  

(7) ∀𝑡, 𝑝, 𝐼𝑝,𝑑
𝑡 = 𝐼𝑝,𝑑

𝑡−1 + 𝑟𝑒𝑐𝑝,𝑑
𝑡 − 𝑠𝑢𝑝𝑝,𝑑

𝑡  

(8) ∀𝑡, 𝑝 𝑥𝑝
𝑡 ≤ 𝑐𝑎𝑝𝐹𝑝. 𝑜𝑝𝑒𝑛𝐹

𝑡                 

(9)      ∀𝑡, 𝑝 ∑𝑟𝑒𝑐𝑝,𝑑
𝑡

𝑑

= 𝑠𝑢𝑝𝐹𝑝
𝑡          

(10) ∀𝑡, 𝑝 𝑠𝑢𝑝𝐹𝑝
𝑡 ≤ 𝐼𝑝,𝐹

𝑡−1 + 𝑥𝑝
𝑡                

(11)  ∀𝑡, 𝑝, 𝑑 𝑠𝑢𝑝𝑝,𝑑
𝑡   ≤   𝐼𝑝,𝑑

𝑡−1 + 𝑟𝑒𝑐𝑝,𝑑
𝑡      

(12) ∀𝑡, 𝑝, 𝑑 𝑠𝑢𝑝𝑝,𝑑
𝑡   ≤   𝑑𝑒𝑚𝑝,𝑑

𝑡               

(13) ∀𝑡 𝑠𝑢𝑝𝐹𝑡 =∑𝑠𝑢𝑝𝐹𝑝
𝑡

𝑝

 

(14) 
 ∀𝑡 ∑𝑐𝑎𝑝𝑉𝑘 . 𝑦(𝑂,𝐹),𝑘

𝑡

𝑘

≥ 𝑠𝑢𝑝𝐹𝑡 

(15) 
∀𝑡 ∑𝑠𝑝𝐼𝑝,𝐹

𝑡 ≤ 𝐶𝑎𝑝𝑆𝐹

𝑝

  

(16) 
∀𝑡, 𝑑 ∑𝑠𝑝𝐼𝑝,𝑑

𝑡 ≤ 𝐶𝑎𝑝𝑆𝐷𝑑
𝑝

  

(17)   ∀𝑡 ∑ ∑ 𝐺𝐻𝑘 . 𝑑(𝑖,𝑗) . 𝑦(𝑖,𝑗),𝑘
𝑡 ≤ 𝑀𝑎𝑥𝐺𝐻𝑡

𝑘∈𝑉𝑒ℎ𝑇𝑦𝑝𝑒(𝑖,𝑗)∈𝐸∗

            

(18)  ∀𝑡, 𝑘 ∑ 𝑦(𝑖,𝑗),𝑘
𝑡 ≤ 1

(𝑖,𝑗)∈𝐸

 

(19)  ∀𝑡, 𝑘, 𝑛 ∑ 𝑦(𝑖,𝑛),𝑘
𝑡

(𝑖,𝑛)∈𝐸

= ∑ 𝑦(𝑛,𝑗),𝑘
𝑡

(𝑛,𝑗)∈𝐸

 

(20) ∀𝑡, 𝑘 ∑ 𝑦(𝑖,𝑗),𝑘
𝑡

(𝑖,𝑗)∈𝐸

≤ 𝑦(𝑂,𝐹),𝑘
𝑡    

(21) ∀𝑡, 𝑘, (𝑖, 𝑗)  𝑢𝑖,𝑘
𝑡 − 𝑢𝑗,𝑘

𝑡 + |𝑁|𝑦(𝑖,𝑗),𝑘
𝑡 ≤ |𝑁| − 1        

(22) 

{
 
 

 
 𝑥𝑝

𝑡  , 𝑠𝑢𝑝𝑝,𝑑
𝑡  , 𝑠𝑢𝑝𝐹𝑝

𝑡 , 𝑠𝑢𝑝𝐹𝑡  , 𝑟𝑒𝑐𝑝,𝑑
𝑡  , 𝐼𝑝,𝑑

𝑡  , 𝐼𝑝,𝐹
𝑡   ≥ 0

       ∀ 𝑝, 𝑑, 𝐹, 𝑡

𝑦(𝑂,𝐹),𝑘
𝑡  , 𝑦(𝑖,𝑗),𝑘

𝑡  , 𝑜𝑝𝑒𝑛𝐹𝑡  =  {0,1}  

     ∀ 𝑖, 𝑗, 𝑜, 𝑘, 𝐹, 𝑡

 

   
 
Eqs. (6-7) calculate the inventory level of the factory and DCs for each product in each period. Eq. (8) indicates the factory 
capacity for the production of each product. Eq. (9) calculates the total received products for each product type in each 
period. In other words, it determines how many products each factory supplies in each period. Eq. (10) guarantees that 
the volume of the product provided from the factory should not exceed the sum of the inventory of the previous period 
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and the production of the current period. Eq. (11) ensures that the number of products supplied to the customers from 
each DC should not exceed the sum of the inventory of the previous period and products received by DC in the current 
period. Eq. (12) specifies that the quantity of supply to the customers in each DC cannot exceed customer demand. Eq. 
(13) calculates the total amount of products supplied from the factory. Eq. (14) ensures that vehicles should be rented 
such that their total capacity is equal to or greater than the number of products supplied by the factory.  
Eq. (15) guarantees that factory capacity should not exceed the total free space of the factory warehouse in each period. 
The same point is controlled by Eq. (16) for DCs. Eq. (17) is the environmental constraint that should be considered in the 
transportation activities. This constraint states that total greenhouse gases resulting from the transportation network 
should not exceed the defined maximum allowable limit in each period. 
Eqs. (18-21) cover the routing planning part of GPIRP. Based on Eq. (18), at most, one vehicle can pass each edge in each 
period. Eq. (19) results in the continuity of the route for each vehicle. According to this equation, when a vehicle reaches 
a node, it must continue from that node to the other nodes. Based on Eq. (20), a vehicle can move between factories and 
DCs only if it has previously moved from the fleet towards that factory (i.e., was rented). Eq. (21) ensures MTZ sub-tour 

elimination constraints (Desrochers and Laporte, 1991). Note that in this constraint, ,

t

i ku
 and are auxiliary positive vari-

ables. Finally, Eq. (22) defines the decision variables. 

 

4. Solution approach  

Because the routing problem is NP-hard and belongs to the GPIRP, standard solvers such as CPLEX can be applied to 
only small-sized examples. The large-sized examples require an efficient solution procedure. In this research, we concen-
trate on combined exact linear programming (LP) solver (CPLEX) and metaheuristics solver (GA).   
We utilize a two-phase method in GA to solve the GPIRP because the problem is extremely complicated to be solved in a 
single stage. We should note that the two-phase procedure has been broadly applied in the literature (Alvarenga, Mateus 
and De Tomi, 2007; Shen et al., 2010; He and Tan, 2012; Mjirda et al., 2014; Azad et al., 2019). In phase I, production plan-
ning and inventory control are taken into consideration. Here, the optimal amount of each produced product in factories 
and inventory in the factory and DC are obtained during each period. In phase II, considering the first phase results, 
transportation planning is performed. In conclusion, "Phase I is production and inventory planning," and "Phase II is 
vehicle routing to transport the products." 
Phase I is solvable by the CPLEX LP solver since all variables in this phase are continuous, and the extended model is 
linear. In Phase II, a VRP should be addressed. In the previous twenty years, metaheuristic algorithms have appeared as 
the most hopeful way of research for all types of VRP problems (Golden, Raghavan and Wasil, 2008; Ayough et al., 2020; 
Goli et al., 2018). Because of the special solution representation structure of the VRP, the GA is an ordinary solver for 
VRP and Green VRP (Lin et al., 2014; Karakatič and Podgorelec, 2015). Figure 1 displays a flow diagram of the suggested 
two-phase solution procedure, further described in the following sub-sections.  
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igure 1. Flow diagram of the suggested two-phase solution procedure 

 Phase I: production and inventory planning 
We determine the quantity of production and inventory variables for each period, such as the optimal production amount for 
each product, the number of products stored in the warehouse, and the optimal volume for each product supplied to DCs. 
Therefore, the following model (23) as a sub-problem of the GPIRP model is obtained, in which transportation cost, vehicle 
routing, and the environmental constraint are relaxed. This model is easily solved using commercial solvers, e.g., CPLEX, and 
the optimal solution of the problem is transferred to Phase II. Note that this phase of the problem is formulated as an LP 
model, and despite MILP models, a large-sized LP model can be solved by CPLEX quickly(Crowder, Johnson and Padberg, 
1983; Bixby, 1994). At the end of Phase I (by solving model 23), we determine the optimal amount of physical flow in the SC 
network, which is an input for the routing decision in phase II.    
 

 
(23) 

{
 

 Min     Total Cost  =  ∑PC𝑡+ 𝐻𝐶𝑡 +  

𝑡∈𝑇

BC𝑡

𝑠. 𝑡.
𝐸𝑞𝑠  (6 − 17)

 

 

 
 Routing and environmental transportation 

GA is used for solving phase II. In the following, solutions representation, initial solutions generation, neighborhood finding 
(based on mutation and crossover operators), selection mechanism, repairing strategy, fitness function, and finally, stop crite-
ria of the proposed GA are explained.   
 

Solutions representation 

We assume that there are m DCs, K different vehicle types with specific capacities and different pollution emission levels. In 
PIRP, product supply to each DC in each period is performed using one vehicle. Therefore, we can place the customers in a k-
member partition, and the order of each partition member is shipped to DC using one vehicle.  
Figure 2(a) shows the solution representation. The first vehicle starts from factory F, delivers products of DC1 to DCr, and 
then returns to fleet O.  Similarly, the second vehicle starts from factory F, delivers products of DCr+1 to DCr+t, and then 
returns to fleet O. Finally, the last vehicle starts from factory F, delivers products of DCm-j to DCm, and then returns to fleet 
O. For example, Figure 2(b) depicts a route, and Figure 2(c) presents its encoding. 

 

Phase I:

  Production and Inventory Planning

Start

 Utilize LP CPLEX Solver 

Determine the optimal amount of 

production and inventory in each period

Phase II:

  Vehicle Routing for transportation of products

Start

Specify solution representation in GA 

 Set GA parameters

 (N_POP, MaxIt, PC,PM)

Determine the amount of supply to 

DCs in each period
[Using output of Phase I]

Find N_POP initial solutions 

Gen=  

Is Gen > MaxIt ?YES Decode Best Solution 

Finish

NO Calculate the fitness of solutions

Select some solutions for Reproduction 

 (Roulette wheel or Random)

Crossover

(N_POP*PC) new solutions

  

Mutation

(N_POP*PM) new solutions

  

Select new N_POP solutions from

 old N_POP solution and N_POP(PM+PC) new solutions 

  (Roulette wheel )

Gen=Gen+ 
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Figure 2. Solution representation and an example    

 
 Initial solutions 

We employ random generation and a greedy search to find an initial solution. We first ensure that the routing of vehicles 
decreases total transportation cost and satisfies the vehicle capacity and environmental constraints. 
 To do so, we first consider the environmental constraint. Therefore, a vehicle with a minimum greenhouse gas emission per 
distance unit is selected. This vehicle is placed in factory F. That DC near the factory is chosen in which the selected vehicle 
has a load-carrying capacity of its products. The number of the chosen DC is placed in the first cell after the first F. This pro-
cess is repeated for the remaining DCs, but this time the distance from the previous selected DC is considered. This process is 
continued until the selected vehicle does not have the load-carrying capacity for the products of any remaining DC. In this 
case, we place the sign of fleet O after the final DC, suggesting that the vehicle has returned to the fleet from that DC. The 
sign of the factory is also placed after the fleet, and a similar vehicle is selected among the remaining ones. 
This vehicle performs a similar procedure for the remaining DCs. This process continues until all the products are supplied to 
all DCs.   
 

Neighborhood’s search (mutation and crossover operators) 

As mentioned, DCs are turned into k-member partitions where each member is covered by one vehicle. Let us assume that 

one of the partition members is 
= , ,...,1 2 nA X X X

 with n members. Therefore, with n! possible routes, the products are 
shipped from the factory to DCs using one vehicle. We can find new solutions (offspring) for each initial solution (parent) by 
defining the following two operators. 
 
Crossovers:  
Consider couples solutions A and B, selected with the Roulette wheel method from the initial answers. Two new answers 
(children) are generated from each parent called C1 and C2, according to Figure 3.  

 

 
Figure 3. Crossover operator 
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Mutation (Swap / Reversion / Insertion):  

For solution A, according to the swap operator, the new neighboring solution is shown in Figure 4(a); also 𝑋𝑛𝑒𝑤   = 𝑅𝑒𝑣(𝑋, 𝑖, 𝑗) 
in Figures 4(b) and 4(b) is two neighborhoods generated by Reversion and Insertion operators, respectively.  

 

 
 

Figure 4. Mutation operators 
 

 
Fitness function 
We select the new generation among the solutions after generating an initial population (different initial solutions) and creat-
ing their offspring (new solutions) using the defined mutation and crossover operators. We assume that the number of the 
initial population is N_POP, and the percent of mutation and crossover is equal to pc and pm, respectively. Therefore, at the 
end of each repetition, there are solutions. We evaluate each solution by determining the fitness function. For this purpose, 
the transportation part, removed in phase I, is used in this section, and the fitness function for each solution is defined as 
follows: 
 

(24) ∀𝑡 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑌) =
1

∑ ∑ 𝑣𝑘  . 𝑑(𝑖,𝑗) . 𝑦(𝑖,𝑗),𝑘
𝑡

𝑘∈𝐾
(𝑖,𝑗)∈𝐸

  

 

In fact, the denominator in Eq. (24) represents the transportation cost. It is clear that the smaller value of the transportation 
cost results in a higher value for the solution. The main loop of the proposed GA continues with a certain number of itera-
tions until the optimal solution or near one concludes. In other words, the stop condition of the algorithm is achieving the 
defined maximum iteration (MaxIt). 
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5. Computational results  

In this section, some numerical experiments (one case study, 20 small-sized and large-sized random test problems) 
are performed to evaluate the performance of the developed model and solution method. CPLEX can solve the 
proposed MILP model in small-sized instances. To solve the large-sized instances, we use the proposed two-phase 
method in the previous section.   

Experiment on the case study 
In this sub-section, we explain a case study based on the real data gathered from Ahvaz Sugar Refinery Company. 
The company network is a bi-echelon SC, including one factory and five DCs. 
The factory produces three types of products: Caster Sugar, Sugarcane, and Sugar Lump, such that we named these 
products for simplicity p1, p2, and p3, respectively. The company's objective is to supply products from the factory 
to DCs at a minimum cost. Also, transportation is performed using vehicles provided by a transportation fleet. 
Tables 3 to 7 explain the main data of this case. These data are gathered for the annual planning horizon with six 
two-month periods. Besides, the initial inventory of the factory and DCs is equal to 1000 units. We assume that each 
period's maximum greenhouse gas emission equals 500 units. 
The optimal solution of the case study is presented as the economic production and inventory quantity, as well as 
vehicle routing decisions in a six-period. 
 Table 8 shows the factory's open status and the optimal production amount in each period. 
 Table 9 presents the amount of each product received by each DC in each period. 
 Finally, holding and backorder costs for each DC in each period are reported in Table 10. For the vehicle routing 
decision, vehicles K2 and K4 are rented for delivering products from the factory to DCs. These two vehicles are 
chosen in the optimal solution considering environmental and other constraints. 
 Table 11 indicates DCs met by each vehicle, transportation cost, and emission volume at the end of the planning 
horizon. 

Table 3. Data of GPIRP problem (Products data) 

Space occupied per 

unit  

Backorder cost 

per unit  

Holding cost per 

unit  

Fixed production 

cost 

Variable production 

cost  

Production capacity 

of the factory 
Products 

0.6 2.9 1.8 600 1.8 3000 P1 

0.8 3.1 1.6 600 2.05 2000 P2 

0.55 3.7 2.3 600 3.65 2500 P3 

 

 
Table 4. Data of GPIRP problem (Vehicle’s data) 

The volume of pollutant 

emission per unit  
Capacity Fixed cost of renting Variable cost per unit  Vehicle 

0.8 1200 700 7 K1 

0.65 1100 900 6 K2 

0.9 1500 1050 9 K3 

0.5 1000 1300 11 K4 

 
 Table 5. Data of GPIRP problem (Facilities capacity data) 

DC5 DC4 DC3 DC2 DC1 F Facility 

400 260 320 600 500 400 Capacity 

 
Table 6. Data of GPIRP problem (Customers/demand data) 

Planning horizon Product for DC 

T6 T5 T4 T3 T2 T1 

112 293 170 480 249 59 P1.DC1 

480 445 350 253 128 376 P1.DC2 

127 420 129 75 69 274 P1.DC3 

126 98 175 465 122 407 P1.DC4 

275 293 415 176 237 308 P1.DC5 

284 190 377 379 143 459 P2.DC1 

65 467 390 265 27 38 P2.DC2 

397 81 169 6 235 284 P2.DC3 

327 131 301 83 264 156 P2.DC4 

457 114 42 225 374 345 P2.DC5 

221 39 498 269 413 76 P3.DC1 

434 409 387 2 481 53 P3.DC2 

455 216 400 130 200 42 P3.DC3 

290 435 68 73 132 91 P3.DC4 

257 175 311 427 72 275 P3.DC5 
 

 

 

 

 



  

S. Razavi et al. 161 

 
 Table 7. Data of GPIRP problem (Distance matrix) 

DC5 DC4 DC3 DC2 DC1 F O  

285 310 480 250 80 100 0 O 

280 305 385 140 125 0 100 F 

133 185 240 100 0 125 80 DC1 

318 448 142 0 100 140 250 DC2 

210 400 0 142 240 385 480 DC3 

165 0 400 448 185 305 310 DC4 

0 165 210 318 133 280 285 DC5 

 
Table 8. Economic production in each period 

Economic Production product 

type P3 (*103) 

Economic Production product type 

P2 (*103) 

Economic Production product type 

P1 (*103) 
Factory activity   period 

865 744 865 1 T1 

1160 1016 764 1 T2 

901 923 1449 1 T3 

1664 1279 1239 1 T4 

1274 983 1549 1 T5 

1657 1530 1120 1 T6 

 

 
Table 9. Optimal amount of each product received by DCs in each period 

DC5 DC4 DC3 DC2 DC1 Time. Product 

208 307 174 276 0 T1.P1 

245 56 184 0 359 T1.P2 

175 0 0 0 0 T1.P3 

237 122 69 128 208 T2.P1 

374 264 235 0 143 T2.P2 

72 123 142 434 389 T2.P3 

176 465 75 253 480 T3.P1 

225 83 6 230 379 T3.P2 

427 73 130 2 269 T3.P3 

415 175 129 350 170 T4.P1 

42 301 169 390 377 T4.P2 

311 68 400 387 498 T4.P3 

293 98 420 445 293 T5.P1 

114 131 81 467 190 T5.P2 

175 435 216 409 39 T5.P3 

275 126 127 480 112 T6.P1 

457 327 397 65 284 T6.P2 

257 290 455 434 221 T6.P3 

 
Table 10. PC, BC, and HC in each period and at the end of the planning horizon 

 
Table 11. Transportation planning, transportation cost, and the volume of greenhouse gas emission 

DCs 
Vehicle 

DC5 DC4 DC3 DC2 DC1 

     K1 

✓  ✓ ✓ ✓ K2 

     K3 

 ✓    K4 

60690 Transportation costs at the end of the planning horizon 

2880 The volume of greenhouse gas emissions at the end of the planning horizon 

 
Evaluation of the proposed model and solution method 
In this sub-section, we seek to evaluate the model performance and solution method in various sizes of 20 random 
test problems. For this goal, to assess a broad domain of problem dimensions, we apply the sizes offered in (Mirza-
pour Al-e-hashem and Rekik, 2014). For each instance, we generate the parameters randomly explained in Table 7. 
It should be noted that the Taguchi method is used for parameter tuning of the proposed two-phase GA. The pro-
posed MILP (by CPLEX solver in GAMS) and two-phase heuristic method (based on GA) are implemented for all 
test problems.   
Table 12 shows the result of solving experimental problems using the proposed model and solution method. We 
consider 500 minutes as the maximum time for solving the problem using the proposed MILP model. It is worth 

Time periods 
Costs 

T6 T5 T4 T3 T2 T1 

11800.55 10053.45 11525.75 8389 8292 3955.95 Production cost (PC) 

0 0 0 0 0 0 Backorder cost (BC) 

0 0 0 0 56 490.4 Holding cost (HC) 

11800.55 10053.45 11525.75 8389 8358 4446.35 Total 
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noting that the first ten small-sized test problems are solved within an acceptable time. But solving the problem 
requires much more time in test problems 11 to 15, which increases the size of the problems. Finally, solving the 
instances in test problems 16 to 20 is impossible using the CPLEX-based MILP model. While all experimental prob-
lems are solved by the proposed two-phase method within the desired time, and the optimality gap of the best so-
lution is 0 or is closed to zero. 
Therefore, the proposed MILP can be solved to determine the optimal solution only for the experimental problems, 
which are not large. In contrast, the proposed GA-based two-phase method has excellent performance for large-
sized problems. 
Finally, the effect of the environmental considerations is analyzed. As we mentioned in Table 13, the value of max-
imum greenhouse gas emission (𝑀𝐴𝑋𝐺𝐻) is randomly generated by 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1200,2500). In the final test problem, 

= .MAXGH 1923 12 is generated. Now, we fix all the parameters of this test problem and increase the value of 

MAXGH and report the best solutions. Figure 5 shows the percentage of the increase in MAXGH  and the total cost 

decreases. In fact, the model has more flexibility by increasing the value of MAXGH  and, therefore, will result in a 
lower total cost. 
 As a managerial insight driven by numerical results, the total cost is in most of its value when the environmental 
constraint is applied with the most stringency (flexibility 0). However, applying small flexibility to the environmen-
tal constraint (10 to 20 percent) significantly decreases the total cost (about 20 percent). Finally, the environmental 
impacts dramatically increase by applying more flexibility, but the total cost does not considerably decrease. 

 

 
Table 12. Random generation of GPIRP test problem 

Values in ten second instances Values in ten first instances Parameters 

(1.3,3.5)Uniform
 

(1,3)Uniform
 pvcp

 

(500,1500)Uniform
 

(500,1500)Uniform
 pfcp

 

(1,7)Uniform
 

(1.5,5.5)Uniform
 kv

 

(10,1000)Uniform
 

(10,1000)Uniform
 ( , )i jd

 

(500,1000)Uniform
 

(400,700)Uniform
 kf  

(0.25,2.5)Uniform
 

(0.5,3.5)Uniform
 ,

t

p Fhc
 

(0.20,2.10)Uniform
 

(0.3,2.5)Uniform
 ,

t

p dhc
 

(0.5,6.5)Uniform
 

(1,5)Uniform
 pbc

 

(2000,6000)Uniform
 

(2000,4000)Uniform
 pcapF

 

(1800,3900)Uniform
 

(1500,3500)Uniform
 kcapV

 

(0.2,0.8)Uniform
 

(0.2,0.8)Uniform
 ps

 

(1000,4000)Uniform
 

(1000,4000)Uniform
 

CapSF
 

(3000,6000)Uniform
 

(3000,6000)Uniform
 dCapSD

 

(0.05,0.80)Uniform
 

(0.05,0.60)Uniform
 kGH

 

(1200,2500)Uniform
 

(500,1000)Uniform
 

tMaxGH  

 
Table 13. Test problems (performance evaluation of the proposed MILP model and two-phase solution method) 

 

Gap (%) 

The Proposed Hybrid Heuristic Solver  Proposed MILP (CPLEX)  Problem size 
Test problem 

CPU time (m) Cost  CPU time (m) Cost  |K| |DC| |P| |T| 

0 4.01 60919.11  3.39 60919.11  2 2 1 3 1 

0 4.12 65083.15  5.67 65083.15  2 2 2 4 2 

0 5.47 73914.60  5.83 73914.60  2 3 2 4 3 

12.95 6.16 86652.90  8.34 76715.38  2 2 2 5 4 

5.09 8.32 80628.31  9.13 76719.66  2 3 3 5 5 

6.84 9.50 85111.73  10.42 79664.22  3 5 3 5 6 

4.58 10.37 103676.40  11.83 98975.58  3 5 4 5 7 

6.65 12.35 112428.95  20.22 102541.49  4 5 3 6 8 

0 12.54 115472.47  25.95 115472.47  5 5 5 6 9 

5.38 13.30 125202.10  32.38 118811.81  4 8 4 6 10 

0 51.54 320200.13  107.56 320200.13  5 10 5 10 11 

2.19 53.06 340129.38  321.63 332843.08  6 10 5 12 12 

6.63 56.63 381201.12  432.19 357489.55  7 12 6 13 13 
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2.95 55.69 400213.31  409.21 388735.23  6 12 6 14 14 

5.55 60.37 445691.05  487.19 422274.87  7 14 6 15 15 

- 62.37 461852.97  +500 NA  7 15 7 15 16 

- 72.00 587093.09  +500 NA  8 15 8 15 17 

- 75.35 616215.85  +500 NA  8 17 8 16 18 

- 80.50 620580.78  +500 NA  10 20 9 16 19 

- 93.11 762599.27  +500 NA  10 20 10 18 20 

 

 

 
Figure 5. Sensitivity analysis on maximum greenhouse (MaxGH) and total cost 

 
Although Table 13 shows that the proposed hybrid two-phase heuristic solver is able to obtain optimal or near to 
optimal solutions for various scales of the PIRP problem, in the following, we also illustrate a new performance 
evaluation analysis during which the quality and stability of the proposed solution method is compared with a 
metaheuristic solver base on common GA. For this purpose, we randomly generate ten large-scale instances of the 
PIRP problem and solve each instance ten times by the proposed hybrid solution method and commonly-used GA, 
respectively. Table 14 shows the instances and solution obtained by solvers after 3600 seconds. As illustrated in 
Figure 6, the proposed solution method frequently dominates the classic GA. Furthermore, to validate the stability 
of the proposed solution method in comparison with GA, Figure 7 shows the boxplot of the two methods for each 
problem instance. The boxplot visualization presents that the stability of the proposed heuristic solution method is 
acceptable and better than classic GA. 

 
Table 14. Compression of the proposed Hybrid Heuristic Solver and Metaheuristics (GA) Solver in solving large-scale instances 

Metaheuristics (GA)  

Solver 
 Proposed Hybrid Heuristic Solver  Problem size 

Instances 

Deviation Mean  Deviation Mean  |K| |DC| |P| |T| 

2459.09 107460.60  2235.54 102343.43  10 25 5 10 1 

3490.41 125772.39  3035.14 114338.54  10 30 5 10 2 

4016.75 130453.00  3554.65 125435.58  10 35 10 10 3 

4042.20 150818.92  3454.87 134659.75  10 40 10 15 4 

6857.01 148751.79  5485.61 145835.09  10 50 15 15 5 

8452.23 184301.32  6985.31 167546.65  20 60 15 15 6 

9113.99 181475.68  6904.54 168033.04  20 70 20 20 7 

10567.54 201549.31  8454.03 179954.74  20 80 20 20 8 

11728.18 204697.74  9855.61 189534.94  20 90 25 20 9 

16393.83 201343.40  11544.95 195479.03  20 100 25 30 10 
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Figure 6. Compression of the proposed Hybrid Heuristic Solver and Metaheuristics (GA) Solver in solving large-scale instances with respect to 

the objective function 

 

 
Figure 7. Boxplot to illustrate the stability of the proposed Hybrid Heuristic Solver in comparison with the GA Solver 

 
Practical results and managerial insights 
In this sub-section, some practical and managerial insights have been derived from the computational results and 
briefly explained. The managers of the production and inventory sections of the case study company found the 
results of this research quite valuable for solving their problem, as it offered solutions in a very short time and with 
a tiny error. Before this study, they could not find an excellent solution to the problem in the short decision-making 
time available. Therefore, by comparing the costs before and after implementing this research, and based on the 
short time of achieving a good solution, they introduced this study as an important step to progress their systems. 
The results of production planning and inventory control show that the three parameters of production capacity, 
holding cost, and holding capacity are among the effective factors in the production and inventory of products in 
each period. The changes in these three parameters are discussed in the following:  
1) Assuming the high product holding capacity, the opportunity for greater product storage for high demand 

periods is increased by increasing the production capacity. Therefore, in these periods, without the cost of 
budget deficits, the re-activation costs of the factory can be reduced, and the inventory of previous periods can 
be used. In this strategy, it is necessary that “the cost related to increasing the factory production capacity” 
should not be higher than “reducing the total costs with increasing the production capacity”. Assume that 
𝐶𝑎𝑝𝐹  is the factory production capacity and 𝐶𝑜𝑠𝑡𝐶𝑎𝑝𝐹 is the total cost for this level of capacity. Now, if the pro-
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duction capacity is increased by a unit size X, and the new production capacity is 𝐶𝑎𝑝𝐹𝑛𝑒𝑤 = 𝐶𝑎𝑝𝐹 + 𝑋, then 
the total cost for this level of production is equal to 𝐶𝑜𝑠𝑡𝐶𝑎𝑝𝐹𝑛𝑒𝑤, which is not certainly higher than 𝐶𝑜𝑠𝑡𝐶𝑎𝑝𝐹, 

( 𝐶𝑜𝑠𝑡𝐶𝑎𝑝𝐹𝑛𝑒𝑤 ≤   𝐶𝑜𝑠𝑡𝐶𝑎𝑝𝐹  ). Now, if the cost relevant to increasing the production capacity is Y, then the re-

al/net new cost is equal to  𝐶𝑜𝑠𝑡𝐶𝑎𝑝𝐹𝑛𝑒𝑤
𝑅 = 𝐶𝑜𝑠𝑡𝐶𝑎𝑝𝐹𝑛𝑒𝑤 + 𝑌, which might be higher compared to 𝐶𝑜𝑠𝑡𝐶𝑎𝑝𝐹. Thus, 

in increasing the production capacity, the total cost per new production level should be seen along with the 
cost related to increasing the production capacity. Figures 8(a) and 6(b) are shown for a better explanation. In 
Figure 8(a), reducing the total cost and increasing the capacity cost are presented at different levels relevant to 
increasing the production capacity. In the beginning, the total reduced cost is often higher than the increased 
costs of the capacity. Then, they are equal at a point such as A, and the increased cost of the capacity is raised, 
while the total reduced cost becomes 0 from point B. Figure 8(b) clearly shows that point A is the best level re-
lated to increasing the production capacity because the new net cost is at its lowest. With sensitive analysis of 
production capacity parameter, the decision-making managers can have a strategy to increase the production 
capacity as described and reach the optimum point A.  

 

 

Figure 8(a). Reduced and increased cost with respect to in-

creasing the production capacity 

 

 

Figure 8(b). Total cost and total net cost with respect to increasing 

the production capacity (Y = the cost related to increasing the 

production capacity) 

 
2) Assuming that the production capacity is high, increasing related to the holding capacity of the products has a 

very similar analysis to the previous mode (increasing the production capacity). It should be noted that if the 
holding cost of each product unit reduces instead of increasing the holding capacity, the same result is ob-
tained. Also, if the warehouse inventory is zero in different periods or less than the warehouse capacity in the 
optimum solution for the problem, the strategy related to increasing the holding capacity is wrong because on-
ly the net cost is increased.  

3) Increasing the production capacity and the holding capacity simultaneous are similar to the previous two 
modes, with the difference that at the time of net cost calculation, two components of increasing the cost result-
ing from increasing the production and holding capacities must be added to the total cost. 

 
Obviously, without considering the environmental constraints, the total cost will be the lowest. Considering the 
environmental constraints would increase the total cost, but how the environmental constraints should be consid-
ered is a question for the managers, the answer to which is explained. The results show that although the total cost 
is reduced with the flexibility in the environmental constraints, no significant reduction can be seen in the cost after 
a level. In other words, as shown in Figure 9(a), the flexibility in the greenhouse gas emissions would reduce the 
total transportation cost and, as a result, the total cost. While it can be seen in Figure 9(b) that from a point such as 
A onwards, no significant reduction can be seen in the total cost. In fact, point A can show a reasonable decision to 
minimize the costs with respect to the environmental constraints in the green SC. Another proposed point is a point 
such as B, where the percent of changes in the cost and greenhouse gas is equal. Point B is suggested in the prob-
lems where environmental constraints are more sensitive.  
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Figure 9(a). Pareto front of the SC cost and greenhouses gas  

Figure 9(b). Two proposed levels of the SC greenhouses gas (A and B) 
 

6. Conclusion   

In this research, a model is extended in the field of the PIRP. This model seeks to minimize the entire costs of pro-
duction, transportation, and inventory. Corporations now must consider environmental factors and the economic 
aspects of the SCs in all activities, from manufacturing to supply. Regarding effective transportation plans, corpora-
tions can simultaneously reduce costs and environmental contamination. This paper investigated a green SC prob-
lem named GPIRP by adding environmental constraints to the PIRP. This problem simultaneously controls eco-
nomic decisions as well as the social ones related to production and supply in the corporations. The problem was 
formulated as a MILP model and solved using a proposed two-phase GA.  
Based on the literature, although metaheuristic algorithms do not ensure a global optimal solution, they can present 
satisfactory solutions to complex problems in a short period. Subsequently, the initial problem is decomposed into 
two sub-problems through the two-phase GA. The outcomes revealed that the suggested algorithm returns a solu-
tion with an allowable error in a short period.  
Further, we conducted a case study to show the proposed model's applicability and environmental feasibility in a 
real case. Besides, numerical small- and large-sized instances and their analyses were tested to show the efficiency 
and effectiveness of the algorithm and developed model.    
As two main quantitative findings, results driven by numerical analysis show that 1) we can obtain a Pareto opti-
mal solution in which the greenness is near 90% while total cost can be near-optimal. In other words, using the 
proposed model, we can do a proper trade-off between the economic and environmental objective functions so that 
the two objectives have a near to ideal value. 2) The proposed hybrid two-phase heuristic solver can solve the small 
and medium sizes of the PIRP problems with less than a 5% gap on average. Furthermore, the stability test verifies 
that the proposed method had an acceptable level of robustness/stability in different runs for a specific instance.  
While we have shown the efficiency of the proposed MILP model and the two-phase solution method, our work is 
not without limitations. In this paper, customer demand, the number of available vehicles, the production capacity 
of factories, and some other important parameters were assumed deterministic. While these parameters sometimes 
include uncertainty in real life. Therefore, future studies can use optimization approaches under uncertainty, espe-
cially robust optimization methods, to capture the uncertain parameters. Also, it may be of interest to develop the 
proposed model into a multi-objective formulation, such as minimizing the delivery time and maximizing the pro-
duction stability over time. 
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