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Abstract 

This research extends a two-phase algorithm for parallel job scheduling problem by considering earliness and tardiness as multi-
objective functions. Here, it is also assumed that the jobs may use more than one machine at the same time, which is known as 
parallel job scheduling. In the first phase, jobs are grouped into job sets according to their machine requirements. For this, here, 
a heuristic algorithm is proposed for coloring the associated graph. In the second phase, job sets will be sequenced as a single 
machine scheduling problem. In this stage, for sequencing the job sets which are obtained from the first phase, a discrete algo-
rithm is proposed, which comprises two well-known metaheuristics. In the proposed hybrid algorithm, the genetic algorithm 
operators are used to discretize the particle swarm optimization algorithm. An extensive numerical study shows that the algo-
rithm is very efficient for the instances which have different structures so that the proposed algorithm could balance exploration 
and exploitation and improve the quality of the solutions, especially for large-sized test problems. 

Keywords: parallel job scheduling; parallel machine; earliness and tardiness; graph coloring; particle swarm optimization. 
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1. Introduction 

The scheduling problem is the allocation of limited resources to perform a set of activities in a period of time 

(Ebrahimi Zade et al. 2016). A parallel job scheduling consists of a production stage that has a parallel machine, 

and it is assumed that at the same time, a job may use more than one machine for its processing. Many applications 

of parallelism, such as bandwidth and storage management, are reported (Zhang et al. 2020). Furthermore, many 

real-world problems such as semiconductors and aircraft manufacturing involve simultaneous optimization of 

several objective functions. In this paper, to reflect real-world situations adequately, the earliness and tardiness 

(ET) of jobs are concerned, in which both early and tardy deliveries of a job with respect to its due date are penal-

ized. Another assumption considered in this scheduling model is parallel job scheduling in which a job may use 

more than one machine simultaneously. Loom scheduling problem in the textile industry (Serafini 1996) and berth 

allocation problem (Guan et al. 2002) are two applications of the parallel job scheduling problem.  

This paper considered the scheduling of parallel jobs on the parallel machine with the sum of the earliness and 

tardiness objective function. The problem of parallel job scheduling with earliness and tardiness is one of the most 

up-to-date problems. These problems are significant because of the importance of simultaneous reducing earliness 

and tardiness, considering the parallel resources, in which the demand is met in a shorter time. Reviewing various 

research in this field in recent years, it was observed that there are several applications, among them CPU sched-

uling in computer science (as parallel tasks scheduling) and operating room scheduling (where the patient may 

simultaneously need several doctors during surgery) mentioned. Here, two decisions are made in two-phase: di-

viding jobs into independent sets using a graph coloring-based heuristic algorithm and sequencing the independ-

ent sets as a single machine scheduling problem using metaheuristic. As proved in Theorem 3.2. in Hoogeveen et 

al. (1994), a parallel job scheduling problem with only two parallel machine and total completion times objective 

function is NP-hard. Also, according to complexity hierarchies of deterministic scheduling problems in objective 

functions in Pinedo (2008), the problem with total tardiness objective function is harder than the other one with 

total completion time objective function. For these reasons, we can easily conclude that our problem with m parallel 

machine and the sum of the earliness and tardiness objective function is also NP-hard. Since the problem of parallel 

machine scheduling with the sum of the earliness and tardiness objective function is NP-hard (Pinedo 2008), in 

phase 2, an efficient metaheuristic is proposed to achieve a good solution.  
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The paper has the following structure. Section 2 reviews the literature of parallel job scheduling. The problem 

defines in Section 3. Section 4 introduces the proposed graph-based algorithm for dividing the jobs into independ-

ent sets. Section 5 introduces an algorithm for sequencing the job sets. Section 6 presents the computational design. 

Section 7 states conclusions and further research.  

2. Literature review 

For optimizing the performance and energy efficiency in parallel job scheduling on homogeneous clusters, Zong 

et al. (2011) proposed performance-energy balanced-based algorithms. Hao et al. (2017) considered a parallel job 

scheduling problem under multi-clouds in which jobs are in different lists according to the waiting time of jobs 

and every job has different parallelism. For this problem, they proposed parallel job scheduling based on ZERO-

ONE scheduling with multiple targets algorithm. For the parallel job scheduling on multiple manycore machines, 

Li (2018) proposed the lower bounds for the problems of energy and time-constrained scheduling with precedence 

constrained in a cloud computing environment. To minimize the maximum completion time, Jansen and Trystram 

(2016) proposed an approximation algorithm with the absolute ratio for parallel job scheduling on heterogeneous 

platforms.  

For parallel workload consolidation, Liu et al. (2015) introduced a prioritized two-tier virtual machines architecture 

and proposed a consolidation-based parallel job scheduling algorithm. For scheduling the modular non-linear par-

allel jobs, Hao et al. (2016) proposed an adaptive algorithm. At the same time, four characteristics of the jobs were 

taken into account, including the deadlines of jobs, average execution time, the overall system loads and the num-

ber of assigned resources. To minimize makespan in the multi-factory scheduling problem with the parallel job, 

Behnamian (2016) proposed semidefinite programming. In this paper, it is assumed that some factories join to-

gether to form a production network. Due to various applications of parallel jobs, this environment has been stud-

ied extensively. Table 1 summarizes in chronological order. 

 

Table 1. Summarized literature review 

Year Author/s Comments 

1989 Du and Leung complexity of scheduling  
1992 Wang and Cheng heuristic of scheduling  
1994 Babbar and Krueger online hard real-time scheduling, partitionable multiprocessors 
1994 Turek et al. scheduling parallelizable tasks, minimizing average response time  
1996 Drozdowski real-time scheduling of linear speedup  
1996 Sgall randomized online scheduling  
1997 Glasgow and Shachnai channel-based scheduling  
1998 Rapine et al. online scheduling of parallelizable jobs 
1998 Feitelson and Rudolph metrics and benchmarking for parallel job scheduling  
1998 Feldmann et al. optimal online scheduling, jobs arrive dynamically according to the dependencies  
1999 Krishnamurti and 

Gaur 
approximation algorithm, hypercube parallel task  

1999 Kwon and Chwa. parallel tasks with individual deadlines  
1999a Li  approximation algorithm, independent parallel tasks  
1999b Li list scheduling algorithm, precedence constrained parallel tasks  
2000 Deng et al. preemptive scheduling on multiprocessors 
2000 Jansen and Porkolab preemptive parallel task  
2000 Li and Pan probabilistic analysis, precedence constrained parallel tasks, multi-computers with contiguous pro-

cessor allocation  
2001 Bischof and Mayr  online scheduling of parallel jobs with runtime restrictions 
2002 Jansen malleable parallel tasks, asymptotic fully polynomial-time approximation scheme  
2002 Jansen and Porkolab linear-time approximation schemes  
2002 Srinivasan et al. selection of partition sizes for moldable scheduling 
2003 Jansen and Porkolab optimal preemptive schedules, Linear programming approaches  

2003 Ye and Zhang online scheduling, parallel job with dependencies  
2004 Dutot et al. approximation algorithms  
2007 Ye and Zhang a 7-competitive online algorithm, improves the previous upper bound 
2010 Guo and Kang malleable parallel job, online algorithm with competitive ratio, optimal for two machines 
2011 Barbosa and Moreira Batch of jobs with non-deterministic arrival times, minimizing the scheduling makespan, Using di-

rect acyclic graph for list scheduling 
2012 Ebrahimi Moghaddam 

and Bonyadi 
Multiprocessor task scheduling, immune-based Genetic algorithm, new coding scheme to reduce 
search space 

2013 Brelsford et al. parallel job scheduling for extreme scale computing, hybrid centralized and distributed approach, 
improves the scaling behavior of scheduling time 

2014 Sun et al. Online adaptive scheduling for multiple sets of parallel job, two-level algorithm scenario with a 
feedback-driven adaptive scheduler, minimizing the scheduling total response time and makespan 

2018 Parida et al. designing and modeling the Petri Net for parallel task scheduling for deadline-based task by resolv-
ing the conflicts 

2020 Behnamian a semi-definite relaxation-based algorithm for parallel job scheduling with a specific due date  
2021 Zheng et al. online service scheduling of parallel jobs with variable resources in clouds 
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According to the reviewed literature, the main novelty of this paper is the scheduling of parallel jobs using a novel 
hybrid algorithm composed of the graph coloring concept and heuristic algorithm. In this regard, after grouping 
the jobs by a graph coloring heuristic algorithm, we proposed a discrete hybrid metaheuristic approach for se-
quencing the obtained job sets in order to minimize the sum of earliness and tardiness. In this regard, crossover 
and mutation operators are embedded in the particle swarm optimization algorithm (PSO). To the best of our 
knowledge, this study is novel research that combined a graph model and metaheuristic to scheduling problems. 

3. Problem statement 

This paper considered the parallel job scheduling on a parallel machine. The objective is to find a feasible sched-
ule in which earliness and tardiness are penalized at the same rate for all jobs. 

3.1. Notations 

The notations used in the rest of the paper are as follows: 

m  The number of identical parallel machines, 

n  The number of independent parallel jobs 

 }{ 21 n . . . T, TTT =
 

A set of n  independent jobs 

 }{ 21 m . . . P, PPP = 
 

A set of m  machines 

mm j   
The number of machines simultaneously required at any point in time to process 
job j )is known as the width of the job and is part of the input   (  

jC
 

The completion time of job j 

jd
 

The due date of job j 

,0max )-C,d(=E jjj  The earliness of job
j

 

,0max )-d,C(=T jjj  The tardiness of job
j

 

3.2. Assumptions 

The characters of the considered problem in this paper are as follows. 

• All jobs have unit processing time which we also call its length 

• All the problem parameters are known deterministically when scheduling is undertaken. 

• Workstation has a set of identical machines. 

• A job once started on the machine must be completed on it without interruption. 

• A machine can process only one job at a time.  

• The machines are available at all times if they are not busy.  

• There are no breakdowns or scheduled or unscheduled maintenance. 
 

4. Grouping the jobs  

The correspondence between scheduling problems and associated graphs is described in this section. Here it is 
assumed all jobs have unit processing times and the processing of each job requires the simultaneous availability 

of a set of machines 
 P )P(Tj 

during its processing time.  
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4.1. Parallel job scheduling and related graph 

The parallel job scheduling, as shown in Figure 1, can intercommunicate with the graph in which a vertex is used 
as a job and an edge between two vertices is used when the corresponding jobs are in conflict (i.e. 

 )  P(T) P(T ji 
). 

 

 

 

 

 

 

 

Figure 1. A scheduling system and the associated constraint graph 

In this example, the scheduling problem has four machines 1 2 3 4{ , , , }P P P P
and five jobs 

},,,,{ 54321 TTTTT
 

such that 1 1 4{ }P(T ) = P , P
, 2 2{ },P(T ) = P 3 3 4{ }P(T ) = P , P

, 4 3{ }P(T ) = P
 and 5 1 2{ }P(T ) = P , P

. 
Note that with unit processing times, since a minimum coloring on the graph corresponds to scheduling with 
minimum length (Dell’Olmo & Gentili 2006), we are interested in the graph with a coloring that implies a schedule 
without idle times. In the following subsection, correspondence between graph and scheduling systems is de-
scribed more formally. To do that, we need to introduce a method for coloring the associated graph.  

4.2. Graph coloring 

In the first phase, the jobs must be grouped into job sets according to their machine requirements using the vertex 
coloring concept. In general, the grouping representation consists of a job part and a group part. The job part 

consists of n  genes that must be colored and the color part consists of a permutation of the k color labels. A job 

gene can take any of k  colors as an allele, indicating that the job in question belongs to a color of the given label. 

An example of a chromosome with 7=n and 3=k  is shown in Figure 2.  

 

B B A B B C A B A C 

 
 

 
Figure 2. Example of a chromosome in grouping representation 

The group part shows that three colors A, B and C are used for coloring the graph. The job part discloses that nodes 
3 and 7 are colored with color A, nodes 1, 2, 4 and 5 are colored with color B and node 6 is colored with color C.  
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Since finding the minimum vertex coloring of an arbitrary graph is a known NP-hard problem (Garey & John-
son1979), in Algorithm 1, we propose a heuristic algorithm that can generate legal coloring for n nodes. To evaluate 
the colored graph, the objective of the corresponding machine scheduling system is defined as the fitness function. 
It is obvious to minimize the corresponding scheduling problem, the proposed heuristic algorithm must minimize 
the number of colors used for coloring the graph. 

4.3. Sequencing the job sets 

In phase 2, the job sets that are obtained by classification of jobs according to their need to machines in the inde-
pendent set, must be sequenced at the group of the machine. In this phase, we have a single machine scheduling 
problem, which in it the job sets and parallel machine are considered as jobs and single machine, respectively.  

If jC
and jd

 be the completion time and due date for the job j, respectively, the earliness and tardiness of job
j

are defined as 

,0max )-C,d(=E jjj   
(1) 

,0max )-d,C(=T jjj   
(2) 

It is clear in the scheduling problem with  + )( TE
objective function, earliness and tardiness are penalized at the 

same rate for all jobs (Su 2009). This form of objective function perfectly fits a Just-in-time (JIT) manufacturing 
policy where an early or late delivery of a job results in an increase in production costs. 

In this study, as shown in Equation (3), the sum of the earliness and tardiness of jobs are combined as a single 
scalar value.  

 

(3) 

For solving our problem with this objective function, a discrete particle swarm optimization algorithm is presented. 

5. A discrete hybrid metaheuristic approach 

In applying the particle swarm optimization algorithm (PSO) to generate a movement based on swarm in contin-
uous problems, there are several approaches, but in discrete ones, it needs more innovation. In this regard, for 
example, by coding a solution as a chromosome, crossover and mutation operators can be used as a movement 
policy. Such coding allows the possible integration of different features from other metaheuristic algorithms, such 
as the genetic algorithm (GA) in the PSO. The following subsection discusses which aspects have been borrowed 
from the particle swarm optimization algorithm and genetic algorithm. 

 
 
 
 

.
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
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5.1. Particle swarm optimization algorithm 

This algorithm is based on modeling and simulating the behavior of a group flight of birds or a mass movement 
of fishes. Each particle has a coordinate that specifies what the particle coordinates are in the multidimensional 

search space. As the particle moves over time, the location of the particle changes. idx  (k)
 denotes the location of 

the particle i in dimension d at time k. Each particle also needs speed to move through space, with idv (k)
  being 

the particle speed i in dimension d at time k. Whether or not the location of a particle in the search space is a 
suitable location is evaluated by a fitness function. The particles are capable of remembering the best location they 
have been in their lifetime. It is called the best individual experience of a particle or the best location met by a 
swarm, which is shown by Pbest. Particles can also be aware of the best location met by the whole group, called 
gbest. The particle speed involved in the optimization process reflects the experimental knowledge of the particle 
and the swarm information. The new velocity of each particle is calculated as follows: 

1 1 2 21id id id id gd idv  (k  + ) =  v (k) + λ r [pn  (k) - x  (k)] + λ r [pn  (k) - x  (k)],
  

(4) 

where 1 λ
 and 2 λ

 are acceleration coefficients,   is inertia factor, and 1 r
 and 2 r

 are two independent random 
numbers uniformly distributed in the range [0, 1]. 
Thus, in each generation, the position of each particle is updated according to Equation (5).  

) (k +  (k) + v) = x (k + x ididid 11
 

(5) 

 
Algorithm 2 shows the structure of the proposed algorithm. 
 
Algorithm 2: Basic PSO structure 

 

 5.2. Genetic algorithm 

In our proposed algorithm, we make use of GA operators as the most well-known mechanisms to generate new 
individuals (Yazdani & Jolai 2015). In the subsequent section, a discrete PSO algorithm that hybrids with crossover 
and mutation operators is introduced. 

 

 5.3. The proposed algorithm 

In applying the PSO algorithm to our problem, the important issue is to find a method to redefine subtraction and 
addition operations. In this paper, the genetic operators as a useful method (Niu et al. 2008) are used to update the 
particle position.  The structure of the proposed algorithm is shown in Algorithm 3 and the implementation details 
are mentioned after that.  
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Algorithm 3: DPSO algorithm structure 

 

5.3.1. Encoding scheme 

The proposed representation of our proposed algorithm to solve scheduling is based on coding all job sets as genes 

in a  )'(-by-1 n  string where 'n  is a number of jobs sets. In this type of representation, the sequence of job sets 
is represented by the number of genes from the left side to the right side. Figure 3 shows an example of represen-
tation. In this example, there are five job sets with order 5→1→2→4→3.  

 

 

Figure 3. Solution representation 

5.3.2. Initial solution 

In this paper, to generate a feasible solution, a random initial solution is used. 

5.3.3. Crossover operator 

In this paper, a two-point crossover operator is used to generate a new position (NP) to the best p
 or best g

 ( p S

or s S
). 

P 4 
8 

1 2 3 9 10 5 
7 

6 

  

S 2 7 8 1 3 10 4 6 5 9 

  

NP 4 8 2 1 3 10 5 9 7 6 

Figure 4. Two-point crossover operator 

As shown in the example, after selecting two parents (P and S) randomly from the population, two points are 
chosen from the first parent and the genes outside these points are transmitted exactly to the offspring's chromo-
some (NP). Then these genes are removed from the second parent and the remaining genes, in order of presentation 
in the second parent, are copied into the empty cells of the offspring's chromosome. 

5.3.4. Mutation operators 

In this paper, the insertion mutation is used. As shown in the following example, a randomly chosen cell is inserted 
into a randomly chosen position (the 2nd locus marked by a blue block). 

Before 4 8 1 2 3 9 10 5 7 6 
  

After 4 8 5 1 2 3 9 10 7 6 
Figure 5. Insertion mutation 

5 1 2 4 3 
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6. Computational results 

Considering earliness/tardiness objective, parallel job, and parallel machine, to the best of our knowledge, the 
most related and newest study to our research is Leung et al. (Leung et al. 2002), which proposed a neighborhood 
search (NS) algorithm. In order to evaluate the effectiveness of the proposed algorithm, at first, the neighborhood 
search is adapted to the ET objective, and then, for the randomly generated test problems, our proposed algorithm 
was compared with it. The algorithms were implemented in MATLAB 7 under a Microsoft Windows 7 environ-
ment. 

6.1. Data generation and settings 

The test problems used in this paper were generated using the level(s) of factors are shown in Table 2. 

Table 2. Factor levels 

Factor  Levels 

Number of jobs )(n   50 100 50 1000 

Number of machines )(m   10 20  50  

Width of job )( jm   (0, 2/m )   

Another important issue is the due dates of the jobs. In this study, the due dates are uniformly distributed from 1 
to 3, which are 100% to 300% of processing time. 

6.2. Stopping rule 

The stopping condition for sequencing the job sets is set to a number of iterations to 25, 50, 100 and 200 repetitions 
for the problem with 50,100, 500 and 1000 jobs, respectively. 

6.3.  Numerical Results 

In this paper, to evaluate the performance of the proposed algorithm, as described in subsection 6.1, 120 instances 
are generated and each of them is solved ten times and the average results of them are used in Equation (6). The 
comparison results are reported in Table 3.  

Table 3. Computational results 

Instance 
(Job × Machine) 

 RPD of Algorithm 

DPSO NS 

50×10  0.000000 0.021253 
50×20  0.001033 0.029671 
50×50  0.000134 0.029417 
      
50 Jobs  0.000389 0.026780 
      
100×10  0.000188 0.017626 
100×20  0.000564 0.024644 
100×50  0.000060 0.045902 
      
100 Jobs  0.000271 0.029391 
      
500×10  0.000621 0.027224 
500×20  0.001058 0.029846 
500×50  0.000316 0.097436 
      
500 Jobs  0.000665 0.051502 
      
1000×10  0.000047 0.015282 
1000×20  0.001053 0.021110 
1000×50  0.000627 0.079693 
      
1000 Jobs  0.000576 0.038695 
      

Average  0.000475 0.036592 

 

In this table, after computation of  + )( TE
of each instance of each algorithm, considering the result of two algo-

rithms, solMin
as the best solution is calculated, relative percentage deviation (RPD) is obtained by  

lg
,sol sol

sol

A Min
RPD

Min

−
=  (6) 
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where solA lg
is the  + )( TE

obtained for a given algorithm and instance. 
For verifying the statistical validity of the results shown in Table 3, in this subsection, the analysis of variance 

(ANOVA) is used in which the different algorithms are factors and the response variable are RPDs. For the algo-
rithms, single factor ANOVA results are shown in Table 4. 

Table 4. ANOVA results for the method 

Source Df Sum of square Mean square F F0.01,n1,n2 P-value 

Method 1 0.073062 0.073062 162.0662 6.743***=F1,238 1.16E-28 

Error 238 0.107295 0.000451    

Total 239 0.180357     

 
These results indicate that there is a method that is different in mean response. The results show that there is a 
significant difference between the performances of the algorithms. This chart is a Least Significant Difference (LSD) 
chart, which not only shows the difference in averages, but also shows the standard deviation of the results. As 
you can see, in addition to the lower mean of the proposed algorithm, there is a lower standard deviation for the 
DPSO algorithm compared to the NS algorithm in the results. 

 
Figure 6. Plot of RPD  for the type of algorithm factor 

6.4. Analysis of controlled factors 

Table 5 shows the interaction between the method and the number of jobs. As it can be seen in this table, the ef-

fect of a number of jobs, main and interaction effects are significant. Also, as shown in the RPD  plot of interac-
tion in Figure 7, in all cases, the DPSO algorithm works better than NS. 

Table 5. ANOVA results for method and the number of jobs 

Source Df Sum of square Mean square  F F0.01,n1,n2 P-value 

A: Method 1 0.073062 0.073062 175.7286 6.74***=F1,232 3.11E-30 

B: Number of jobs 3 0.005574 0.001858 4.468871 3.87***=F3,232 0.004506 

A×B 3 0.083899 0.027966 67.2641 3.87***=F3,232 2.48E-31 

Error 232 0.096458 0.000416    

Total 239 0.180357     

0.00

0.01

0.02

0.03

0.04

1

R
P

D
 E

T

DPSO NS
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Figure 7. Plot of RPD  for the interaction between the type of algorithm and the number of jobs 

As shown in Table 6, all sources of variations, including main effects and interaction between the method and the 
number of machines, are also significant. The interaction plot, as shown in Figure 8, in general, demonstrates that 
with increasing the number of machines, the performance of the algorithms is declined. 

Table 6. ANOVA results for method and the number of machines 

Source Df Sum of square Mean square F F0.01,n1,n2 P-value 

A: method 1 0.073062 0.073062 258.325 6.74***=F1,234 1.15E-39 

D: number of machines 2 0.020376 0.010188 36.0219 4.69***=F2,234 2.30E-14 

A×D 2 0.020736 0.010368 36.6581 4.69***=F2,234 1.42E-14 

Error 234 0.066183 0.000283    

Total 239 0.180357     

 

Figure 8. Plot of RPD  for the interaction between the type of algorithm and magnitude of machines 

6.5. Discussion 

A just-in-time parallel job scheduling consists of several machines in parallel in where a job may be proceed on 
more than one machine at the same time. In this paper, it is assumed that the early and tardy deliveries of a job 
with respect to its due date are penalized. Given the needs of the market, the existence of some industries that 
require JIT, and the need for research on parallel job scheduling problem is felt. Furthermore, in most of the classic 
scheduling research, it is assumed that a job is needed one machine in its processing, but as real problems become 
more complex such as the textile industry (Serafini 1996) and berth allocation problem (Lee and Cai 1999) in which 
such parallelism is required, the classic approach is not effective enough in them. In order to maintain competition 
in such markets, manufacturers need to keep their customers satisfied by meeting their demands on time. For such 
complex problem, the aim is to give a combinatorial characterization of the properties of the system in which these 
schedules are allowed. In this paper, at first, we presented the problem by analyzing some simple cases. Then, we 
used a graph model approach for a multi-machine task scheduling model with prespecified machine allocation. 
Our main decisions were:  

• Dividing jobs into independent sets: in this phase, we propose a heuristic in which we use a graph color-
ing concept, and  

• Scheduling the independent sets in which job must be scheduled to minimize bi objectives. 
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Despite the many applications that exist for the investigated problem and the acceptable results were obtained 
here, there were limitations in this research that by solving them, it is expected that the problem will be closer to 
the real world. For example, as a completely new trend in production planning problems, changes in manufactur-
ing factories and the interest of smaller companies to enter the global arena have created a new challenge in struc-
turing efficient operations management in geographically distributed production networks. As a result, these small 
organizations merge and form a distributed production network to overcome the following problems: 

• Response time to large stochastic disturbances in the market is not satisfactory due to the slowness of tra-
ditional production systems, 

• Insufficient, inaccurate, and unreliable information due to the geographical size of the customer distribu-
tion has led decision-makers to make decisions based on conjecture or very little information, and 

• The organizational structure of traditional systems is predetermined, which makes it inflexible to the 
emergence of new markets and changes. 

In such multi-factory mode, factories are distributed in different geographical locations to save transfer costs 
and time. Also, they provide a better level of service to customers by placing the factory close to the customer 
(Behnamian and Fatemi Ghomi 2015). In the mentioned network, the decision is delegated to lower levels of the 
organization hierarchy and resolved locally in different system institutions. The solutions are then coordinated 
together under a global objective function. Multi-factory production takes place in multi-factories, which may be 
geographically distributed in different places to satisfy the demand and adapt to the globalization trend.  Not pay-
ing attention to more recent objective functions such as considering environmental issues and green scheduling as 
well as paying attention to social criteria is another limitation of this research. 

7. Conclusions and future works 

This paper presents an algorithm for a parallel job scheduling problem with the sum of the earliness and tardiness 
objective function. The algorithm has two-phase. The first phase applied a heuristic algorithm, which concentrates 
on the coloring of the associated scheduling system. In fact, in this phase, we make use of the graph coloring con-
cept to divide the jobs into independent sets according to their machine requirements. Then, in order to sequence 
the job sets obtained from phase 1, in the second phase, we developed a new discrete version of the particle swarm 
optimization algorithm that is hybridized with the genetic algorithm. Our experimental results indicated that the 
proposed algorithm could find better solutions compared to the competing algorithm, especially for large-sized 
instances. Furthermore, the analysis of controlled factors showed that the effect of a number of jobs and machines 
are significant, so that in the both cases, the absolute superiority is with the proposed algorithm. The future work 
is to change the objectives that we used in this paper and change the assumptions of this problem. For example, 
this study assumes that all data is deterministic. There are different uncertainties in the real world's parameters, 
and considering them will make the problem more attractive. Furthermore, due to the inherent complexity of the 
problem, it is suggested that heuristic methods be used to solve the problem in future studies.  
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