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Abstract

This paper presents a common set of weights (CSWs) method for multi-stage or network structured decision-making units
(DMUs). The decision-making approaches proposed here consist of three stages. In the first step, a hybrid dynamic network
data envelopment analysis (DNDEA) model is used to determine the efficiency values of the supply chain. Next, a CSW model
is developed using the range-adjusted measure (RAM). In the third step, the extracted CSWs are used to compute a separate
weight for each component of each DMU. the extracted CSWs are then used in the third step to calculate DMUs weights sepa-
rately for each component. Then the overall efficiency is obtained by weighted averaging of the efficiency of individual com-
ponents. Thus, this model evaluates the overall efficiency of a network process as well as the contribution of individual net-
work components. The results of this study demonstrate the model’s capability to evaluate the efficiency of dynamic network
structures with very high discriminatory power. In an implementation of the model in a case study, only one supplier
(KARAN) earned the maximum efficiency value, and the efficiency scores of other suppliers were in the range of 0.6409-0.9983.
After applying the CSWs, KARAN remained the most efficient supplier, and the efficiency scores of other suppliers moved to
the range of 0.5002-0.9349. The range shifted to 0.4823-0.9921 after applying the stages weights. This weighting method should
be considered an integral part of such modeling procedures, Given the enhancement observed in the results of CSW after in-
corporating the component weights.
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1. Introduction

In a world of economic, political, social, and environmental instability, success belongs to those companies and
organizations where managers understand the importance of continuous supply chain performance evaluation
(Anisimov et al. 2022). Nowadays, many companies have to rigorously evaluate their suppliers to ensure that
they meet their standards (Amiri et al. 2021). There are various methods for such evaluations, one of which is
Data Envelopment Analysis (DEA). DEA is a simple but capable method for evaluating the efficiency of a set of
alternatives (Decision-Making Units or DMUs) and classifying them into efficient and inefficient units, but it is
not without its drawbacks and shortcomings. One of these shortcomings is that classical DEA models ignore the
inner workings of DMUs, which means they can only determine whether a unit is efficient or not and cannot
identify the source of inefficiency within a unit (Kao and Liu 2022). To address this shortcoming, researchers
have introduced a version of DEA called Network DEA or NDEA which can compute not only the overall effi-
ciency but in addition the partial efficiency of units in an integrated framework (Fathi, Karimi, and Saen 2022).
But this model also has a shortcoming in that it is static, and does not consider time. Researchers have also de-
veloped another version of DEA called Dynamic DEA or DDEA for competitive and dynamic environments with
constantly changing variables. This model can compute the efficiency of organizational units in time periods of
interest (Bansal and Mehra 2022), but it has the problem of treating units as black boxes and ignoring their inner
structures. Another problem of conventional DEA models is that they allow maximum flexibility in selecting
input and output weights for DMUs (Tabatabaei et al. 2022), Which means, that each unit allocates the most
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weights to the output and the lowest weights to the inputs to maximize its efficiency (Soltanifar et al. 2022). Un-
der these conditions, different DMUs may be given different sets of weights in efficiency assessments (Ghasemi
et al. 2022). This tends to result in most units being classified as efficient, which makes it impossible to compare
them. Therefore, one of the most significant issues of DEA is the calculation of weights for input and output indi-
ces. Some researchers have argued that it does not make sense to consider different weights for the same DMUs
(Tabatabaei et al. 2022), and have therefore proposed alternative methods of calculating the Common Set of
Weights (CSW) for input and output variables. Over the years, this method has been expanded by many re-
searchers, proposing various models, with their drawbacks and strengths.

Considering the multi-stage nature of supply chains and the shortcomings of classic, network, and dynamic DEA
models, to avoid the aforementioned problems, this paper uses a Dynamic Network Data Envelopment Analysis
(DNDEA) model with the ability to measure network efficiency over multiple time periods (Gharakhani et al.
2018), which makes it more likely to identify the sources of inefficiency in DMUs (Kiaei and Kazemi Matin 2022).
However, according to studies (Liu et al. 2022) even DNDEA models may not be able to obtain optimal input and
output weights. To overcome DNDEA’s weight limitations, in the second stage of the study, a Dynamic Network
CSW (DN-CSW) model is developed with a Range-adjusted Measure (RAM) based multi-objective fractional
programming approach. This model allows DMUs to be evaluated neutrally on the same scale using CSW.
Meanwhile, in many of the existing network DEA models, DMU efficiency is considered to be the arithmetic
mean of its components (Chen et al. 2009; Kalantary and Farzipoor Saen 2019; Kalantary, Farzipoor Saen, and
Toloie Eshlaghy 2018; Liang, Cook, and Zhu 2008; Moradi et al. 2022). But this approach has a major drawback in
that all components will be given the same weight regardless of how individually significant they are to the pro-
cess. To resolve this issue, in this study, the extracted CSWs are used to compute a weight for each component of
each DMU. The efficiency of each DMU is considered to be the weighted average of the efficiency of individual
components. To the best of our knowledge, the present study is significant in several respects:

- Development of RAM-based CSW for dynamic network systems
- Proposing a CSW model that deals with determining an assurance value for the non-Archimedean epsilon.
- Investigation of the effect of process component weights on the CSW approach in network structures.

Considering the above issues and the drawbacks of DEA models, the goal of this paper is to expand the CSW
model of Jahanshahloo et al. (2005) for dynamic network systems using a RAM-based multi-objective fractional
programming approach. This method provides better insights into the common set of weights and is expected to
improve the results of the DNDEA models. This method also allows for not only quantifying the efficiency of
suppliers but also monitoring dynamic changes over certain periods. Practical cases are further applied to clarify
and validate the method concerned. In section two, the research background is reviewed. In section three, the
proposed model is formulated and a numerical example is provided to showcase its capability and application.
The final section presents the conclusions.

2. Research Background

In this section, we briefly review the background of the methods used in the article.
2.1. Dynamic Network Data Envelopment Analysis

Early DEA models like CCR (Charnes, Cooper, and Rhodes 1978) and BCC (Banker, Charnes, and Cooper 1984),
which consider the inputs and outputs of independent decision-making units (DMUs) simultaneously (Pour-
mahmoud and Sharak 2020), are very helpful tools for relative efficiency evaluations (Ge 2022). But these models
have some drawbacks like ignoring the internal mechanisms of activities and DMUs (Shieh et al. 2022). After
initial studies of (Fare 1991) and subsequent expansions in Chen et al. (2009); Fare et al. (1995); Fare et al. (1996);
Fukuyama & Weber (2010); Tone & Tsutsui (2009) researchers developed DEA models capable of measuring not
only the total efficiency but also the partial efficiency of DMUs in an integrated framework. This approach is
known as Network Data Envelopment Analysis (NDEA). However, NDEA models are static and do not consider
time (Lu et al. 2020), which can cause them to produce misleading results based on short-term analyses (Tone et
al. 2018). Later, Nemoto & Goto (2003) introduced the Dynamic Data Envelopment Analysis (DDEA) model to
address this issue, but this model treats DMUs as black boxes, completely ignoring their internal structure.
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Therefore, a model was needed to consider time as well as DMUs’ internal structure. Several reviews of NDEA
and DDEA models (Fukuyama and Weber 2010; Hashimoto and Fukuyama 2013; Johnson and Pope 2013) high-
lighted the need for extending dynamic DEA to network structures. The current literature offers two main non-
ratio ways of formulating DEA models with dynamic network structures: the DNDEA model based on Slack-
Based Measure (SBM) and Dynamic Network Range-Adjusted Measure (DNRAM). Some of the studies that have
been done in the area of DNDEA are listed in table 1:

Table 1: The background of DNDAE models

Sustainable objective function variables

inputs Carry overs intermediate
T f
Researchers (year) ypeo objective
model like, the like, the like, the .
. . . like, the
economic  environment social
R . . . . . product
dimension dimension dimension
(Tone and Tsutsui 2014) DNSBM performance evaluation v v v v
(Avkiran and Mccrystal 2014) DNRAM performance evaluation v v v v
(You and Jie 2016) DNSBM performance evaluation v x x x
(Xie et al. 2018) DNSBM  Environmental efficiency v x x x
(Ramezankhani, Torabi, and Vahidi 2018) = DNSBM sustainability evaluation v x x x
(Kalantary et al. 2018) DNRAM  sustainability evaluation v x x x
(Kalantary and Farzipoor Saen 2019) DNSBM  sustainability evaluation v x x x
(Motevalli and Motamedi 2020) DNSBM sustainability evaluation v x x x

2.2. Common set of weights

One of the earliest works in the CSW field is the approach presented by Roll et al. ( 1991). As a first step, they
proposed some approaches for deriving the weight control bounds. They then presented a process for determin-
ing CSWs for factors based on their strategy. Their method aims to obtain a CSW for all DMUs simultaneously
such that the highest (average) efficiency score is obtained. Li and Reeves(1999) introduced a deviation variable
for each DMU, representing the deviation of DMU from the efficiency frontier. Then, they proposed three objec-
tive functions (minimizing the deviation, minimizing the maximum deviation, and minimizing the sum of the
deviations) utilized by other researchers to find CSWs. Some other researchers use different approaches to find
CSWs. For example, Jahanshahloo et al.(2005) use the concept of max-min to find the CSWs. Kao and Hung
(2005)consider the efficiency scores of DMUSs obtained from the classical DEA models as the ideal solution for the
DMUs. Then, they derive CSWs closest to the ideal solution based on the generalized measure of distance. Cook
and Zhu(2007) develop a nonlinear programming (NLP) model to find CSWs. Jahanshahloo et al.( 2010) define
an ideal line and determine CSWs for efficient DMUs. Ramoén et al. (2012) minimize the deviations of the CSWs
from the DEA profiles of weights and consequently derive CSWs for ranking all DMUs. Saati et al.(2012) first
define an ideal DMU (IDMU), a hypothetical DMU consuming the least inputs to secure the most outputs. Then,
they use the IDMU in an LP model to determine CSWs. Sugiyama and Sueyoshi (2014)propose an approach for
determining CSWs based on bargaining games. Hosseinzadeh Lotfi et al. (2013)propose an allocation mechanism
based on a common dual weights approach. Rezaie et al. (2014) consider the best and the worst relative efficien-
cies simultaneously in the form of an interval efficiency over CSWs. Most recently, Arman and Hadi-Vencheh (
2021) utilized the fuzzy set theory to control the relative weights in DEA.

In the CSW models, the initial idea is to simultaneously maximize the ratio of the virtual output over the virtual
input for the n DMUs. This approach supports the majority of the CSW models. For a better reading, six sub-
groups have been considered presenting those CSW procedures based on the multi-objective idea:

1- Theoretical foundations: This group studies the fractional MOP model and develops a computational method-
ology to determine the CSW.

2- Procedures based on the ideal (anti-ideal) concepts: Several authors propose to determine the CSW by mini-
mizing the distance from an ideal value.

3- Procedures focused on the weighting schemes: The models include those based on pre-weighting, those based
on decision maker preferences, and those that minimize the disagreement regarding weighting vector compo-
nents in order to determine the CSW.

4- Procedures that include uncertain or interval values: In this group, fuzzy tools are used to calculate the CSW
based on uncertain data and models.

5- Statistical-based approaches: in this group, Various statistical techniques have been considered for the deter-
mination of the CSW.
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6- Procedures focused on the evaluation of a subset of units: this group is formed with those CSW models in
which the evaluation is not focused on the complete set of DMUs. Only a subset of the units is considered for the
computation of the optimal weighting scheme. Table 2 listed some of the studies that have been conducted in the

area of CSW:

Table 2: The background of CSW models

Researchers (year)

CSW procedures
based on the multi-

Does it have an ap-

non-Archimedean proach to calculating

Type of model

Description

objective idea: epsilon the non-Archimedean
) epsilon?
Jahanshahloo et al. Theoretical founda- simple (closed
p v x -
2005) tions systems
(Liu and Hsuan Peng Procedures fc?cused simple (closed)
2008) on the evaluation of a svstems v x -
subset of units th
. Theoretical founda- simple (closed)
(Makuei et al. 2008) tions systems x x -
(Chiang, Hwang, and Theoretical founda- simple (closed) v < )
Liu 2011). tions systems
Procedures focused simple (closed) draws on the central
(Saati et al. 2012) on the weighting f stems v v value between the
schemes Y bounds of the weights
(Sun, Wu, and Guo Procedures based on simple (closed)
o ideal (anti-ideal) P v x -
2013) systems
concepts
(Ramezani-Tarkhorani Procedures chused simple (closed)
on the evaluation of a v x -
et al. 2014) . systems
subset of units
(Toloo 2013, 2014) Theoretical founda- simple (closed) v v Inverse of the maxi-
! tions systems mum sum of inputs
Procedures that
(Hajiagha et al. 2018) include uncertain or Dynamic x % -
interval values
. Procedures based on .
(Gharakhani et al. ideal (anti-ideal) Dynamic- . < )
2018). concepts network
(Omrani, Valipour, Statistical-based simple (closed) v <
and Mamakani 2019) approaches systems )
Procedures based on
(Mavi and Mavi 2021). ideal (anti-ideal) Dynamic x x -

concepts

2.3.Research gap

According to Table 1, in the previous research, except for the two studies by (Tone and Tsutsui 2014) and (Av-
kiran and Mccrystal 2014), which are the basis of many studies, the other DNDEA studies are centered on short-
term profits. In other words, this structure is a purely cost-oriented perspective, which made them overlook the
environmental and social background of an organization during assessments, despite the fact that environmental
and social sustainability are turning into key competitive priorities for many businesses (Longoni and Cagliano
2016). Sustainability can be viewed as the grade to which current decisions in organizations affect the future sta-
tus of the environmental and socioeconomic viability (Elmsalmi et al., 2021; Salimian et al., 2022; Zhang et al.,
2022). It is reasonable to conclude that the sustainability of organizations is influenced by the environmental and
socioeconomic decisions taken in the past. So, in this research, the developed DNDEA model is used in such a
way as to avoid an excessive focus on short-term profit from a purely cost-oriented perspective and to make sure
that the environmental and social effects of supply chain activities are appropriately represented in the model.
This helps lay the foundation for making supply chain activities sustainable by taking into account the factors
that influence the chain’s surrounding environment. The developed DNDEA model used in this article is formu-
lated in such a way that the current efficiency of a business is assumed to be shaped by its former environmental
and social activities. The main contributions and advantages of this paper in the field of the DNDEA model are:
1- propose a model which measures the direct impact of three pillars of sustainability on efficiency; thereby
its discriminating power and reliability are increased and reflect reality.
2- Develop a DNDEA model that can rank the suppliers in terms of overall, periodic, partial, and periodic-
partial efficiency, and the source of inefficiency of each supplier is identified.
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According to Table 2, in many studies in the CSW area, many researchers have tended to concentrate on closed
systems. That is, where the outputs from one stage become the inputs to the next stage, and where no other in-
puts enter the process at any intermediate stage. The problem of interest in this paper is the efficiency evaluation
of an open multi-stage process, where, in each stage, some outputs may leave the system and others may turn
into inputs for the next stage, and also new inputs may enter the system at any stage. The overall efficiency of
this process is defined as the weighted average of the efficiency of all the individual components or stages that
make up the process. In this study, the RAM-based DN-CSW method is used to not only evaluate network effi-
ciency over a given period of time but also to determine the weight of each component while taking into account
the specific conditions of the DMU under evaluation. Many studies have failed to provide an approach for Ar-
chimedean epsilon. In this research, a RAM-based approach is proposed as a non-Archimedean epsilon, which is
used in order to avoid the appearance of zero weights. The main contributions and advantages of this paper in
the field of the CSW model are:

1- The most significant achievement of this study is the development of a quantitative method based on the

CSW model for the sustainability assessments of suppliers, which is exploited to select the best DMUs.

2- Development of RAM-based CSW for dynamic network systems.

3- Propose a CSW model that deals with determining an assurance value for the non-Archimedean epsilon.

4- Investigation of the effect of process component weights on the CSW approach in network structure.

2.4. Flowchart Methodology
The flowchart methodology of this research is available in Figure 1

Development of
DNDEA
model

Examining the research
gap in the field of Presenting a .
DNDEA and DNCSW case study and Comparing
Development of CSW calculating the
model-based on RAM overall,
for dynamic network results of
systems al the three

periodic-partial et
efficiency approaches
values

Calculating the W, and
considering the efficiency
as a weighted average of
the efficiencies of the
individual stages

Figure 1: Research Methodology Flowchart
3. Materials and Methods

This section first presents the DNDEA model used in the study, followed by the CSW model of Jahanshahloo et
al. (Jahanshahloo et al. 2005) is expanded so that in addition to computing the overall efficiency of DMUs over
time, it can also consider dynamic changes in the periodic and partial efficiency of units. Operating based on
RAM, the developed model offers better insights into CSWs and enhances the outputs of the DEA method. The
extracted CSW is then to compute a weight for each component of the DMU under evaluation. The DMU's effi-
ciency is calculated by weighted averaging of the efficiency of individual components.

3.1. Dynamic Network Data Envelopment Analysis

In this paper, the developed DNDEA model is used based on the RAM model proposed by Moradi et al. (2022).
In this model, the input variables, and carry-over variables also have a direct effect on the objective function.
According to the classification of Tone and Tsutsui (Tone and Tsutsui 2014), intermediate variables are consid-
ered to be fixed, and carry-over variables are considered to be free. Since the objective function of the RAM mod-
el calculates inefficiency, which equals one minus efficiency, that study has assumed that:
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Where:
Xt
ik . The ith input of the jth DMU in the kth stage in time t
tLth
Cujk - The Uy, (U =1.., U)
-\t -\t
uk Uk The Ytan (u=1..4) carry-over of the jth DMU in the kth stage that is transferred from time t-1 to
time t.

wik=h) The Win (u=1...W) intermediate of the jth DMU that is transferred from the kth stage to the hth stage
at time t.
t
iok; Range of inputs in time t;
t— Rt—l = max Cl-_Lt _ min Ct_—l,t .
Ruok : Range of carry-over variables in time t-1; % Cuc™) (Cuc)
t

Ik Intensity vector of the jth DMU in the kth stage in time t.

carry-over of the jth DMU in the kth stage that is transferred from time t to time t+1.

Ritok = max (X:jk) —min (X:jk)'

In model (1), (1-1) relates to inputs, and (1-2) relates to the fixed link value case. This case corresponds to the sit-
uation where the intermediate products are beyond the control of DMUs or the discretion of management. (1-3)
refers to carryovers that connect the tth period to the t+1th period. (1-4) and (1-5) refer to the type of carryovers
that have a dual function. This means that a free link can be stated as desirable (1-4) or undesirable (5-1). The
above model assumes variable returns to scale (VRS) for production. That is, the production frontiers are
spanned by the convex hull of the existing DMUs (1-6).

3.2. Multiple objective programming approach for finding a CSW

According to content, the DEA method can evaluate the efficiency of DMUs and classify them as efficient or inef-
ficient units. The model, however, is not without its problems, and limitations. This includes the problem of ho-
mogeneous and identical units having different weights. In order to overcome this issue, Jahanshahloo et al.
(2005) have proposed a simple yet effective model that has the major advantage of only requiring one problem to
determine the CSW of DMUs. However, this model has been developed for simple (closed) systems with limited
inputs and outputs. Another shortcoming of this model is that it ignores the internal structure of DMUs. This is
while many business entities consist of several interlinked departments, each with its inputs and outputs, the
operations of which may fall in different time periods. Multi-objective programming is used in this study to find
CSWs for DNDEA models. This approach provides more insights into CSWs, enhances the DEA method, and
makes it possible to compare the efficiency scores of DMUs from different perspectives. Furthermore, it enables
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us to determine not only a DMU's overall efficiency over time but also to monitor its changes in periodic efficien-
cy and partial efficiency over time. Based on the RAM model, this idea (model (1) maximizes simultaneously the
ratio of outputs to inputs for every DMU:

e Wi T W

t t t
Zukuckul"'znkwlkwl"'ak Zukuckuj +anu Kkwj +ak
u=1 W= 1

max

y e Wkl

Z Vklxkll + an —1lw k —1lwl kalxklj + an 1w k —1wj
w=1

i Wi
ZukuCLuj + znkw kwj +a‘k
st ul <1 . j=1,2...n -1)

zvklxku + an 1w k —1wj

Uy 21/ RK[(M +wW )+ (U, +w, )] . u=12..r (2-2)

Vi 2/ RK[(Mm +w )+, +w, )] . i=12..m (2-3)

lw ZRK[(M +W )+ (U +wW, )] . w=12..,W (2-4)

a, free onsign (2:5) o
Where:
X -

The ith input of the jth DMU in the kth stage in time t

t
Cii -

ki *: The Unn output of the jth DMU in the kth stage in time t.
It

KW The Wiy Input intermediates of the jth DMU in the kth stage in time t.
I, w

k=W . The ~ th output intermediates of the jth DMU in the kth -1stage in time t.
max( ¢,; |-min[ ¢, |20

max| X |-min[ x,; |20

U : Range of outputs;

I : Range of inputs variables;
min

R : Range of intermediates variables; [ ] [ J

Where Uy Vi Moy and Mhe-aw are the weights of outputs, inputs, output intermediates and input intermedi-
ates , respectively, and My , Ue:Wicaang Wi are the number of inputs, outputs, input intermediates and output
intermediates in each stage, respectively. Constraint (2-1) is related to the efficiency of jth DMU, which is a given
DMU by examining the weighted outputs to weighted inputs of each component. In (1), if ur is too large, and vi
is too small, the value of ratios can be infinite or unlimited. This problem can be avoided by considering all ratios
to be less than or equal to one and adding them to the model as constraints. Constraints (2-2)- (2-4) are related to
presenting the heuristic approach of the RAM as a non-Archimedean epsilon, which is used to avoid the appear-
ance of zero weights. In this model, the non-Archimedean epsilon plays an imperative role and must be deter-
mined correctly. Otherwise, the related model might be infeasible. For solving this problem, the following proce-
dure is suggested. Here we consider the infinite norm, so it tends to be the maximization of the objective function
about the DMU will minimum ratio of outputs to inputs:
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i W Ti Wi
t t t t
Zukuckul+znkwlkwl+ak Zukuckuj +znkw|kwj +ay

max min U=! w=1 u=1 w=1

M ‘ Wit Tomy ) Wiy
Zi:1 ViiXyip + an—lwlk—lwl kaixkij + an—lwlk—le
w=1 i-1 w=l
I Wi
Zukuciuj + znkwlkwj + ai
s.t. o W <1 , j=12,.,n (3-1)
kaiXLij + z nk—lwlk—le
i=1 w=1
Uy 21/ R K[(M, +W, )+ (U, +W, )] (3-2)
Vi 21/ RK[(M +wW,)+ (U, +w, )] (3-3)
L =R K[(M +W, )+ (U, +W, )] (3-4)

a. free on sign @
k g (3-5)

There are no differences between equations (1) and (2) in terms of constraints. Due to this, we refrain from re-
peating defining their role in the equation again. By introducing a positive variable, z, model (2) can be converted
into the model (3):

max:.z
Tk Wi my Wiy
(Zukuciuj + anwlkwj) - (kaixtkij + Z Mic-awle i) + a, <0 (4-1)
u=1 w=1 i=1 w=1
i Wi m, Wica
(ZukuCLuj + anwlkwj) - Z(Zi:;. Vkix:(ij + an—lwlk—le) + at( 2 0 (4_2)
u=1 w=1 w=1
Z Vi T Maw +Z Upy My =1 (4-3)
Vi 21/ RK[(m, +W, )+ (U, +w, )] (4-4)
L =R K[(M + W)+ (U, +W, )] (4-5)
a, free onsign (4-6)

®)

The model (3) can be solved using a direct search (i.e., derivative-free) algorithm like that of Nelder and Mead
* * * t

(Nelder and Mead 1965). A set of Uiy , Miw ,Vki and scalar & , CSW, can be calculated according to model (4).

According to this formulation, the third constraint, (4-3) ensures that the CSW for each component is equal to

one. Constraints (4-4)- (4-5) are related to presenting the heuristic approach of the RAM as non-Archimedean

epsilon, which is used in order to avoid the appearance of zero weights. Equation (4) computes the efficiency of

DMUs based on the weights extracted from model (3).

Wit

e W, my
ej = (zukuc:(uj + znkwlkwj + aL)/(ZVkiXLij + an—lwlk—le)v @)
u=1 w=1 i=1 w=1
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The weight of each stage is then calculated by considering the common set weights. A rational choice for the

w
weight of a stage (K ) is the ratio of resources allocated to stage k to all resources consumed in the process,
which reflects its relative magnitude. More precisely,

(ivul in + inwmz) w1<12)+ivuz Xijy + inwuz,ale(z,a) +ivijaxijs)
w=1 i=1

input spent in the whole process, and Wi indicates the portion of the total input used in stage k (Cook et al.
2010). Thus, there are:

refers to the magnitude or the amount of

w, = (component k input)/(total input across all components)

W m W m
- (zvll ul) (z Vi X ij1 + an(l,Z)ij(l‘Z) + zvizxijz +an(z,3)|wj(2,3) +z Vi3Xij3)’
w=1 i=1 w=1 i=1
W m
(Z nw(l 2) "wj(1,2) + ZVQ |12) (Z V|1 ij1 + an(l 2) " wj(1,2) + Zvuz ij2 + an(z,s)le(z,a) +Z Vi3Xij3)’
w=1 i=1

W m
(an(z 3) "wj(2,3) +Z VI3XIJ3) (Z Vll ij1 + znw(l 2) wj(1,2) + ZV|2 |]2 + an(2‘3)|wj(2,3) +Z Vi3Xij3)’
w=1 i=1

©)

The core DEA of Equation (5) is to use different weights for different stages of the process depending on the spe-
cific conditions of the evaluated supplier. So, the overall efficiency measure of the multistage process can reason-
ably be represented as a convex linear combination of the k stage measures, namely:

Ot = iwk(%k where ;:wk =1 (6)
=1 =1

Note that weights wk represent the relative importance of the efficiency of stage k for (or its relative contribu-

tion to) the overall efficiency of the process. Here, 0, is the efficiency of 6 at stage k, say, by solving model (4) is
determined.

4. Case study

To validate the proposed model, it is used to examine the sustainability of a company named Nirou Moharekeh
Industries (NMI) from 2011 to 2015. NMI is an Iranian manufacturer of auto spare parts and has 12 suppliers. It is
assumed that NMI aims to evaluate the overall, Partial, and periodic efficiency of its suppliers. Each supplier has
three stages including production, packaging, and distribution. The structure of the input, carry-over, and inter-
mediate variables over the five-year period are shown in Figure 2.
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Figure 2. Structure of the suppliers of NMI
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Table 3, shows the efficiency (partial, periodic, periodic-partial, and overall) of each NMI supplier based on
Model (1).
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Table 3. Efficiency values of the supplier of NMI
Partial efficiency Term efficiency
DMUSs Rank ;‘_’?ra" 2011 2012 2013 2014 2015
efticiency Div. 1 Div. 2 Div.3
Div.1 Div.2 Div.3 Div.1 Div.2 Div.3 Div.1 Div.2 Div.3 Div.1 Div.2 Div.3 Div.1 Div.2 Div.3
. 0000 . 0000 1. 0000 1. 0000 0. 9631
TECHA.T 3 0. 9926 . 0000 0.9794 0. 9985
. 0000 . 0000 . 0000 1. 0000 . 0000 . 0000 . 0000 1. 0000 . 0000 . 0000 1. 0000 . 0000 . 0000 0.8971 . 9923
. 4460 . 6506 0. 9690 1. 0000 0. 8894
STEEL. P 9 0.7910 . 8221 0. 7842 0.7667
. 4886 . 4220 . 4273 0. 7455 . 6019 . 6046 . 0000 1. 0000 . 9071 . 0000 1. 0000 . 0000 . 8762 0. 8972 . 8948
. 4416 . 0000 1. 0000 0.8703 0.5292
D. L. KARAN 10 0. 7682 . 8165 0. 7036 0.7845
. 4649 . 4306 . 4293 1. 0000 . 0000 . 0000 . 0000 1. 0000 . 0000 . 0000 0. 6109 . 0000 . 6176 0. 4767 . 4932
. 5089 . 6867 0. 6845 0.9973 0. 8984
PARSHAM 11 0. 7552 . 7640 0. 7500 0.7515
. 4558 . 5357 . 5352 0. 7499 . 6554 . 6548 . 7169 0. 6668 . 6697 . 9920 1. 0000 . 0000 . 9055 0. 8920 . 8978
. 9845 . 9505 1. 0000 0.9973 1. 0000
FARAZAN 5 0. 9865 . 9883 0. 9854 0. 9857
. 9899 . 9815 . 9820 0. 9598 . 9455 . 9462 . 0000 1. 0000 . 0000 . 9920 1. 0000 . 0000 . 0000 1. 0000 . 0000
. 5939 . 7865 0.5878 0.5981 0. 6383
SIRIN S. N. 12 0. 6409 . 6182 0. 6346 0. 6700
. 5418 . 6180 . 6219 0.7918 . 7829 . 7848 . 6351 0. 5307 . 5975 . 5121 0. 6319 . 6504 . 6102 0. 6096 . 6951
. 0000 . 9400 1. 0000 1. 0000 0. 9735
PIROZ 6 0. 9827 . 9827 0. 9825 0. 9828
. 0000 . 0000 . 0000 0. 9409 . 9392 . 9399 . 0000 1. 0000 . 0000 . 0000 1. 0000 . 0000 . 9725 0.9735 . 9742
. 9996 . 0000 1. 0000 1. 0000 0. 9553
ALSAN 4 0.9910 . 9923 0.9903 0.9903
. 9988 . 0000 . 0000 1. 0000 . 0000 . 0000 . 0000 1. 0000 . 0000 . 0000 1. 0000 . 0000 . 9627 0. 9516 . 9516
. 0000 . 0000 1. 0000 1. 0000 1. 0000
KARAN 1 1. 0000 . 0000 1. 0000 1. 0000
. 0000 . 0000 . 0000 1. 0000 . 0000 . 0000 . 0000 1. 0000 . 0000 . 0000 1. 0000 . 0000 . 0000 1. 0000 . 0000
. 6640 . 6683 1. 0000 1. 0000 0.9127
TIR 8 0. 8490 . 8615 0. 8412 0. 8443
. 6350 . 6762 . 6809 0. 7638 . 6201 . 6210 . 0000 1. 0000 . 0000 . 0000 1. 0000 . 0000 . 9090 0. 9098 . 9194
. 7059 . 9256 1. 0000 0. 9499 0.9787
BARAN 7 0.9120 . 9624 0. 8550 0.9187
. 8919 . 6128 . 6129 0. 9445 . 8324 . 0000 . 0000 1. 0000 . 0000 . 0000 0. 8496 . 0000 . 9754 0. 9803 . 9803
. 9972 . 0000 1. 0000 1. 0000 1. 0000
HAMRAH 2 0.9994 . 9983 1. 0000 1. 0000
. 9917 . 0000 . 0000 1. 0000 . 0000 . 0000 . 0000 1. 0000 . 0000 . 0000 1. 0000 . 0000 . 0000 1. 0000 . 0000
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according to table 3, the developed DNDEA model (model 1) can measure the suppliers in terms of overall (col-
umn 3), periodic (column 7-11), partial (column 4-6), and periodic-partial (the subset of the periodic efficiency,
column 7-11) efficiency, and then identify the most efficient options

(Column 3). Considering the weights assigned to the stages and periods, the objective function of model Error! R
eference source not found. undergoes some changes, depending on the kind of efficiency that is being calculat-

St -1t
-3343

t
Z Z |ok uok

-1
t=1 k1m+u|1u1 |ok R

ming ]
ed. Specifically, the objective function is ( we/for total efficiency,

t gt-1t
K m U qt -1t _ 1 m Uy Siok uok
(mi“q:l—%zmiuzzé:* ?:fﬁ] o [ TTEm TRy ]G
kL i e Pk Pk / for periodic efficiency, 10 UK/ for partial effi-
t t-1t
( Slok Suok j
ciency, and TR Ru for periodic-partial efficiency. Table 3 shows that KARAN obtained

the highest efficiency and SIRIN S. N (0.6409) the lowest. Since only one DMU is identified as efficient, it can be
argued that the model has excellent discriminatory power, which enables it to provide a complete ranking. How-
ever, for some years (e.g., 2013), several DMUs earned the highest efficiency value, which makes it impossible to
produce a periodic ranking. Also, according to Liu et al., DNDEA models cannot compute optimal input and
output weights. To overcome this issue, the model of Jahanshahloo et al. (2005) is expanded for dynamic network
DEA using a RAM-based approach. But to implement the resulting DN-CSW model, it is first necessary to pre-
pare the data for the model, as there is a notable difference between the largest and the smallest values, and some
DMUs have zero inputs in some years. By adding the smallest positive input value to each value, zero values can
be eliminated (Caggiani et al. 2021; Gavido et al. 2020). Then the mean normalization method is used to eliminate
the imbalance in data (Cheng and Cantore 2020; Gasser et al. 2020). For a detailed explanation of the DEA data
preparation process, see (Sarkis 2007). After preparing the data, using model (4), CSW is calculated for the input,
intermediate, and output variables.

Table 4: The common set of the weights

variable CSW variable CSW
V11 0. 0403 u 21 0. 0204
V12 0.2643 u 2 0. 0063
ull 0. 0460 221 0. 3763
U12 0. 0735 V31 0.1887
Z11 0. 5759 V32 0. 0098
V21 0. 0059 V33 0.1092
V22 0. 0083 u 31 0.1264
V23 0. 0070 u 32 0. 1896

t

The scalar values of 3 are provided in Table 5.

t
ak

Table 5: The value of

2011 2012 2013 2014 2015
a;_ -0. 5575 -0. 6170 -0. 6198 -0. 6028 -0. 6220
atz -0. 2158 0. 1559 0.1610 0. 1559 -0. 1740
a; -0. 0047 0. 0491 0. 0790 0. 0836 0. 0545

t
Having CSW)Table 4) and scalar A values (Table 5) obtained from model (4), dynamic network efficiency values
of DMUs were calculated using Equation (5). These efficiency values are provided in Error! Reference source not f
ound.
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Table 6. Efficiency values DN-CSW of the supplier of NMI
Nor- over- Partial efficiency Term efficiency
DMU Ra  mal all 2011 2012 2013 2014 2015
s nk effi- effi- Div.1 Div.2  Div.3
ciency  ciency Div.1 Div.2 Div.3 Div.1 Div.2 Div.3 Div.1 Div.2 Div.3 Div.1 Div.2 Div.3 Div.1 Div.2 Div.3
TECH 0. 8089 0.5270 0.5810 0. 8668 0.5023
2 0.9349  0.6336 0.5567 0.6542  0.6898
AT 1.0000 0.4267 1.0000 0.3216 0.8901 0.3692 0.3476 0.9223 0.4731 0.6261 0.9743 1.0000 0.4714 0.4184 0.6171
STEE 10 0.5892  0.3993 0.2416 0.5434 0.4128 0. 2891 0.5220 0. 4628 0.5915 0. 4154
L.P 0.3001 0.3361 0.2312 0.2309 0.8951 0.4400 0.1858 0.8789 0.3236 0.2930 0.9220 0.5597 0.2054 0.3707 0.6701
D. L. 0.2535 0. 4929 0. 6641 0.5192 0.2618
KAR 11 0.5238 0.3549 0.2221 0.5271 0.3156
AN 0.2643 0.3233 0.1729 0.2010 0.8856 0.3922 0.2404 0.9652 0.7867 0.2520 0.8543 0.4514 0.1988 0.4137 0.1729
PARS 0.3040 0.5324 0.5152 0. 7507 0. 4055
HAM 9 0. 6321 0.4284  0.2420 0.5426  0.5005
0.3007 0.3443 0.2669 0.2362 0.9009 0.4601 0.1863 0.8857 0.4734 0.3582 0.9754 0.9186 0.2270 0.3805 0.6090
FA- 0.4237 0. 7054 0. 9306 0.7779 0. 5682
RA- 3 0. 8658 0.5867  0.4032  0.5401 0.8168
ZAN 0.5211 0.2721 0.4778 0.3283 0.9814 0.8063 0.9099 0.9899 0.8919 0.3592 0.9908 0.9837 0.3750 0.3713  0.9583
SI- 0.2923 0. 5567 0. 4511 0.3915 0.2762
RIN 12 0.5002  0.3390 0.2031 0.5457  0.2682
S.N. 0.2907 0.3285 0.2576 0.2312 0.9222 0.5167 0.1729 0.8609 0.3195 0.2012 0.8005 0.1729 0.1729 0.3946  0.2612
PL- 0. 3026 0. 6510 0.9102 0. 8256 0. 4807
ROZ 6 0. 7665 0.5195 0.2726  0.4939 0.7920
0.2263 0.2553 0.4262 0.2151 0.9650 0.7730 0.7512 0.9923 0.9872 0.4915 0.9909 0.9943 0.2054 0.3638 0.8729
AL- 0. 4180 1. 0000 0. 9954 0. 6376 0. 7428
SAN 4 0.8627 0.5846 0.4242 0.5423 0.7874
0.4770  0.2757 0.5013 1.0000 1.0000 1.0000 0.9998 0.9935 0.9929 0.2999 0.9504 0.6625 1. 000 0.3662  0.8620
KAR 0.5318 0. 8346 0. 9907 0. 7602 0. 6140
AN 1 1.0000 0.6777 0.6877  0.5526  0.7926
0.6997 0.2913 0.6046 0.6768 0.9928 0.8342 0.9720 1.0000 1.0000 0.6410 0.9724 0.6672 0.5549 0.3754 0.9117
0.2814 0. 4995 0. 6102 0. 9984 0. 4180
TIR 8 0. 6419 0.4350 0.2476  0.5378  0.5195
0.2783  0.3117 0.2543 0.2095 0.8990 0.3899 0.2781 0.9528 0.5997 1.0000 0.9953 1.0000 0.2253 0.3829 0.6459
BAR 0. 2957 0. 6202 0. 9789 0. 5909 0. 6882
AN 7 0.7247  0.4911 0.3454 0.5328 0.5951
0.3511 0.2787 0.2574 0.2846 0.9635 0.6123 0.9566 0.9928 0.9873 0.3118 0.9364 0.5244 0.6997 0.3648 1.0000
HAM 0. 2452 0. 6860 0.6373 0. 6551 0. 4509
RAH 5 0.7866  0.5331 0.2495 0.6808  0.6689
0.1729 0.2541 0.3085 0.1729 0.9882 0.8968 0.3449 0.9672 0.5997 0.1990 0.9798 0.7867 0.2489 0.3651 0.7388




M. Rabanni et al. 26

Table 6 indicates that it is easy to rank DMUs or determine how certain units perform in comparison with others
(column 2), using normal overall efficiency (column 3), which helps identify the most efficient supplier in this study.
furthermore, periodic efficiency can be used to monitor the dynamic state of suppliers over time (column 8-12), par-
tial efficiency, can be used to identify the most significant stages of the supply chain (column 5-7), and periodic-
partial efficiency can be recruited to find the source of inefficiency in each period (the subset of the periodic efficien-
cy, column 8-12). For example, the first supplier (TECH.A. T) is ranked second with a total efficiency of 0.9349. This
supplier has a better performance in the third stage, and in 2014, it achieved a higher efficiency (0.8668). Compared to
other stages, in 2014, stage 1 (viz. production) gained the least efficiency (0.6261). As the results of Error! Reference s
ource not found. show, the efficiency values computed by the DN-CSW model for all three stages of all DMUs for all
years are lower than those obtained from the DNDEA model (Table 3). This is indicative of the higher discriminatory
power of the model (4) than model (1). In models (1) and (5), all process components have the same weight in effi-
ciency calculations regardless of whether they are equally significant for the efficiency of the process. In order to ad-
dress this issue, the extracted CSWs (model 4) were used to calculate an importance weight for each stage of each
DMU (supplier).

Table 6. weight of each stage

DMU TECH.A.T STEELP D.L.KARAN PARSHAM FARAZAN SIRINS.N. PIROZ ALSAN KARAN TIR BARAN HAMRAH
. Div.1 0. 2352 0. 2483 0. 3055 0.2542 0. 0385 0. 2888 0.0563  0.0639 0.0530  0.1771  0.0763 0. 0405
':E E‘J Div.2 0. 2400 0. 3300 0. 3050 0. 3663 0. 5591 0. 2544 0.5586  0.5317 0.5154  0.4039  0.4717 0. 5229
- E Div.3 0. 5248 0. 4217 0. 389 0.3795 0. 4024 0. 4568 0.3851  0.4044 0.4316  0.4190  0.4520 0. 4366
Div.1 0.2393 0. 2658 0. 2658 0. 2855 0. 0509 0.2522 0.0203  0.0650 0.0706  0.2256  0.1019 0. 0400
g Div.2 0.2095 0.3333 0. 3353 0.3384 0. 5431 0. 3436 0.5829  0.5470 0.5372  0.3715  0.3999 0. 5093
Div.3 0.5512 0. 4009 0.3989 0.3761 0. 4061 0. 4042 0.3968  0.3880 0.3923  0.4029  0.4982 0. 4507
Div.1 0. 2403 0. 2640 0. 2705 0. 2652 0. 0845 0. 2422 0.1220  0.0176 0.0522  0.2353  0.0949 0. 0176
g Div.2 0. 2036 0. 3343 0.3337 0. 3360 0.5128 0.3612 0.5072  0.5935 0.5133  0.3275  0.4521 0. 5935
B Div.3 0. 5561 0. 4016 0. 3958 0. 3988 0. 4027 0. 3966 0.3708  0.3889 0.4345  0.4372  0.4530 0. 3889
g Div.1 0.2471 0. 2855 0.1345 0. 3309 0. 0239 0. 3260 0.0258  0.0183 0.0366  0.1324  0.0183 0. 0555
% g Div.2 0.2194 0. 2539 0. 4874 0.3160 0. 5597 0. 2546 0.5876  0.5929 0. 5601 0.4185  0.5929 0.4762
§ B Div.3 0. 5336 0. 4605 0.3782 0. 3531 0. 4164 0.4194 0.3866  0.3888 0.4033  0.4491  0.3888 0. 4683
Div.1 0. 2353 0.2414 0. 3437 0.1125 0. 0122 0.3099 0.0355  0.1597 0.0584  0.0120  0.1115 0. 0111
E Div.2 0. 3360 0. 3501 0.3239 0.5128 0.5971 0. 1850 0.5758  0.4237 0.4448  0.5886  0.4050 0. 5497
B Div.3 0. 4287 0. 4084 0.3324 0. 3747 0. 3907 0. 5051 0.3886  0.4166 0.4968  0.3994  0.4835 0. 4391
Div.1 0. 2049 0.1190 0. 3659 0.1843 0.0120 0. 2716 0.0629  0.0132 0.0460  0.1869  0.0121 0. 0693
5 Div.2 0. 2856 0. 4584 0.2183 0. 4139 0.5939 0. 2381 0.5512  0.5543 0.5403  0.4183  0.5973 0. 5046
B Div.3 0. 5095 0. 4226 0. 4158 0. 4018 0.3941 0. 4903 0.3858  0.4325 0.4137  0.3948  0.3906 0. 4261

Finally, by using the periodic-partial efficiency value (Error! Reference source not found.) and the calculated weights o
f each stage (Table 6), the periodic and overall efficiency values of the suppliers are recalculated as the total weight of
the individual steps.



27 M. Rabanni et al.

Table 7. Efficiency values of the suppliers of NMI according to the model 7

Partial efficiency Term efficiency

RAN Normal overall
DMUs efficien- efficien- Div. Div. Div. 2011 2012 2013 2014 2015
cy cy 1 2 3 Div.1 Div.2 Div.3 Div.1 Div.2 Div.3 Div.1 Div.2 Div.3 Div.1 Div.2 Div.3 Div.1 Div.2 Div.3
0 0 0 0. 8799 0. 4638 0. 5406 0. 9034 0. 5305
TECHA.T 3 - 9798 - 6500 5567 6542 6898 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.
0000 4267 0000 3216 8901 3692 3476 9223 4731 6261 9743 0000 4714 4184 6171
0 0 0 0. 2845 0.5370 0. 4253 0. 6221 0.4776
STEEL. P 10 - 6232 4134 6 5434 4108 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
3001 3361 2312 2309 8951 4400 1858 8789 3236 2930 9220 5597 2054 3707 6701
D.L " 5200 e 0. 0. 0. 0. 2476 0. 5051 0. 8002 0.5134 0. 2350
KARAN . : : 2291 5271 3156 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
2643 3233 1729 2010 8856 3922 2404 9652 7867 2520 8543 4514 1988 4137 1729
PARS o5 0 0. 0. 0. 0. 3027 0. 5488 0. 5087 0. 8847 0. 4440
HAM 9 : -45 2420 5426 5005 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
3007 3443 2669 2362 9009 4601 1863 8857 4734 3582 9754 9186 2270 3805 6090
FARA- . o o 0 0. 0. 0. 3683 0. 8557 0.9472 0. 9803 0. 6027
ZAN - 9740 - 646 4032 5401 8168 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
5211 2721 4778 3283 9814 8063 9099 9899 8919 3592 9908 9837 3750 3713 9583
SIRIN S. 0. 0. 0. 0. 2903 0. 5940 0. 4095 0.2978 0.2690
N. 12 - 4823 32000 s sasy 2682 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
2907 3285 2576 2312 9222 5167 1729 8609 3195 2012 8005 1729 1729 3946 2612
0 0 0 0.3225 0. 8023 0. 9841 0.9745 0. 5503
PIROZ 6 . 8987 . 5962 2726 4939 7920 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
2263 2553 4262 2151 9650 7730 7512 9923 9872 4915 9909 9943 2054 3638 8729
0 0 0 0.3763 1. 0000 0. 9934 0. 7266 0. 5890
ALSAN 5 . 9555 . 6338 1240 5403 7874 0. 0. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0.
4770 2757 5013 0000 0000 0000 9998 9935 9929 2999 9504 6625 0002 3662 8620
0 0 0 0. 4430 0. 9074 0. 9990 0. 8014 0. 6055
KARAN 1 . 0000 . 6634 6877 5506 7926 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0.
6997 2913 6046 6768 9928 8342 9720 0000 0000 6410 9724 6672 5549 3754 9117
0 0 0 0.2811 0. 5142 0. 7049 0.9972 0. 4573
TIR 8 . 7217 . 4787 2476 5378 5195 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0.
2783 3117 2543 2095 8990 3899 2781 9528 5997 0000 9953 0000 2253 3829 6459
0 0 0 0. 2755 0. 7400 0. 9900 0. 6676 0. 6170
BARAN 7 - 8241 5467 ausa 5308 5951 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.
3511 2787 2574 2846 9635 6123 9566 9928 9873 3118 9364 5244 6997 3648 0000
0 0 0 0. 2754 0. 9383 0. 7605 0. 8863 0. 5163
HAMRAH 2 . 9921 . 6581 2495 6808 6689 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
1729 2541 3085 1729 9882 8968 3449 9672 5997 1990 9798 7867 2489 3651 7388
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As Table 7 shows, using the proposed method changed the efficiency scores of some suppliers, leading to a
change in the ranking, which is discussed next section. Note that table 8 has the same overall arrangements
Compared to table 6.

5. Findings and managerial implications

Our framework and discussion have several managerial implications. to provide an overview of the multitude of
factors and relationships involved in our discussion, we used a developed sustainable supply chain model in this
paper. With some adjustments in the intervals of analyses and simulations of causal relationships, this method
to supply chain analysis can thus aid managers predict the risks and threats that may obstruct the transition of a
chain toward sustainability and then devise a plan accordingly. Thus, the method provides managers with a
framework for conservative decision-making in this area. Since the proposed model is independent of the criteria
utilized in this paper, decision-makers can introduce more criteria to the system or remove those they feel are not
appropriate for their specific cases. This enables managers to adjust their supply chain strategies more easily,
especially when they feel the chain is exposed to some risks originating from sustainability-related pressures and
concerns. Model (1) quantifies efficiency while simultaneously considering process structure, process stages, and
time, it can be practiced to accurately trace the source of inefficiency of each decision-making unit (DMU: suppli-
er) each year. For example, HAMRAH became inefficient, with a score of 0.9994 because of inefficiency at Stage 1
(i-e., production) in 2011 while it was efficient packaging and distribution, ranked in second place. Thus, in that
year, this supplier should have focused on the production stage. Or the supplier TECH. A.T became inefficient
with a score of 0.9631 because of inefficiency in stage 2 (packing) and stage 3 (distribution) in 2015, while it was
efficient in the production stage and ranked in third place. Thus, in that year, this supplier should have focused
on the packing and distribution stages. As shown in table (1), KARAN and SIRIN.S. N (0.5409) obtained the

t
highest and lowest efficiency scores, respectively. Taking the common weights of Table 4 and the scalar A values
of Table 5 into account decreased the partial efficiency values of DMUs for all years, with the exception of those
that earned the maximum efficiency value (Error! Reference source not found.). The greatest and smallest dec-
lines in efficiency values compared to the results of model (1) were observed in HAMRAH-2011 (0.752) and
KARAN-2014 (0.0016) respectively. After applying common weights, the ranking of six suppliers (TECH A. T,
STEEL. P, D. L. KARAN, PARS HAM, FARAZAN, HAMRAH) changed, and the ranking of six suppliers (SIRIN
S. N., PIROZ, ALSAN, KARAN, TIR, BARAN) remained constant. By using tables 3, 6, and 8 presented in this
study, in addition to the general condition of the suppliers, various analyses can be deduced, including examin-
ing the dynamic condition of suppliers. According to table 6, SIRIN S. N, the most inefficient supplier, achieved
its best performance in 2012 with a score of 0.5567, and its efficiency declined in the subsequent years. According
to partial efficiency, this supplier performed better (0.5557) in the second stage.

Models (1) and (4) give equal weights, w, =w, =w, =0.33

, to the components of the production process. In other
words, the process efficiency is obtained from the arithmetic mean of the efficiency of components, a mechanism
that does not reflect the importance of components for the efficiency of the process. To address this problem, for
the first time in the literature for CSW methods, the extraction of the weights by model 4 was used to assign sep-
arate weights to each stage of DMU, and the efficiency value of each DMUs was recalculated accordingly. The
results showed that the efficiency values were affected by the weight of the stages. After assigning weights to the
stages, tables 6 and 8 clearly show that HAMRAH efficiency values increased the most in 2012 (0.2523), while
ALSAN decreased most in 2015 (0.1538). These changes also altered the ranking of DMUs (suppliers). The rank-
ing obtained in this way was almost similar to the one obtained from the DNDEA model, as seven suppliers
earned exactly the same ranking (TECH. A. T, SIRIN S. N., PIROZ, KARAN, TIR, BARAN, HAMRAH), and the
rest were ranked one position higher or lower. For example, STEEL.P was ranked 9th in model (1) but was
ranked 10th after applying the component weights in the DN-CSW model. This is because the overall efficiency
values obtained in this way are closest to those obtained from the base model (model 1). Supplier HAMRAH, for
example, had an efficiency of 0.9994 in the model (1) but changed to 0.7866 in model 2 and returned to 0.9921
after applying the component weighting. Generally, the results of applying three approaches to 12 NMI suppliers
within the DNDEA model show that just one unit (i.e., KARAN) obtains an efficient value. But an inefficient
score was observed in 11 units, whose technical efficiency value was in the range of 0.6409 to 0.9994 (table 3).
After implementing the DN-CSW model, the efficiency scores of other suppliers moved to the range of 0.5002-
0.9349 (table 6), and the range shifted to 0.4823-0.9921 after applying the stages weights (table 8). These changes
occurred because the choice of weights introduces a kind of value judgment to the DEA model. Therefore, the
efficiency values produced by model 1 were higher than those obtained from the other two models. These results
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suggest that when using CSW in-network or dynamic network DEA, assigning weight to individual process
components will have a positive impact.

6. Conclusion

Due to the importance of structure and time in assessing units, as well as the huge difference between the largest
and smallest values, a DNDEA model based on the RAM, was employed. The model allows us to not only calcu-
late the overall efficiency of DMUs throughout time but also consider the dynamic change in the periodic effi-
ciency and the dynamic changes in the partial efficiency of DMUs. The developed model (model 1) was used to
assess the efficiency of the suppliers of a company named Nirou Moharekeh Industries (NMI) from 2011-2015.
The efficiency scores of each supplier were determined separately for each partial, periodic, and overall, and
their periodic-partial efficiency scores were also calculated (Table 3). Subsequently, the source of inefficiency of
each supplier was identified. According to Liu et al. (2022), The DNDEA model cannot obtain the optimal input
and output weight.

This study extends Jahanshahloo et al. (2005)'s CSW model for dynamic network structure using RAM. Accord-
ing to table 6, the developed DNCSW method has more discriminatory power than the DNDEA model (model 1).
Dynamic network DEA can help experts and policymakers better understand the strengths and weaknesses of
DMUs. This will enable them to try to enhance their efficiency by working on these strong and weak points. In
models (1) and (2), i.e., the DNDEA and DNCSW models, all components of the production process are given the
same weight regardless of how individually significant they are for the efficiency of the process. This problem
was addressed in this study by using the extracted CSWs (model 6) to compute a separate weight for each stage
of each DMU (Table 7). The use of this approach along with the CSW method in the DN-CSW model, caused it to
produce efficiency values closer to those obtained from the base model (model 1). In other words, taking this
approach led to a more reasonable and fairer ranking of DMUs, capable of offering richer information to deci-
sion-makers. Compared to the model by Jahanshahloo et al. (2005) and the previous research, the main contribu-
tion and advantages of the DN-CSW model are: Firstly, in addition to calculating the overall efficiency of DMUs
over a given period, this model can also determine dynamic changes in the periodic efficiency and, the partial
efficiency of DMUs, and periodic-partial efficiency, and then identify the most efficient options. Secondly, the
developed model is based on RAM, and through additional constrain defined in the model, considers the weight
of each stage to be equivalent to one. Another advantage of this work over previous studies is the examination of
the effect of component weights on the CSW approach in network structures. Since the models presented in this
article are independent of the number of criteria and their values, they can be applied to any activity in the pro-
duction or service sectors. Furthermore, this study is expected to assist NMI's management in making better de-
cisions to improve supply chain management and minimize risk in their supply chain to achieve sustainability.
Researchers are hoping the study will enrich the theory of DEA and provide more alternative methods for as-
sessing the multi-stage process's performance. Future studies can be devoted to a comparison between the pro-
posed model and complete ranking models such as super-efficiency models. This approach was developed for
the BCC model, which has a variable return to scale (VRS). In future studies, a common set of weight models can
be developed for the CCR model with the constant return to scale (CRS).

Reference

Amiri, M., Hashemi-Tabatabaei, M., Ghahremanloo, M., Keshavarz-Ghorabaee, M., Zavadskas, E. K., & Banaitis, A. (2021). A new fuzzy
BWM approach for evaluating and selecting a sustainable supplier in supply chain management. International Journal of Sustainable
Development & World Ecology, 28(2), 125-142.

Anisimov, V., Anisimov, E., Saurenko, T., Yavorsky, V., & Marchenko, R. (2022). Assessment of the Effectiveness of Sustainable Man-
agement in Supply Chains. In XIV International Scientific Conference “INTERAGROMASH 2021" (pp. 703-710). Springer, Cham.

Arman, H., & Hadi-Vencheh, A. (2021). Restricting the relative weights in data envelopment analysis. International Journal of Finance &
Economics, 26(3), 4127-4136.

Avkiran, N. K., & McCrystal, A. (2014). Dynamic network range-adjusted measure vs. dynamic network slacks-based measure. Journal of
the Operations Research Society of japan, 57(1), 1-14.

Banker, R. D., A. Charnes, and W. W. Cooper. (1984).Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment
Analysis. Management Science 30(9):1078-92.

Bansal, P., & Mehra, A. (2022). Integrated dynamic interval data envelopment analysis in the presence of integer and negative data. Journal
of Industrial & Management Optimization, 18(2), 1339.

Caggiani, L., Camporeale, R., Hamidi, Z., & Zhao, C. (2021). Evaluating the efficiency of bike-sharing stations with data envelopment
analysis. Sustainability, 13(2), 881.

Charnes, A., W. W. Cooper, and E. Rhodes. 1978. Measuring the Efficiency of Decision Making Units. European Journal of Operational



M. Rabanni et al. 30

Research 2(6):429-44.

Chen, Y., Cook, W. D., Li, N., & Zhu, J. (2009). Additive efficiency decomposition in two-stage DEA. European journal of operational
research, 196(3), 1170-1176.

Chiang, C. I., Hwang, M. J., & Liu, Y. H. (2011). Determining a common set of weights in a DEA problem using a separation vector. Math-
ematical and Computer Modelling, 54(9-10), 2464-2470.

Cook, Wade D., and Joe Zhu. 2007. “Within-Group Common Weights in DEA: An Analysis of Power Plant Efficiency.” European Journal
of Operational Research 178(1):207-16.

Cook, W. D., Zhu, J., Bi, G., & Yang, F. (2010). Network DEA: Additive efficiency decomposition. European journal of operational re-
search, 207(2), 1122-1129.

Elmsalmi, M., Hachicha, W., & Aljuaid, A. M. (2021). Modeling Sustainable Risks Mitigation Strategies Using a Morphological Analysis-
Based Approach: A Real Case Study. Sustainability, 13(21), 12210.

Fare, R. (1991). Measuring Farrell efficiency for a firm with intermediate inputs. Academia Economic Papers, 19(2), 329-340.
Féare, R., & Grosskopf, S. (1996). Productivity and intermediate products: A frontier approach. Economics letters, 50(1), 65-70.
Fare, Rolf, Gerald Whittaker, and Following Fare. 1995. AN INTERMEDIATE INPUT MODEL 46(2):201-13.

Fathi, A., Karimi, B., & Saen, R. F. (2022). Sustainability assessment of supply chains by a novel robust two-stage network DEA model: a
case study in the transport industry. Soft Computing, 1-18.

Fukuyama, H., & Weber, W. L. (2010). A slacks-based inefficiency measure for a two-stage system with bad outputs. Omega, 38(5), 398-
409.

Gasser, P., Cinelli, M., Labijak, A., Spada, M., Burgherr, P., Kadzinski, M., & Stojadinovi¢, B. (2020). Quantifying electricity supply resili-
ence of countries with robust efficiency analysis. Energies, 13(7), 1535.

Gavido, L. O., Meza, L. A, Lima, G. B. A, de Almada Garcia, P. A., & Kostin, S. (2019). Avaliacdo de investimentos em modernizagdo
dos portos por Andlise Envoltéria de Dados. SIMPOSIO DE PESQUISA OPERACIONAL E LOGISTICA DA MARINHA-SPOLM,
1-16.

Ge, H. (2022). DEA Algorithm for Performance Evaluation of Public Sector with Benchmarking Management. In 2021 International Con-
ference on Big Data Analytics for Cyber-Physical System in Smart City (pp. 571-577). Springer, Singapore.

Gharakhani, D., Eshlaghy, A. T., Hafshejani, K. F., Mavi, R. K., & Lotfi, F. H. (2018). Common weights in dynamic network DEA with
goal programming approach for performance assessment of insurance companies in Iran. Management Research Review.

Ghasemi, M., Mozaffari, M. R., Rostamy Malkhalifeh, M., & Behzadi, M. H. (2022). Stochastic Efficiency Based on a Common Set of
Weights in Data Envelopment Analysis. International Journal of Industrial Mathematics, 14(2), 139-152.

Hajiagha, S. H. R., Mahdiraji, H. A., Tavana, M., & Hashemi, S. S. (2018). A novel common set of weights method for multi-period effi-
ciency measurement using mean-variance criteria. Measurement, 129, 569-581..

Hashimoto, A., Fukuyama, H., & Tone, K. (2013). Dynamic network DEA and an application to Japanese Prefectures. In Workshop on
Dynamic and Network DEA 2013 (pp. 39-46).

Lotfi, F. H., Hatami-Marbini, A., Agrell, P. J., Aghayi, N., & Gholami, K. (2013). Allocating fixed resources and setting targets using a
common-weights DEA approach. Computers & Industrial Engineering, 64(2), 631-640.

Jahanshahloo, G. R., Lotfi, F. H., Khanmohammadi, M., Kazemimanesh, M., & Rezaie, V. (2010). Ranking of units by positive ideal DMU
with common weights. Expert Systems with applications, 37(12), 7483-7488.

Vickers, N. J. (2017). Animal communication: when i’m calling you, will you answer too?. Current biology, 27(14), R713-R715.

Johnson, A. L., Pope, B., & Tone, K. (2013). US hospital performance: a dynamic network analysis. In Proceedings of the workshop on
DNDEA 2013.

Kalantary, M., Farzipoor Saen, R., & Toloie Eshlaghy, A. (2018). Sustainability assessment of supply chains by inverse network dynamic
data envelopment analysis. Scientia Iranica, 25(6), 3723-3743.

Kalantary, M., & Saen, R. F. (2019). Assessing sustainability of supply chains: An inverse network dynamic DEA model. Computers &
Industrial Engineering, 135, 1224-1238.

Kao, C., & Hung, H. (2005). Data envelopment analysis with common weights: the compromise solution approach. Journal of the opera-
tional research society, 56(10), 1196-1203.

Kao, C., & Liu, S. T. (2022). Group decision making in data envelopment analysis: A robot selection application. European Journal of Op-
erational Research, 297(2), 592-599.

Kiaei, H., & Kazemi Matin, R. (2022). New common set of weights method in black-box and two-stage data envelopment analysis. Annals
of Operations Research, 309(1), 143-162.

Krysiak, F. C. (2009). Risk management as a tool for sustainability. Journal of business ethics, 85(3), 483-492.

Li, X. B., & Reeves, G. R. (1999). A multiple criteria approach to data envelopment analysis. European journal of operational research,
115(3), 507-517.



31 H. Moradi et al.

Liang, L., Cook, W. D., & Zhu, J. (2008). DEA models for two-stage processes: Game approach and efficiency decomposition. Naval Re-
search Logistics (NRL), 55(7), 643-653.

Liu, F. H. F., & Peng, H. H. (2008). Ranking of units on the DEA frontier with common weights. Computers & operations research, 35(5),
1624-1637.

Liu, M., Zhang, C., Liu, Y., Ni, A, Xiao, G., & Luo, Q. Evaluating the Benefits of Public Transport Service: The Cross-Efficiency of Dy-
namic Network Data Envelopment Analysis. Available at SSRN 4070835.

Longoni, A., & Cagliano, R. (2015). Environmental and social sustainability priorities: Their integration in operations strategies. Interna-
tional Journal of Operations & Production Management.

Guillot, A., & Collet, C. (2008). Construction of the motor imagery integrative model in sport: a review and theoretical investigation of
motor imagery use. International Review of Sport and Exercise Psychology, 1(1), 31-44..

Makuei, A., A. Alinezhad, MAVI R. KIANI, and M. Zohrehbandian. 2008. “A Goal Programming Method for Finding Common Weights in
DEA with an Improved Discriminating Power for Efficiency.” Journal of Industrial and Systems Engineering 1(4):293-303 [ in persian].

Mavi, R. K., & Mavi, N. K. (2021). National eco-innovation analysis with big data: A common-weights model for dynamic DEA. Techno-
logical Forecasting and Social Change, 162, 120369.

Moradi, H., M. Rabbani, H. babaei meybodi, and M. Honari. (2022).Development of a Hybrid Model for Sustainable Supply Chain Evalua-
tion with Dynamic Network Data Envelopment Analysis Approach. Iranian Journal of Operations Research in press(x).

Motevalli, M. H. D., & Motamedi, M. (2020). Dynamic modeling to evaluate the efficiency of a sequential multilevel supply network. Jour-
nal of Decisions & Operations Research, 5(3).

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The computer journal, 7(4), 308-313.

Nemoto, J., & Goto, M. (2003). Measurement of dynamic efficiency in production: an application of data envelopment analysis to Japanese
electric utilities. Journal of Productivity analysis, 19(2), 191-210.

Omrani, H., Valipour, M., & Mamakani, S. J. (2019). Construct a composite indicator based on integrating Common Weight Data Envelop-
ment Analysis and principal component analysis models: An application for finding development degree of provinces in Iran. Socio-
Economic Planning Sciences, 68, 100618.

Paul, S., Ali, S. M., Hasan, M. A., Paul, S. K., & Kabir, G. (2022). Critical success factors for supply chain sustainability in the wood indus-
try: an integrated PCA-ISM model. Sustainability, 14(3), 1863.

Pourmahmoud, J., & Sharak, N. B. (2020). Evaluating Cost Efficiency Using Fuzzy Data Envelopment Analysis method. Iranian Journal of
Operations Research, 11(1), 25-42.

Ramezani-Tarkhorani, S., Khodabakhshi, M., Mehrabian, S., & Nuri-Bahmani, F. (2014). Ranking decision-making units using common
weights in DEA. Applied Mathematical Modelling, 38(15-16), 3890-3896.

Ramezankhani, M. J., Torabi, S. A., & Vahidi, F. (2018). Supply chain performance measurement and evaluation: A mixed sustainability
and resilience approach. Computers & Industrial Engineering, 126, 531-548.

Rezaie, V., Ahmad, T., Awang, S. R., Khanmohammadi, M., & Maan, N. (2014). Ranking DMUs by calculating the interval efficiency with
a common set of weights in DEA. Journal of Applied Mathematics, 2014.

Roll, Y., Cook, W. D., & Golany, B. (1991). Controlling factor weights in data envelopment analysis. IIE transactions, 23(1), 2-9.

Saati, S., Hatami-Marbini, A., Agrell, P. J., & Tavana, M. (2012). A common set of weight approach using an ideal decision making unit in
data envelopment analysis. Journal of Industrial & Management Optimization, 8(3), 623.

Salimian, S., Mousavi, S. M., & Antucheviciene, J. (2022). An Interval-Valued Intuitionistic Fuzzy Model Based on Extended VIKOR and
MARCOS for Sustainable Supplier Selection in Organ Transplantation Networks for Healthcare Devices. Sustainability, 14(7), 3795.

Sarkis, J. (2007). Preparing your data for DEA. In Modeling data irregularities and structural complexities in data envelopment analysis (pp.
305-320). Springer, Boston, MA.

Shieh, H. S., Li, Y., Hu, J. L., & Ang, Y. Z. (2022). A Comparison of Efficiency of Life Insurance Companies in Mainland China and Tai-
wan Using Bootstrapped Truncated Regression Approach. Cogent Economics & Finance, 10(1), 2043571.

Soltanifar, M., Hosseinzadeh Lotfi, F., Sharafi, H., & Lozano, S. (2022). Resource allocation and target setting: a CSW-DEA based ap-
proach. Annals of Operations Research, 1-33.

Sugiyama, Manabu, and Toshiyuki Sueyoshi. (2014). Finding a Common Weight Vector of Data Envelopment Analysis Based upon Bar-
gaining Game. Studies in Engineering and Technology 1(1):13-21.

Sun, Jiasen, Jie Wu, and Dong Guo.(2013).Performance Ranking of Units Considering Ideal and Anti-ldeal DMU with Common Weights.
Applied Mathematical Modelling 37(9):6301-10.

Tabatabaei, Somayeh, Mohammad Reza Mozaffari, Mohsen Rostamy-Malkhalifeh, and Farhad Hosseinzadeh Lotfi. (2022).Fuzzy Efficien-
cy Evaluation in Relational Network Data Envelopment Analysis: Application in Gas Refineries. Complex & Intelligent Systems 1-29.

Toloo, M. (2013). The most efficient unit without explicit inputs: An extended MILP-DEA model. Measurement, 46(9), 3628-3634.

Toloo, M. (2014). An epsilon-free approach for finding the most efficient unit in DEA. Applied Mathematical Modelling, 38(13), 3182-
3192.



M. Rabanni et al. 32

Tone, K., Kweh, Q. L., Lu, W. M., & Ting, I. W. K. (2019). Modeling investments in the dynamic network performance of insurance com-
panies. Omega, 88, 237-247.

Tone, K., & Tsutsui, M. (2009). Network DEA: A slacks-based measure approach. European journal of operational research, 197(1), 243-
252.

Tone, K., & Tsutsui, M. (2010). Dynamic DEA: A slacks-based measure approach. Omega, 38(3-4), 145-156.

Tecchio, P., McAlister, C., Mathieux, F., & Ardente, F. (2017). In search of standards to support circularity in product policies: A systematic
approach. Journal of cleaner production, 168, 1533-1546.

You, Y. Q., & Jie, T. (2016). A study of the operation efficiency and cost performance indices of power-supply companies in China based
on a dynamic network slacks-based measure model. Omega, 60, 85-97.

Zhang, D., Wang, H., & Wang, W. (2022). The Influence of Relational Capital on the Sustainability Risk: Findings from Chinese Non-
State-Owned Manufacturing Enterprises. Sustainability, 14(11), 6904.

This article can be cited: Rabbani, M., Moradi, H., Babaei Meybodi, H., Taghi Honari, M., (2022).
Development of a range-adjusted measure-based common set of weights for dynamic network data envelop-
ment analysis using a multi-objective fractional programming approach. Journal of Industrial Engineering
and Management Studies, Vol. 9, No. 2, pp. 13-32.




