

Copyright: Creative Commons Attribution 4.0
DOI: 10.22116/jiems.2022.346243.1491

 journal homepage: www.jiems.icms.ac.ir

JIEMS
Journal of Industrial Engineering and Management Studies

Vol. 9, No. 2, 2022, Pages 1-12

Just-in-time parallel jobs scheduling: A novel algorithm

Javad Behnamian *1

1 Department of Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.

Received: Jun 2022-08/ Revised: Aug 2022-08/ Accepted: Aug 2022-01

Abstract

This research extends a two-phase algorithm for parallel job scheduling problem by considering earliness and tardiness as multi-
objective functions. Here, it is also assumed that the jobs may use more than one machine at the same time, which is known as
parallel job scheduling. In the first phase, jobs are grouped into job sets according to their machine requirements. For this, here,
a heuristic algorithm is proposed for coloring the associated graph. In the second phase, job sets will be sequenced as a single
machine scheduling problem. In this stage, for sequencing the job sets which are obtained from the first phase, a discrete algo-
rithm is proposed, which comprises two well-known metaheuristics. In the proposed hybrid algorithm, the genetic algorithm
operators are used to discretize the particle swarm optimization algorithm. An extensive numerical study shows that the algo-
rithm is very efficient for the instances which have different structures so that the proposed algorithm could balance exploration
and exploitation and improve the quality of the solutions, especially for large-sized test problems.

Keywords: parallel job scheduling; parallel machine; earliness and tardiness; graph coloring; particle swarm optimization.

Paper Type: Original Research

1. Introduction

The scheduling problem is the allocation of limited resources to perform a set of activities in a period of time

(Ebrahimi Zade et al. 2016). A parallel job scheduling consists of a production stage that has a parallel machine,

and it is assumed that at the same time, a job may use more than one machine for its processing. Many applications

of parallelism, such as bandwidth and storage management, are reported (Zhang et al. 2020). Furthermore, many

real-world problems such as semiconductors and aircraft manufacturing involve simultaneous optimization of

several objective functions. In this paper, to reflect real-world situations adequately, the earliness and tardiness

(ET) of jobs are concerned, in which both early and tardy deliveries of a job with respect to its due date are penal-

ized. Another assumption considered in this scheduling model is parallel job scheduling in which a job may use

more than one machine simultaneously. Loom scheduling problem in the textile industry (Serafini 1996) and berth

allocation problem (Guan et al. 2002) are two applications of the parallel job scheduling problem.

This paper considered the scheduling of parallel jobs on the parallel machine with the sum of the earliness and

tardiness objective function. The problem of parallel job scheduling with earliness and tardiness is one of the most

up-to-date problems. These problems are significant because of the importance of simultaneous reducing earliness

and tardiness, considering the parallel resources, in which the demand is met in a shorter time. Reviewing various

research in this field in recent years, it was observed that there are several applications, among them CPU sched-

uling in computer science (as parallel tasks scheduling) and operating room scheduling (where the patient may

simultaneously need several doctors during surgery) mentioned. Here, two decisions are made in two-phase: di-

viding jobs into independent sets using a graph coloring-based heuristic algorithm and sequencing the independ-

ent sets as a single machine scheduling problem using metaheuristic. As proved in Theorem 3.2. in Hoogeveen et

al. (1994), a parallel job scheduling problem with only two parallel machine and total completion times objective

function is NP-hard. Also, according to complexity hierarchies of deterministic scheduling problems in objective

functions in Pinedo (2008), the problem with total tardiness objective function is harder than the other one with

total completion time objective function. For these reasons, we can easily conclude that our problem with m parallel

machine and the sum of the earliness and tardiness objective function is also NP-hard. Since the problem of parallel

machine scheduling with the sum of the earliness and tardiness objective function is NP-hard (Pinedo 2008), in

phase 2, an efficient metaheuristic is proposed to achieve a good solution.

*Corresponding Author: behnamian@basu.ac.ir

file:///C:/Users/User.DESKTOP-KHNS6R5/Desktop/journal%20sample/word;%20journal%20format/www.jiems.icms.ac.ir
mailto:behnamian@basu.ac.ir

J. Behnamian 2

The paper has the following structure. Section 2 reviews the literature of parallel job scheduling. The problem

defines in Section 3. Section 4 introduces the proposed graph-based algorithm for dividing the jobs into independ-

ent sets. Section 5 introduces an algorithm for sequencing the job sets. Section 6 presents the computational design.

Section 7 states conclusions and further research.

2. Literature review

For optimizing the performance and energy efficiency in parallel job scheduling on homogeneous clusters, Zong

et al. (2011) proposed performance-energy balanced-based algorithms. Hao et al. (2017) considered a parallel job

scheduling problem under multi-clouds in which jobs are in different lists according to the waiting time of jobs

and every job has different parallelism. For this problem, they proposed parallel job scheduling based on ZERO-

ONE scheduling with multiple targets algorithm. For the parallel job scheduling on multiple manycore machines,

Li (2018) proposed the lower bounds for the problems of energy and time-constrained scheduling with precedence

constrained in a cloud computing environment. To minimize the maximum completion time, Jansen and Trystram

(2016) proposed an approximation algorithm with the absolute ratio for parallel job scheduling on heterogeneous

platforms.

For parallel workload consolidation, Liu et al. (2015) introduced a prioritized two-tier virtual machines architecture

and proposed a consolidation-based parallel job scheduling algorithm. For scheduling the modular non-linear par-

allel jobs, Hao et al. (2016) proposed an adaptive algorithm. At the same time, four characteristics of the jobs were

taken into account, including the deadlines of jobs, average execution time, the overall system loads and the num-

ber of assigned resources. To minimize makespan in the multi-factory scheduling problem with the parallel job,

Behnamian (2016) proposed semidefinite programming. In this paper, it is assumed that some factories join to-

gether to form a production network. Due to various applications of parallel jobs, this environment has been stud-

ied extensively. Table 1 summarizes in chronological order.

Table 1. Summarized literature review

Year Author/s Comments

1989 Du and Leung complexity of scheduling
1992 Wang and Cheng heuristic of scheduling
1994 Babbar and Krueger online hard real-time scheduling, partitionable multiprocessors
1994 Turek et al. scheduling parallelizable tasks, minimizing average response time
1996 Drozdowski real-time scheduling of linear speedup
1996 Sgall randomized online scheduling
1997 Glasgow and Shachnai channel-based scheduling
1998 Rapine et al. online scheduling of parallelizable jobs
1998 Feitelson and Rudolph metrics and benchmarking for parallel job scheduling
1998 Feldmann et al. optimal online scheduling, jobs arrive dynamically according to the dependencies
1999 Krishnamurti and

Gaur
approximation algorithm, hypercube parallel task

1999 Kwon and Chwa. parallel tasks with individual deadlines
1999a Li approximation algorithm, independent parallel tasks
1999b Li list scheduling algorithm, precedence constrained parallel tasks
2000 Deng et al. preemptive scheduling on multiprocessors
2000 Jansen and Porkolab preemptive parallel task
2000 Li and Pan probabilistic analysis, precedence constrained parallel tasks, multi-computers with contiguous pro-

cessor allocation
2001 Bischof and Mayr online scheduling of parallel jobs with runtime restrictions
2002 Jansen malleable parallel tasks, asymptotic fully polynomial-time approximation scheme
2002 Jansen and Porkolab linear-time approximation schemes
2002 Srinivasan et al. selection of partition sizes for moldable scheduling
2003 Jansen and Porkolab optimal preemptive schedules, Linear programming approaches

2003 Ye and Zhang online scheduling, parallel job with dependencies
2004 Dutot et al. approximation algorithms
2007 Ye and Zhang a 7-competitive online algorithm, improves the previous upper bound
2010 Guo and Kang malleable parallel job, online algorithm with competitive ratio, optimal for two machines
2011 Barbosa and Moreira Batch of jobs with non-deterministic arrival times, minimizing the scheduling makespan, Using di-

rect acyclic graph for list scheduling
2012 Ebrahimi Moghaddam

and Bonyadi
Multiprocessor task scheduling, immune-based Genetic algorithm, new coding scheme to reduce
search space

2013 Brelsford et al. parallel job scheduling for extreme scale computing, hybrid centralized and distributed approach,
improves the scaling behavior of scheduling time

2014 Sun et al. Online adaptive scheduling for multiple sets of parallel job, two-level algorithm scenario with a
feedback-driven adaptive scheduler, minimizing the scheduling total response time and makespan

2018 Parida et al. designing and modeling the Petri Net for parallel task scheduling for deadline-based task by resolv-
ing the conflicts

2020 Behnamian a semi-definite relaxation-based algorithm for parallel job scheduling with a specific due date
2021 Zheng et al. online service scheduling of parallel jobs with variable resources in clouds

3 J. Behnamian

According to the reviewed literature, the main novelty of this paper is the scheduling of parallel jobs using a novel
hybrid algorithm composed of the graph coloring concept and heuristic algorithm. In this regard, after grouping
the jobs by a graph coloring heuristic algorithm, we proposed a discrete hybrid metaheuristic approach for se-
quencing the obtained job sets in order to minimize the sum of earliness and tardiness. In this regard, crossover
and mutation operators are embedded in the particle swarm optimization algorithm (PSO). To the best of our
knowledge, this study is novel research that combined a graph model and metaheuristic to scheduling problems.

3. Problem statement

This paper considered the parallel job scheduling on a parallel machine. The objective is to find a feasible sched-
ule in which earliness and tardiness are penalized at the same rate for all jobs.

3.1. Notations

The notations used in the rest of the paper are as follows:

m The number of identical parallel machines,

n The number of independent parallel jobs

 }{ 21 n . . . T, TTT =

A set of n independent jobs

 }{ 21 m . . . P, PPP =

A set of m machines

mm j 
The number of machines simultaneously required at any point in time to process
job j)is known as the width of the job and is part of the input (

jC

The completion time of job j

jd

The due date of job j

,0max)-C,d(=E jjj The earliness of job
j

,0max)-d,C(=T jjj The tardiness of job
j

3.2. Assumptions

The characters of the considered problem in this paper are as follows.

• All jobs have unit processing time which we also call its length

• All the problem parameters are known deterministically when scheduling is undertaken.

• Workstation has a set of identical machines.

• A job once started on the machine must be completed on it without interruption.

• A machine can process only one job at a time.

• The machines are available at all times if they are not busy.

• There are no breakdowns or scheduled or unscheduled maintenance.

4. Grouping the jobs

The correspondence between scheduling problems and associated graphs is described in this section. Here it is
assumed all jobs have unit processing times and the processing of each job requires the simultaneous availability

of a set of machines
 P)P(Tj 

during its processing time.

J. Behnamian 4

4.1. Parallel job scheduling and related graph

The parallel job scheduling, as shown in Figure 1, can intercommunicate with the graph in which a vertex is used
as a job and an edge between two vertices is used when the corresponding jobs are in conflict (i.e.

) P(T) P(T ji 
).

Figure 1. A scheduling system and the associated constraint graph

In this example, the scheduling problem has four machines 1 2 3 4{ , , , }P P P P
and five jobs

},,,,{ 54321 TTTTT

such that 1 1 4{ }P(T) = P , P
, 2 2{ },P(T) = P 3 3 4{ }P(T) = P , P

, 4 3{ }P(T) = P
 and 5 1 2{ }P(T) = P , P

.
Note that with unit processing times, since a minimum coloring on the graph corresponds to scheduling with
minimum length (Dell’Olmo & Gentili 2006), we are interested in the graph with a coloring that implies a schedule
without idle times. In the following subsection, correspondence between graph and scheduling systems is de-
scribed more formally. To do that, we need to introduce a method for coloring the associated graph.

4.2. Graph coloring

In the first phase, the jobs must be grouped into job sets according to their machine requirements using the vertex
coloring concept. In general, the grouping representation consists of a job part and a group part. The job part

consists of n genes that must be colored and the color part consists of a permutation of the k color labels. A job

gene can take any of k colors as an allele, indicating that the job in question belongs to a color of the given label.

An example of a chromosome with 7=n and 3=k is shown in Figure 2.

B B A B B C A B A C

Figure 2. Example of a chromosome in grouping representation

The group part shows that three colors A, B and C are used for coloring the graph. The job part discloses that nodes
3 and 7 are colored with color A, nodes 1, 2, 4 and 5 are colored with color B and node 6 is colored with color C.

P4 1

3

P3 4

P2 2

5

P1 1

 time

machine

2

{1,4}

{3} {2}

{3,4}

4

{1,2}

1

2

3 5

Objects
Groups

5 J. Behnamian

Since finding the minimum vertex coloring of an arbitrary graph is a known NP-hard problem (Garey & John-
son1979), in Algorithm 1, we propose a heuristic algorithm that can generate legal coloring for n nodes. To evaluate
the colored graph, the objective of the corresponding machine scheduling system is defined as the fitness function.
It is obvious to minimize the corresponding scheduling problem, the proposed heuristic algorithm must minimize
the number of colors used for coloring the graph.

4.3. Sequencing the job sets

In phase 2, the job sets that are obtained by classification of jobs according to their need to machines in the inde-
pendent set, must be sequenced at the group of the machine. In this phase, we have a single machine scheduling
problem, which in it the job sets and parallel machine are considered as jobs and single machine, respectively.

If jC
and jd

 be the completion time and due date for the job j, respectively, the earliness and tardiness of job
j

are defined as

,0max)-C,d(=E jjj
(1)

,0max)-d,C(=T jjj
(2)

It is clear in the scheduling problem with  +)(TE
objective function, earliness and tardiness are penalized at the

same rate for all jobs (Su 2009). This form of objective function perfectly fits a Just-in-time (JIT) manufacturing
policy where an early or late delivery of a job results in an increase in production costs.

In this study, as shown in Equation (3), the sum of the earliness and tardiness of jobs are combined as a single
scalar value.

(3)

For solving our problem with this objective function, a discrete particle swarm optimization algorithm is presented.

5. A discrete hybrid metaheuristic approach

In applying the particle swarm optimization algorithm (PSO) to generate a movement based on swarm in contin-
uous problems, there are several approaches, but in discrete ones, it needs more innovation. In this regard, for
example, by coding a solution as a chromosome, crossover and mutation operators can be used as a movement
policy. Such coding allows the possible integration of different features from other metaheuristic algorithms, such
as the genetic algorithm (GA) in the PSO. The following subsection discusses which aspects have been borrowed
from the particle swarm optimization algorithm and genetic algorithm.

.
11


==

−=+
n

j

jj

n

j

jj Cd)T(EZ=

J. Behnamian 6

5.1. Particle swarm optimization algorithm

This algorithm is based on modeling and simulating the behavior of a group flight of birds or a mass movement
of fishes. Each particle has a coordinate that specifies what the particle coordinates are in the multidimensional

search space. As the particle moves over time, the location of the particle changes. idx (k)
 denotes the location of

the particle i in dimension d at time k. Each particle also needs speed to move through space, with idv (k)
 being

the particle speed i in dimension d at time k. Whether or not the location of a particle in the search space is a
suitable location is evaluated by a fitness function. The particles are capable of remembering the best location they
have been in their lifetime. It is called the best individual experience of a particle or the best location met by a
swarm, which is shown by Pbest. Particles can also be aware of the best location met by the whole group, called
gbest. The particle speed involved in the optimization process reflects the experimental knowledge of the particle
and the swarm information. The new velocity of each particle is calculated as follows:

1 1 2 21id id id id gd idv (k +) = v (k) + λ r [pn (k) - x (k)] + λ r [pn (k) - x (k)],

(4)

where 1 λ
 and 2 λ

 are acceleration coefficients,  is inertia factor, and 1 r
 and 2 r

 are two independent random
numbers uniformly distributed in the range [0, 1].
Thus, in each generation, the position of each particle is updated according to Equation (5).

) (k + (k) + v) = x (k + x ididid 11

(5)

Algorithm 2 shows the structure of the proposed algorithm.

Algorithm 2: Basic PSO structure

 5.2. Genetic algorithm

In our proposed algorithm, we make use of GA operators as the most well-known mechanisms to generate new
individuals (Yazdani & Jolai 2015). In the subsequent section, a discrete PSO algorithm that hybrids with crossover
and mutation operators is introduced.

 5.3. The proposed algorithm

In applying the PSO algorithm to our problem, the important issue is to find a method to redefine subtraction and
addition operations. In this paper, the genetic operators as a useful method (Niu et al. 2008) are used to update the
particle position. The structure of the proposed algorithm is shown in Algorithm 3 and the implementation details
are mentioned after that.

7 J. Behnamian

Algorithm 3: DPSO algorithm structure

5.3.1. Encoding scheme

The proposed representation of our proposed algorithm to solve scheduling is based on coding all job sets as genes

in a)'(-by-1 n string where 'n is a number of jobs sets. In this type of representation, the sequence of job sets
is represented by the number of genes from the left side to the right side. Figure 3 shows an example of represen-
tation. In this example, there are five job sets with order 5→1→2→4→3.

Figure 3. Solution representation

5.3.2. Initial solution

In this paper, to generate a feasible solution, a random initial solution is used.

5.3.3. Crossover operator

In this paper, a two-point crossover operator is used to generate a new position (NP) to the best p
 or best g

 (p S

or s S
).

P 4
8

1 2 3 9 10 5
7

6

S 2 7 8 1 3 10 4 6 5 9

NP 4 8 2 1 3 10 5 9 7 6

Figure 4. Two-point crossover operator

As shown in the example, after selecting two parents (P and S) randomly from the population, two points are
chosen from the first parent and the genes outside these points are transmitted exactly to the offspring's chromo-
some (NP). Then these genes are removed from the second parent and the remaining genes, in order of presentation
in the second parent, are copied into the empty cells of the offspring's chromosome.

5.3.4. Mutation operators

In this paper, the insertion mutation is used. As shown in the following example, a randomly chosen cell is inserted
into a randomly chosen position (the 2nd locus marked by a blue block).

Before 4 8 1 2 3 9 10 5 7 6

After 4 8 5 1 2 3 9 10 7 6
Figure 5. Insertion mutation

5 1 2 4 3

J. Behnamian 8

6. Computational results

Considering earliness/tardiness objective, parallel job, and parallel machine, to the best of our knowledge, the
most related and newest study to our research is Leung et al. (Leung et al. 2002), which proposed a neighborhood
search (NS) algorithm. In order to evaluate the effectiveness of the proposed algorithm, at first, the neighborhood
search is adapted to the ET objective, and then, for the randomly generated test problems, our proposed algorithm
was compared with it. The algorithms were implemented in MATLAB 7 under a Microsoft Windows 7 environ-
ment.

6.1. Data generation and settings

The test problems used in this paper were generated using the level(s) of factors are shown in Table 2.

Table 2. Factor levels

Factor Levels

Number of jobs)(n 50 100 50 1000

Number of machines)(m 10 20 50

Width of job)(jm (0, 2/m)

Another important issue is the due dates of the jobs. In this study, the due dates are uniformly distributed from 1
to 3, which are 100% to 300% of processing time.

6.2. Stopping rule

The stopping condition for sequencing the job sets is set to a number of iterations to 25, 50, 100 and 200 repetitions
for the problem with 50,100, 500 and 1000 jobs, respectively.

6.3. Numerical Results

In this paper, to evaluate the performance of the proposed algorithm, as described in subsection 6.1, 120 instances
are generated and each of them is solved ten times and the average results of them are used in Equation (6). The
comparison results are reported in Table 3.

Table 3. Computational results

Instance
(Job × Machine)

 RPD of Algorithm

DPSO NS

50×10 0.000000 0.021253
50×20 0.001033 0.029671
50×50 0.000134 0.029417

50 Jobs 0.000389 0.026780

100×10 0.000188 0.017626
100×20 0.000564 0.024644
100×50 0.000060 0.045902

100 Jobs 0.000271 0.029391

500×10 0.000621 0.027224
500×20 0.001058 0.029846
500×50 0.000316 0.097436

500 Jobs 0.000665 0.051502

1000×10 0.000047 0.015282
1000×20 0.001053 0.021110
1000×50 0.000627 0.079693

1000 Jobs 0.000576 0.038695

Average 0.000475 0.036592

In this table, after computation of  +)(TE
of each instance of each algorithm, considering the result of two algo-

rithms, solMin
as the best solution is calculated, relative percentage deviation (RPD) is obtained by

lg
,sol sol

sol

A Min
RPD

Min

−
= (6)

9 J. Behnamian

where solA lg
is the  +)(TE

obtained for a given algorithm and instance.
For verifying the statistical validity of the results shown in Table 3, in this subsection, the analysis of variance

(ANOVA) is used in which the different algorithms are factors and the response variable are RPDs. For the algo-
rithms, single factor ANOVA results are shown in Table 4.

Table 4. ANOVA results for the method

Source Df Sum of square Mean square F F0.01,n1,n2 P-value

Method 1 0.073062 0.073062 162.0662 6.743***=F1,238 1.16E-28

Error 238 0.107295 0.000451

Total 239 0.180357

These results indicate that there is a method that is different in mean response. The results show that there is a
significant difference between the performances of the algorithms. This chart is a Least Significant Difference (LSD)
chart, which not only shows the difference in averages, but also shows the standard deviation of the results. As
you can see, in addition to the lower mean of the proposed algorithm, there is a lower standard deviation for the
DPSO algorithm compared to the NS algorithm in the results.

Figure 6. Plot of RPD for the type of algorithm factor

6.4. Analysis of controlled factors

Table 5 shows the interaction between the method and the number of jobs. As it can be seen in this table, the ef-

fect of a number of jobs, main and interaction effects are significant. Also, as shown in the RPD plot of interac-
tion in Figure 7, in all cases, the DPSO algorithm works better than NS.

Table 5. ANOVA results for method and the number of jobs

Source Df Sum of square Mean square F F0.01,n1,n2 P-value

A: Method 1 0.073062 0.073062 175.7286 6.74***=F1,232 3.11E-30

B: Number of jobs 3 0.005574 0.001858 4.468871 3.87***=F3,232 0.004506

A×B 3 0.083899 0.027966 67.2641 3.87***=F3,232 2.48E-31

Error 232 0.096458 0.000416

Total 239 0.180357

0.00

0.01

0.02

0.03

0.04

1

R
P

D
 E

T

DPSO NS

J. Behnamian 10

Figure 7. Plot of RPD for the interaction between the type of algorithm and the number of jobs

As shown in Table 6, all sources of variations, including main effects and interaction between the method and the
number of machines, are also significant. The interaction plot, as shown in Figure 8, in general, demonstrates that
with increasing the number of machines, the performance of the algorithms is declined.

Table 6. ANOVA results for method and the number of machines

Source Df Sum of square Mean square F F0.01,n1,n2 P-value

A: method 1 0.073062 0.073062 258.325 6.74***=F1,234 1.15E-39

D: number of machines 2 0.020376 0.010188 36.0219 4.69***=F2,234 2.30E-14

A×D 2 0.020736 0.010368 36.6581 4.69***=F2,234 1.42E-14

Error 234 0.066183 0.000283

Total 239 0.180357

Figure 8. Plot of RPD for the interaction between the type of algorithm and magnitude of machines

6.5. Discussion

A just-in-time parallel job scheduling consists of several machines in parallel in where a job may be proceed on
more than one machine at the same time. In this paper, it is assumed that the early and tardy deliveries of a job
with respect to its due date are penalized. Given the needs of the market, the existence of some industries that
require JIT, and the need for research on parallel job scheduling problem is felt. Furthermore, in most of the classic
scheduling research, it is assumed that a job is needed one machine in its processing, but as real problems become
more complex such as the textile industry (Serafini 1996) and berth allocation problem (Lee and Cai 1999) in which
such parallelism is required, the classic approach is not effective enough in them. In order to maintain competition
in such markets, manufacturers need to keep their customers satisfied by meeting their demands on time. For such
complex problem, the aim is to give a combinatorial characterization of the properties of the system in which these
schedules are allowed. In this paper, at first, we presented the problem by analyzing some simple cases. Then, we
used a graph model approach for a multi-machine task scheduling model with prespecified machine allocation.
Our main decisions were:

• Dividing jobs into independent sets: in this phase, we propose a heuristic in which we use a graph color-
ing concept, and

• Scheduling the independent sets in which job must be scheduled to minimize bi objectives.

0.00

0.02

0.04

0.06

50 Job 100 Job 500 Job 1000 Job

R
P

D
 E

T

DPSO NS

0.00

0.02

0.04

0.06

10 Machine 20 Machine 50 Machine

R
P

D
 E

T

DPSO NS

11 J. Behnamian

Despite the many applications that exist for the investigated problem and the acceptable results were obtained
here, there were limitations in this research that by solving them, it is expected that the problem will be closer to
the real world. For example, as a completely new trend in production planning problems, changes in manufactur-
ing factories and the interest of smaller companies to enter the global arena have created a new challenge in struc-
turing efficient operations management in geographically distributed production networks. As a result, these small
organizations merge and form a distributed production network to overcome the following problems:

• Response time to large stochastic disturbances in the market is not satisfactory due to the slowness of tra-
ditional production systems,

• Insufficient, inaccurate, and unreliable information due to the geographical size of the customer distribu-
tion has led decision-makers to make decisions based on conjecture or very little information, and

• The organizational structure of traditional systems is predetermined, which makes it inflexible to the
emergence of new markets and changes.

In such multi-factory mode, factories are distributed in different geographical locations to save transfer costs
and time. Also, they provide a better level of service to customers by placing the factory close to the customer
(Behnamian and Fatemi Ghomi 2015). In the mentioned network, the decision is delegated to lower levels of the
organization hierarchy and resolved locally in different system institutions. The solutions are then coordinated
together under a global objective function. Multi-factory production takes place in multi-factories, which may be
geographically distributed in different places to satisfy the demand and adapt to the globalization trend. Not pay-
ing attention to more recent objective functions such as considering environmental issues and green scheduling as
well as paying attention to social criteria is another limitation of this research.

7. Conclusions and future works

This paper presents an algorithm for a parallel job scheduling problem with the sum of the earliness and tardiness
objective function. The algorithm has two-phase. The first phase applied a heuristic algorithm, which concentrates
on the coloring of the associated scheduling system. In fact, in this phase, we make use of the graph coloring con-
cept to divide the jobs into independent sets according to their machine requirements. Then, in order to sequence
the job sets obtained from phase 1, in the second phase, we developed a new discrete version of the particle swarm
optimization algorithm that is hybridized with the genetic algorithm. Our experimental results indicated that the
proposed algorithm could find better solutions compared to the competing algorithm, especially for large-sized
instances. Furthermore, the analysis of controlled factors showed that the effect of a number of jobs and machines
are significant, so that in the both cases, the absolute superiority is with the proposed algorithm. The future work
is to change the objectives that we used in this paper and change the assumptions of this problem. For example,
this study assumes that all data is deterministic. There are different uncertainties in the real world's parameters,
and considering them will make the problem more attractive. Furthermore, due to the inherent complexity of the
problem, it is suggested that heuristic methods be used to solve the problem in future studies.

References

Barbosa, J.G. & Moreira, B. (2011). Dynamic scheduling of a batch of parallel task jobs on heterogeneous clusters, Parallel Com-
puting, 37(8), 428–438.

Behnamian, J. (2016). Graph coloring-based algorithm to parallel job scheduling on parallel factories. International Journal of
Computer Integrated Manufacturing, 29(6), 622-635.

Behnamian, J. (2020). Parallel Jobs Scheduling with a Specific Due Date: Asemi-definite Relaxation-based Algorithm, Journal of
Optimization in Industrial Engineering, 13(2), 199-210.

Behnamian, J., Fatemi Ghomi, S.M.T. (2015), Minimizing cost-related objective in synchronous scheduling of parallel factories in
virtual production network, Applied soft computing, 29, 221-232.

Bischof, S. & Mayr, E.W. (2001). On-line scheduling of parallel job with runtime restrictions. Theoretical Computer Science, 268,
1, 67–90.

Brelsford, D., Chochia, G., Falk, N., Marthi, K., Sure, R., Bobroff, N., ... & Seelam, S. (2012, May). Partitioned parallel job schedul-
ing for extreme scale computing. In Workshop on Job Scheduling Strategies for Parallel Processing (pp. 157-177). Springer,
Berlin, Heidelberg.

Dell’Olmo, P., & Gentili, M. (2006). Graph models for scheduling systems with machine saturation property. Mathematical Meth-
ods of Operations Research, 63(2), 329-340.

Dutot, P. F., Mounié, G., & Trystram, D. (2004). Scheduling parallel tasks: Approximation algorithms.

Ebrahimi Moghaddam, M., & Bonyadi, M. R. (2012). An immune-based genetic algorithm with reduced search space coding for
multiprocessor task scheduling problem. International Journal of Parallel Programming, 40(2), 225-257.

Ebrahimi Zade, A., Fakhrzad, M., Hasaninezhad, M. (2016). A heuristic algorithm for solving single machine scheduling problem
with periodic maintenance. Journal of System Management, 2(4), 1-12.

Garey, M. R. (1979). computers and intractqbility. A Guide to the Theory of NP-Completeness.

Guan, Y. Xiao, W-Q. Cheung, R. K. & Li, C-L. (2002). A multiprocessor task scheduling model for berth allocation: Heuristic and
worst-case analysis, Operations Research Letters, 30(5), 343-350.

https://www.researchgate.net/scientific-contributions/57422121_Wen-Qiang_Xiao?_sg=9yf_xNDTYUjm-nuhZA170xcZN_bK30x1-uS5rlBwrQXaXeQU1bscKwx661GqEeuszByqoG0.3cM7XjyBGzwky0TH3kp4J_wfLzOScC-cMxCxLQceUCbEXhU_XyOMwDYH4HYHX3TL-R1DdeW42oP9x1RDSbtB9Q
https://www.researchgate.net/scientific-contributions/70668639_Raymond_K_Cheung?_sg=9yf_xNDTYUjm-nuhZA170xcZN_bK30x1-uS5rlBwrQXaXeQU1bscKwx661GqEeuszByqoG0.3cM7XjyBGzwky0TH3kp4J_wfLzOScC-cMxCxLQceUCbEXhU_XyOMwDYH4HYHX3TL-R1DdeW42oP9x1RDSbtB9Q

J. Behnamian 12

Guo, S., & Kang, L. (2010). Online scheduling of malleable parallel jobs with setup times on two identical machines. European
Journal of Operational Research, 206(3), 555-561.

Hao, Y., Wang, L., Zheng, M. (2016). An adaptive algorithm for scheduling parallel job in meteorological Cloud, Knowledge-
Based Systems, 98, 226-240.

Hao, Y., Xia, M., Wen, N., Hou, R., Deng, H., Wang, L., Wang, Q. (2017). Parallel task scheduling under multi-Clouds, KSII
Transactions on Internet and Information Systems, 11, 1, 39-60.

Hoogeveen, J. A., van de Velde, S. L., & Veltman, B. (1994). Complexity of scheduling multiprocessor tasks with prespecified
processor allocations. Discrete Applied Mathematics, 55(3), 259-272.

Jansen, K., & Porkolab, L. (2002). Linear-time approximation schemes for scheduling malleable parallel tasks. Algorithmica, 32(3),
507-520.

Jansen, K. & Porkolab, L. (2003). Computing optimal preemptive schedules for parallel tasks: Linear programming approaches.
Mathematical Programming, 95, 3, 617–630.

Jansen, K., Trystram, D. (2016). Scheduling parallel job on heterogeneous platforms, Electronic Notes in Discrete Mathematics,
55, 9-12.

K. Jansen (2002). Scheduling malleable parallel tasks: An asymptotic fully polynomial-time approximation scheme. In R. Möhring
and R. Raman, editors, Proceedings of ESA 2002. LNCS, 2461, 562–574, Springer, Berlin.

Lee, C. Y., & Cai, X. I. A. O. Q. I. A. N. G. (1999). Scheduling one and two-processor tasks on two parallel processors. IIE transac-
tions, 31(5), 445-455.

Leung, K.K. Yung N.H.C. & Cheung, P.Y.S. (2002). Novel neighborhood search for multiprocessor scheduling with pipelining,
Journal of Parallel and Distributed Computing 62, 85–110.

Li, K., & Pan, Y. (2000). Probabilistic analysis of scheduling precedence constrained parallel tasks on multicomputers with con-
tiguous processor allocation. IEEE transactions on computers, 49(10), 1021-1030.

Li, K. (2018). Scheduling parallel tasks with energy and time constraints on multiple manycore processors in a cloud computing
environment, Future Generation Computer Systems, 82, 591-605.

Liu, X., Zha, Y., Yin, Q., Peng, Y., Qin, L. (2015). Scheduling parallel job with tentative runs and consolidation in the cloud, Journal
of Systems and Software, 104, 141-151.

Niu, Q. Jiao, B. Gu, X. (2008). Particle swarm optimization combined with genetic operators for job shop scheduling problem
with fuzzy processing time, Applied Mathematics and Computation, 205(1), 148-158.

Parida, S., Nayak, S. C., Priyadarshi, P., Pattnaik, P. K., & Ray, G. (2018). Petri net: Design and analysis of parallel task scheduling
algorithm. In Advances in Electronics, Communication and Computing (pp. 765-776). Springer, Singapore.

Pinedo, M. L. (2012). Scheduling (Vol. 29). New York: Springer.

Serafini, P. (1996). Scheduling jobs on several machines with the job splitting property. Operations Research, 44(4), 617-628.

Srinivasan, S., Subramani, V., Kettimuthu, R., Holenarsipur, P., & Sadayappan, P. (2002, December). Effective selection of parti-
tion sizes for moldable scheduling of parallel jobs. In International Conference on High-Performance Computing (pp. 174-
183). Springer, Berlin, Heidelberg.

Su, L. H. (2009). Minimizing earliness and tardiness subject to total completion time in an identical parallel machine system.
Computers & operations research, 36(2), 461-471.

Sun, H. Hsu, W-J. & Cao, Y. (2014). Competitive online adaptive scheduling for sets of parallel job with fairness and efficiency,
Journal of Parallel and Distributed Computing, 74(3), 2180–2192.

Yazdani, M., Jolai, F. (2015). A genetic algorithm with modified crossover operator for a two-agent scheduling problem. Journal
of System Management, 1(3), 1-13.

Ye, D., & Zhang, G. (2003). On-line scheduling of parallel jobs with dependencies on 2-dimensional meshes. In in proceedings of
the 14th annual international symposium on algorithms and computation (ISAAC).

Ye, D. & Zhang, G. (2007). On-line scheduling of parallel job in a list, Journal of scheduling, 10, 407–413.

Zhang, L., Zhou, L., & Salah, A. (2020). Efficient scientific workflow scheduling for deadline-constrained parallel tasks in cloud
computing environments. Information Sciences, 531, 31-46.

Zheng, B., Pan, L., & Liu, S. (2021). Market-oriented online bi-objective service scheduling for pleasingly parallel jobs with vari-
able resources in cloud environments. Journal of Systems and Software, 176, 110934.

Zong, Z., Manzanares, A., Ruan, X., & Qin, X. (2010). EAD and PEBD: two energy-aware duplication scheduling algorithms for
parallel tasks on homogeneous clusters. IEEE Transactions on Computers, 60(3), 360-374.

This article can be cited: Behnamian, J., (2022). Just-in-time parallel jobs scheduling: A novel algo-

rithm. Journal of Industrial Engineering and Management Studies, Vol 9, No.2, pp. 1-12.

https://www.sciencedirect.com/science/article/pii/S095070511600068X
https://www.sciencedirect.com/science/article/pii/S1571065316301597
https://www.sciencedirect.com/science/article/pii/S0167739X17300298
https://www.sciencedirect.com/science/article/pii/S0167739X17300298
https://www.sciencedirect.com/science/article/pii/S0164121215000588

