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Abstract 

In a data-driven decision-making process, there are various types of data that should be thoroughly processed and analyzed. 
Data mining is a well-recognized method to obtain such information by analyzing data and transforming it into actionable 
insights for further use. Among the various data mining techniques such as classification, clustering, and association rules, this 
research focused on classification techniques and presented an innovative regression-based learning approach in the decision 
tree (DT) models. DT algorithms are easy-to-understood and can work with different data types including continuous, discrete, 
and non-numerical. Despite a large number of existing studies, which attempt to enhance the performance of the DT models, 
there is still a gap in accurately extracting knowledge from databases. In this research, this issue is addressed by exploiting 
regression and coefficient of determination (R2) methods in a DT. The proposed tree provides new insights in the following 
aspects: split criterion, handling continuous and discrete variables, labeling leaf node, pruning process by stopping criteria and 
tree evaluation. The superiority of the proposed algorithm is demonstrated using a real-world hospital database and a compar-
ison with existing approaches is provided. The results showed that the proposed algorithm outperforms the existing methods 
in terms of higher accuracy and lower complexity.  

Keywords: Data mining; classification; decision tree; split criterion; R square. 

Paper Type: Original Research 

1. Introduction 

Data mining is the process of automatically discovering nontrivial, previously undiscovered, and possibly bene-

ficial patterns in databases. Research has shown that data is expected to double every three years. Thus, data 

mining has become an important tool to transform such data into information. The datasets in data mining appli-

cations are often large, so new classification techniques have been developed to deal with millions of objects, 

each of them possessing perhaps dozens or even hundreds of attributes. Hence, classifying such datasets be-

comes an important concern in data mining (Wang et al., 2008). Classification is the process of automatically cat-

egorizing an object based on its attributes into one of several pre-defined categories. Classification is also known 

as supervised learning (Kotsiantis et al. 2007) in which a given set of data records is divided into training and test 

data sets. Neural Networks (Lippmann, 1987), Logistic Regression (Khoshgoftaar et al. 2000), and DTs (Salzberg, 

1994) have been used as classification algorithms, to name a few. DT, as the most popular classification algorithm 

proposed in the data mining, provides a readily comprehensible modeling technique that simplifies the classifi-

cation process. 

In data mining, there are various methods for extracting knowledge from a large quantity of data. However, the 

primary objective of this study is to propose a new method that increases the amount of knowledge extracted 

from large databases. Also, a review of the literature on the topic of the DTs indicates that this technique needs to 

be further developed in the context of applying the concept of regression in the construction of branches, as well 

as the application of its rules in identifying predetermined patterns and new patterns of fraud and abuse espe-

cially in the field of health. In a nutshell, the following are the contributions of the current research: 
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• Proposing a R2 based feature selection technique that is suitable for distinct and as well as continuous 

variables. 

• Discretization of continuous variables using an efficient method. 

• Comparison of our proposed model with existing models on a hospital dataset. 

• A different approach to stopping tree growth and managing nodes. 

Rest of the paper is organized as follows: in Section 2 various researches done in this area are investigated. Sec-

tion 3 resents the problem definition and elaborately describes the proposed approach. Section 4 displays the 

outcome and analysis of the proposed approach. Section 5 contains the sensitivity analysis topic. Finally, conclu-

sion and the future direction of the work are presented in section 6. 

2. Related Work 

2.1. Machine learning 

Machine learning (ML) as a branch of computer science is a sub-field of Artificial Intelligence (AI) and has 
evolved from pattern recognition. ML is used to explore the structure of data and fit into the models, which can 
be understood and utilized by decision-makers (Wang et al., 2020; Cohen, 2021; Itani et al., 2020; Keswani et al., 
2020; Shobha & Rangaswamy, 2018).  
The fundamental purpose of ML is to build a model by taking input, and use a statistical formula to predict out-
put when new data enters the system. ML examines sample data to find patterns and builds decision rules to 
create a predictive model that can be used to predict future data. These predictive models are capable enough of 
self-learning with minimal human intervention and take a decision based on certain circumstances. In most cas-
es, large datasets are required for optimal learning. ML can broadly categorize into supervised, unsupervised 
and semi-supervised learning containing wide sets of algorithms in each category (Tao et al., 2021; Wang et al., 
2020). 
In supervised learning, the training set consists of data, which contains the target class. A supervised learning 
model has two main tasks to be performed, classification and regression. Classification is the prediction of the 
nominal class label while the regression is the prediction of the numeric value of the class label. The supervised 
learning algorithms covered include DTs, linear regression, logistic regression, ensemble of classifiers including 
random forest and gradient boosted trees, neural networks, support vector machines (SVM), k-nearest neighbor, 
naive Bayes, and Bayesian logistic regression. Unsupervised learning does not use target class, and is based upon 
clustering algorithms of various sorts. It is basically applied to extract a hidden pattern from the dataset when 
the dataset is not having labels. Semi-supervised Learning is the combination of supervised and unsupervised 
learning and is used when a smaller number of labeled data is identified for a particular application. The goal of 
semi-supervised learning is to classify some of the unlabeled data using the labeled information set (Le & Clarke, 
2018; Wang et al., 2018; Sies & Van Mechelen, 2020;).  

2.2. Data mining 

The world is data-rich but information-poor. Data mining is searching knowledge in data and for interesting 
prototypes, (Sarker, 2018). Data mining is regarded as an emerging technology that has made radical change in 
the information world. The term "data mining" (often referred to as knowledge discovery) refers to the method of 
analyzing data from different perspectives and synthesizing it into valuable information. Thus, data mining in-
cludes the main functional elements that help to transform data into data warehouse, manage data in multidi-
mensional database, facilitate data access for professionals or experts, analyze data using applied tools and tech-
niques, and present data in ways that make sense to provide information (Panhalkar & Doye, 2021). Depending 
on the needs of the user, different data mining techniques are used, such as classification, clustering, regression, 
summarization, association and anomaly detection (Lu et al., 2015; Li et al., 2015). 

2.3.  Classification 

Classification is the most commonly applied data mining technique, which employs a set of pre-classified exam-
ples to develop a model that can classify the population of records at large efficiently (Barsacchi et al., 2020; 
Wang et al., 2018). A classifier is generated by learning function over the training set. Then it performs on a new 
example in turn to predict the corresponding class label. 

There are many classification methods including DTs (Kotsiantis, 2013), neural networks (Abpeikar et al., 2020), 
support vector machines (Baloochian & Ghaffary, 2019), Naive Bayes (Farid et al., 2014), Bayesian networks 
(Quadrianto & Ghahramani, 2015), k-nearest neighbor (Bobadilla et al., 2013), rough set theory (Zhang & Dai, 
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2015). Among them, the DT is found to be a simple, expressive, robust and efficient classifier (Kappelhof et al., 
2021; Sarker et al., 2020), and it has been widely used in knowledge discovery and pattern recognition fields. 

2.4.  Decision tree 

The DT algorithm is one of the most popular procedures which creates a knowledge representation structure 
(Pilz et al., 2018). By using this method, cases divide into separate groups or the values of a target variable can be 
predicted by the values of predictor variables (Ginde et al., 2009). A DT includes a single root node, some internal 
nodes and several leaf nodes. The root node is the start of DT. The internal nodes connect the root node and leaf 
nodes (Meng et al., 2020). DTs are built by recursively splitting a node into two or more sub-nodes to produce 
homogeneity for the target variable of each resulting sub-node (Wang et al. 2020). Therefore, a pathway from the 
root node to the leaf node corresponds to a series of attributes (questions) with their values (responses) (Piramu-
thu, 2008; Han et al., 2011).  
The superiority of DT methods as the most popular data mining techniques is operating without hypothesis on 
the system, handling efficiently numerical and categorical, and performing implicitly variable feature selection. 
Also, the generalization, the effectiveness, the robustness and the data bruit resisting are among the prediction 
model features (Barsacchi et al., 2020) which leads to choose this method to perform improvement actions in 
knowledge extraction.  
The primary part of the DT algorithms is the selection of the division feature. Splitting is a key process of separat-
ing nodes into one or more sub-nodes. In other words, the growing of the tree is based on splitting criteria which 
is applied recursively on the data set to find the accurate model that can provide the best decision to the in-
stance’s classification (Benkercha & Moulahoum, 2018). There are plenty of approaches that a DT may be consti-
tuted of a dataset, based upon which attributes to pick for every node, and what situations are to be used for 
splitting at that node (Fayyad & Irani, 1992; Quinlan, 1996; Saroj & Anand, 2021). A suitable attribute is the one, 
which splits the data such that each successor node is as pure as possible. Information gain, Gini index, and gain 
ratio are the popular methods by which the node attribute of a DT is decided (Shobha & Rangaswamy, 2018). 
Although there are many specific DT algorithms, the CART, C5.0, CHAID, Exhaustive CHAID, and QUEST algo-
rithms are the well-known algorithm and the most commonly used ones (Kotsiantis, 2013; Luo et al., 2021). These 
algorithms are used to evaluate the performance of the proposed model and each of them is briefly described as 
in next sections. 

2.5. CART (classification and regression tree) 

CART (Breiman et al., 2017) was ranked in the top 10 algorithms for data mining (Wu et al., 2008) and hence we 
regarded CART and its performance as a satisfactory reflection of the expected performance of the DT algorithms 
that are currently often used in practice (Kappelhof et al., 2021). CART algorithm uses the Gini index as the im-
purity metric to determine attributes for classifying samples and constructs binary trees in a top-down manner 
(Rutkowski et al., 2014). This algorithm has been used in many studies (Handley et al., 2014; Bar-Hen et al., 2015). 
The main drawback of this algorithm is that it is not suitable to handle continuous attributes (Meng et al., 2020). 

2.6.  C5.0 

C5.0 is an updated version of C4.5 (Quinlan, 1986). It extends the C4.5 classification algorithms described in 
(Salzberg, 1994). Based on Kuhn and Johnson (2013) the model has been advanced in terms of speed, memory 
usage, the size of the DT, boosting (that improves the accuracy of the trees), and weighing (that allows the user to 
weigh different cases and misclassification types). A comparison study of the top 10 algorithms of data mining 
(Wu et al., 2008) identified C4.5 as the most influential data mining algorithm. 

C5.0 DT model is essentially a tree involving a set of decision nodes, among which the root and each internal 
node are labeled with a question (Pradhan, 2013). The arcs descend from each root node to the leaf nodes, where 
a solution to the related question is proposed. A split is created at each node by making a binary decision, which 
separates a class or more classes from the global dataset. The C5.0 is a kind of algorithm that calculates the best 
splits based on information gain ratio (IGR). The IGR is considered as a probability-based measure used to calcu-
late the degree of uncertainty reduction. Generally, the DT grows down by calculating the split with the biggest 
IGR until the best solution is available (Rajeswari & Suthendran, 2019; Guo et al., 2021). The C5.0 algorithm can 
overfitting easily lead to form an excessive tree structure. Overfitting is a situation in which the resulting tree 
consists of the noise and random errors from the training set causing an excellent result for training and test set, 
but the practical application will produce a large error (Yu et al., 2018). 

2.7. CHAID (Chi-Squared Automatic Interaction Detector) 

CHAID proposed by Kass in 1980, CHAID decision trees support multiple splits, allowing each node to have 
multiple child nodes. Based on the type of target variable, to determine splitting rules and node formation, F-test 
is used when the dependent variable is continuous and the Chi-Squared test is used when the dependent varia-
ble is nominal. Each predictor at each split that provides the best prediction of the target variable is the one with 
the lowest p-value from the test (Bach et al., 2018). The most significant predictor of the CHAID decision tree 
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would be the top node. Splitting continues until there are no significant relationships between the remaining 
predictors and the target variable (Perri, et al., 2012; Milanovic & Stamenkovic, 2016). 

2.8.  Exhaustive CHAID 

The Exhaustive CHAID (Biggs et al., 1991), a modification to the basic CHAID algorithm, has the same splitting 
and stopping steps as CHAID but the merging step is more exhaustive than CHAID, by continuing to merge 
categories of the predictor variable until only two super categories are left. It then examines the series of merges 
for the predictor variable and finds the set of categories that offers the most powerful association with target var-
iable. Thus, the Exhaustive CHAID can find the best split for each predictor variable (Sut and Simsek, 2011; Ho-
thorn et al., 2006). 

2.9.  QUEST (quick unbiased and efficient statistical tree) 

The Quick, Unbiased, Efficient Statistical Tree (QUEST) algorithm is a binary and single-variable tree algorithm 
for classification and data mining (Loh & Shih, 1997). It is similar to the CART algorithm (Breiman et al., 2017). 
However, there are some minor differences. For instance, QUEST uses an unbiased variable selection method, 
uses imputation to handle missing values instead of surrogate splits, and handles categorical variables in many 
categories. It deals with split selection and split-point selection, separately. The univariate split performs unbi-
ased field selection, which means if all of the predictor fields are similarly informative concerning the target field; 
it chooses any of the predictor fields with equal probability. The QUEST uses chi-squared tests for unordered 
variables and analysis of variance (ANOVA) tests for ordered variables. While keeping the accuracy of estima-
tion in the CART, the QUEST algorithm accelerates the process of making a classification tree (Chou, 2012). 

2.10. Regression 

Regression analysis is a predictive modelling technique for formulating the correlation between a set of depend-
ent and independent variables. The purpose of the regression is to apply a mathematical function to the data that 
captures these changes. Linear regression as an essential regression algorithm attempts to model the relationship 
among two variables by fitting a linear equation to observed data (Yeturu, 2020; Gkioulekas & Papageorgiou, 
2021). Unlike the linear regression model, which simplifies the relationships between the different variables, oth-
er regression models such as logistic, nonlinear can be named as the developed states of the linear regression 
model to deal with more complex scenarios. Logistic regression (LG) is almost similar to linear regression used 
for classification problem through assigning observations to a discrete set of classes (De Caigny et al., 2018; Re-
zapour et al., 2020; Saroj & Anand, 2021). To map different predictors to probabilities, sigmoid activation func-
tion can be used to transfer the data with any value to a value between 0 and 1. Dependent variable value ‘0’ in-
dicates non-occurrence of event and ‘1’ indicates presence of the event  
A suitable linear regression model offers valid statistical inferences on diverse applications with forecasting. The 
success of linear regression analysis lies in the adequacy of the fitted model in explaining the variations in the 
data set. A popular tool to determine the adequacy of the fitted model is the coefficient of determination and the 
adjusted version. The coefficient of determination is popularly known as R2. They are treated as summary 
measures for the goodness of fit of any linear regression model. The R2 is based on the proportion of variability 
of the study variable that can be explained through the knowledge of a given set of explanatory variables. It is 
the square of the multiple correlation coefficient between the study variable and all the explanatory variables 
present in the linear regression model (Sahani & Ghosh, 2021). However, to the best of our knowledge, no study 
has been reported to use R2 as a measure to create split in DT construction.  

2.11. Healthcare dataset 

In the literature, numerous studies have been undertaken to extract useful knowledge from various types of 
healthcare data. Healthcare data mining has proved to be useful in areas such as predictive medicine, patient 
relationship management, fraud and abuse detection, data analysis, healthcare monitoring and individual treat-
ments’ usefulness assessment (Chang & Chen, 2009; Pashaei et al., 2015). The advantages of integrating data min-
ing into medical research are to improve diagnostic precision, cut costs and reduce human resources (Khajehei & 
Etemady, 2010). The efficacy of a fraud detection system largely depends on the efficiency of the used techniques 
and the quality of available databases (Bach et al., 2018). 

In areas like healthcare, the model must understand the rationale behind the model output to use it when mak-
ing a decision. For this reason, it is far not possible to apply black-box models in these scenarios, irrespective of 
their predictive performance. DTs as an interpretable model are examples of this kind of model (Sagi & Rokach, 
2021). The focus of data mining work is the design and implementation of data mining algorithm. Therefore, 
enhancing the performance and accuracy of data mining algorithm has constantly been a remarkable issue. In 
this study, using a new criterion to identify splitting attributes in DTs construction is the best choice. To over-
come the drawback of mentioned methods the contribution of this study are as follows: 
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• Here a R2 based technique is proposed to identify splitting variable in DTs. 

• The proposed method works for any type of variable: discrete and continuous. 

• Efficient discretization method is proposed for continuous variables. 

• New approach is presented for converting nodes to leaves and stopping tree growth. 

• Labeling leaf nodes is completed through a novel process. 

• Extensive evaluation and analysis is performed on various models of the DT. 

• The efficiency and effectiveness of the proposed method is investigated through an extensive sensitiv-
ity analysis. 

 
3. Methodology 

• The data classification process involves learning and classification. In learning, the training data are 
analyzed by classification algorithm. In classification, test data are used to estimate the accuracy of the 
classification rules (Baitharu & Pani, 2016). Hence, once the model was constructed utilizing the train-
ing samples, the test sub-dataset is used to assess the performance of the created model in represent-
ing/predicting the unseen data (Ghiasi et al., 2020). The procedure for building the proposed trees is 
explained in Figure 1. The main ideas of this procedure are explained in the following sections.  

End

Determine the dependent variable (class variable) as Y 

and independent variables as X1, X2, …, Xn

Create initially the root node 

associating the whole dataset (D)

Start

Identify the rules (R) from the root to the leaves.

Evaluate the extracted rules based on coverage and accuracy.

The algorithms ( C5.0, CART, CHAID, EXCHAID and 

QUEST) are applied separately on the Data.
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Figure 1. Overall framework of the proposed method 

 
3.1.  Split Criterion 

Constructing a DT is often a recursive procedure, where it repeatedly optimizes a function and partitions the 
training data in the root and internal nodes until a termination condition is met. This function is usually referred 
as split criterion (Hamsa et al., 2016). Reviewing the literature indicates that several classical split criteria, includ-
ing ID3 (Quinlan, 1986), C4.5 (Salzberg, 1994), classification and regression tree (CART) (Breiman et al., 2017) and 
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CHAID (Kass in 1980) have been proposed. Among the aforementioned criteria, ID3 and C4.5 are based on the 
information entropy, CHAID uses F-test and Chi-Squared test, while the CART adopts the Gini index. It should 
be indicated that some other split criteria are also introduced, but they are not classified as independent schemes 
(Mehta et al., 1996; Abellán & Moral, 2003; Lee, 2006; Mantas & Abellán, 2014; Wang et al., 2014; Mantas & Abel-
lán, 2014b; Wu et al., 2016; Wang et al., 2017; Mantas et al., 2016; Wang et al., 2020; Chandra et al., 2010; Höppner, 
2020). 
In the proposed tree, R2-based criterion is employed to select the split variable at each branching node. In a simi-
lar way to some algorithms in DT construction, the variable with the highest R2 score will be selected. To do this, 
the regression equation between a dependent variable and each independent variable in the examined node is 
recognized. One of the following scenarios is likely to happen: 

• The dependent variable is continuous and the independent variable is continuous: Calculate linear 
regression between the dependent variable and the independent variable and obtain R2. 

• The dependent variable is continuous and the independent variable is discrete: Calculate the linear 
regression between the dependent variable and the independent variable. Consider the dummy vari-
able for the independent variable and then obtain R2. 

• The dependent variable is discrete and the independent variable is continuous: Calculate the logistic 
regression between the dependent variable and the independent variable by taking the dummy vari-
able for the dependent variable and then obtain R2.  

• The dependent variable is discrete and the independent variable is discrete: Calculate the logistic re-
gression between the dependent variable and the independent variable by taking the dummy variable 
for the dependent and independent variables and then obtain R2. 

After obtaining R2 values from the regression equations (between the dependent variable and all the independ-
ent variables), arrange them in a descending order to select the highest R2 value. Then choose the independent 
variable with a maximum of R2 as a split variable (if the variable is not unique, select one of the independent 
variables randomly). 

3.2.  Handling continuous and discrete variables 

There have been many studies on how to deal with continuous variables (Fayyad & Irani, 1992; Quinlan, 1996; 
Wang et al., 2014; Tao et al., 2021). Here in node split step two scenarios will occur. When the independent varia-
ble (Xj) is continuous, two branches and consequently two nodes are created, where A = (max Xj - min Xj) and B 
= min Xj + (A/2). In sub-node 1 the values Xj >B and in sub-node 2 the values of Xj<B are located. When the in-
dependent variable (Xj) is discrete, splitting occurs due to the number of subgroups in the independent variable 
(Xj). 

3.3.  Labeling leaf node 

Depending on whether the dependent variable is continuous or discrete, the examined node is converted to a 
leaf, which is selected for further investigation or deleted. In a continuous dependent variable, the mean (μ) and 
standard deviation (σ) of the dependent variable are calculated within the node data. If more than the ConPer-
cent of the data has their dependent variable between +/- one standard deviation from the mean, the node will 
convert to a leaf. Also, the node is labeled with the mean of the dependent variable. Otherwise, depending on the 
number of instances in the node, that node will either be further examined or deleted. In a discrete dependent 
variable, if more than Dispercent of the instances is from a single class, the node will convert to a leaf and labeled 
with the most frequent class. Otherwise, depending on the number of instances in the node, that node will either 
be further examined or deleted. 

3.4.  Pruning Process by Stopping Criteria 

A very important concern in building DTs would be deciding when the growth of the tree should be stopped. 
Also, improving the generalization ability of the DT, the pruning is needed to remove the over-subdivided leaf 
nodes caused by the effect of noise data, so that their parent nodes or higher nodes become leaf nodes. This pro-
cess prevents overfitting of the training set (Oliver & Hand, 1996; Luo et al., 2021; Yu et al., 2018).  

Pruning method is a search algorithm that reduces the size of DTs by removing sections of the tree that provide 
little power to classify instances (Manikandan et al., 2020). Pruning is one of the best mechanisms applied while 
constructing a DT (prepruning or forward pruning) or after the construction of a tree (postpruning or backward 
pruning) (Begon et al., 2017; Sim et al., 2017; Windeatt & Ardeshir, 2001). The main drawback of pruning is that it 
may increase the classification errors on the training data set, but it improves the accuracy of classification on 
unseen data points (Panhalkar & Doye, 2021).  Since the pre-pruning approach is less computationally complex, it 
would probably be a better solution for dispersed data. In many articles, the advantages of pre-pruning have 
been confirmed based on data from various domains (Begon et al., 2017; Sim et al., 2017). 
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This study applies three pre-pruning methods; imposing a threshold on a measure (minimum number of in-
stances) to stop tree growth, applying the Conpercent and Dispercent values and getting empty the list of inde-
pendent variables. For minimum number of instances (3% of the total instances) pruning method, when a mini-
mum number of objects in the leaves is increased, the size of the tree increases, while the accuracy of classifica-
tion is generally unaffected (Przybyła-Kasperek, & Aning, 2021; Patel & Upadhyay, 2012). Based on the Conper-
cent and Dispercent values, a decision is made about when the leaf will become a node, remove or further re-
view. On the other hand, the branching of a DT is also stopped when there are no more variable in the list of in-
dependent variables to select.  

3.5.  Tree evaluation 

The purpose of building a DT is to predict the dependent variable based on the independent variables by learn-
ing decision rules (Myles et al., 2004; Pradhan, 2013). The paths from a root node to leaf nodes reveal the classifi-
cation rules. The decision rules are generally of the form ‘IF condition THEN conclusion’ statements. The “IF” 
part of a rule is known as the rule antecedent or precondition. The “THEN” part is the rule consequent. In the 
rule antecedent, the condition consists of one or more variable tests that are logically ANDed. The rule’s conse-
quent contains a class prediction. If the condition in a rule antecedent holds true for a given set of data, the rule 
antecedent is satisfied and the rule covers the data (Witten et al., 2017; Meng et al., 2020; Wang et al., 2020; Kha-
lili-Damghani et al., 2018; Yeo & Grant, 2018; Gkioulekas & Papageorgiou, 2021) 

Once a tree has been constructed, performance evaluation is the most important task to be performed, for check-
ing accuracies of learning methods, used to construct the tree. To evaluate the performance of the proposed 
method, various criteria used in previous research (specificity, accuracy, precision, recall, F-measure, Confusion 
Matrix) (Rajeswari & Suthendran, 2019; Kudła & Pawlak, 2018). In this study, rule assessment metrics such as 
coverage and accuracy with minor modification are applied. In the proposed tree, an extracted rule (R) is evalu-
ated with the criteria of coverage and accuracy. Given a set of data (X) from a class labeled data set (D), let ncov-
ers be the number of data covered by R (If the dependent variable (Y) is continuous, the value of dependent vari-
able is in the interval of a standard deviation of the mean); ncorrects be the number of data correctly classified by 
R; |D| be the amount of data in D and K is the number of leaves. The coverage and accuracy of R can be defined 
as follows: 

Coverage (R) = ncovers/|D|                                                                             (1) 

Accuracy (R) = ncorrect/ ncovers                                                                        (2) 

A rule’s coverage is the percentage of data that is covered by the rule (their variable values hold true for the 
rule’s antecedent). For a rule’s accuracy, it evaluates the data that is covered and percentage of them the rule can 
correctly classify. This description is shown in Table 1. 

Table 1. Model evaluation on training data  

Accuracy Coverage Rule standard 

deviation * 

Rule consequent: 

THEN --- 

Rule antecedent (Precondition): 

IF --- & --- & … 

Rules Leaves 

A1 C1 1 Conclusion 1 Variable 
test… 

Variable 
test2 

Variable 
test1 

Rule 1 Leaf 1 

A2 C2 2 Conclusion 2 Variable 
test… 

Variable 
test2 

Variable 
test1 

Rule 2 Leaf 2 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

Ak Ck k Conclusion k Variable 
test… 

Variable 
test2 

Variable 
test1 

Rule k Leaf k 

* This column is calculated if the dependent variable (Y) is continuous. 

The model is evaluated using test data and for each test data, the dependent variable (Y) is predicted. Consider-
ing the total number of test data as Z, the model evaluation on the test data is shown in Table 2.  
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Table 2. Model evaluation on test data 

If the dependent variable (Y) is continu-
ous 

If the dependent 
variable (Y) is 

discrete 

Rule’s 
accuracy 

Mean of 
dependent 

variable in the 
leaf 

The rule 
number 

that covers 
the test 

data 

Actual value 
of dependent 

variable 

Test 

data Is the value of dependent 
variable in the interval of 

a standard deviation of 
the mean? 

No=0 or Yes=1 

standard 
deviation of 

the leaf 

Is the actual class 
equal to the 

predicted class? 

No=0 or Yes=1 

0 or 1 i 0 or 1 Ai 
Conclusion 

rule i 
Rule i AC1 

test 1 

0 or 1 j 0 or 1 Aj 
Conclusion 

rule j 
Rule j AC2 

test 2 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

0 or 1 m 0 or 1 Am 
Conclusion 

rule m 
Rule m ACz 

test z 

Finally, the accuracy of the model in the experimental data set is calculated as follows: 
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4. Experimental Results and Analysis 

In this section, experiments are conducted to demonstrate the superiority of the proposed tree model. All exper-
iments are run in MATLAB 9.2.0. For more details, the MATLAB code is given in Appendix. In this study, the 
dataset is divided into training and test sets in a ratio of approximately 5:1 (Delen et al., 2013; Tanyu et al., 2021). 

4.1. Training phase 

Data is collected from six health insurance organizations in 2020. In the training phase, 1000 samples with 15 var-
iables were investigated. The brief description of the data is given in Table 3. In this research, the "diagnosis 
code" variable was considered as a dependent variable and the rest of the variables were considered as inde-
pendent variables. 

Table 3. Brief description of the data 

Variable Variable type Description 

Referral Month discrete 
January, February, March, April, May, June, July, August, September, October, 

November, December 

Insurance Type discrete T, S, K, O, A, V 

Hospitalization days discrete 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

Age discrete 0-14, 14-21, 22-40, 41-60, 61-70, 71-100 

Diagnosis Code discrete Z03.5, I51.9, I51.6, R69, I25.1, E66.8 

Paraclinical tests continuous Min:0, Average:2713920, Max:2713920 

Surgery continuous Min: 0, Average: 22602210 Max: 71139200 

Radiology continuous Min: 0, Average: 16900 Max: 5589760 

Drug continuous Min: 144980, Average: 3952923, Max:129358200 
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Other continuous Min: 40620, Average: 645380, Max: 6545697 

Consumer goods continuous Min: 72258, Average: 36567329, Max: 139232238 

Vascular interventions continuous Min:0, Average: 1260141, Max: 43245440 

Hoteling continuous Min: 0, Average: 1705213, Max: 25650000 

Visit continuous Min: 0, Average: 22743, Max: 2323200 

All services continuous Min: 49887782, Average: 67063846, Max: 183682060 

 
As presented above, among 54 diagnosis codes assigned to 1,000 instances, only the 6 mentioned diagnosis codes 
cover 895 data. Hence, in the processing phase, the number of data is reduced to this number. After running the 
model on the training data, a DT is created (Figure 2). It is observed that 7 levels are created which have a total of 
49 nodes. Among the created nodes, there are 8 leaves, 14 nodes have been further examined based on variable 
selection and the remaining 27 nodes have been removed. Also, the description of the node color is shown in 
Table 4. 

 
Table 4. The description of node color 

Description Node color 

The nodes turned into leaves Green 

The nodes have been deleted Red 

The nodes examined further White 

 

 
Figure. 2. The created tree by the implementation of the proposed model 

 

Number of instances in each leaf are shown in Figure 3. Based on the pruning process by stopping criteria the 
nodes with less than 3% of the total instances have been deleted. Other nodes have also turned into leaves or 
branched from them. 
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895

100 114 124 103 110 1 52 72 65 17 78 59

4 31 64 1 4 2 49 59 7 45 67 5 2 4 28 25

29 2 48 1 1 19 25 65 2

3 39 13 10

35 4

33 2

1 11 21

 
Figure 3. Number of instances in each node 

 
The nodes examined further are shown in Figure 4. According to the split criterion, the nodes examined further 
with the selected independent variable and related values are shown in Figure 4. For example, at the root node, 
the independent variable "Referral Month" as the discrete variable has the highest R2 value, which makes it as 
the split variable. At the level one, nodes 1, 2, 7, 8, and 12 were qualified for further examination. In other words, 
the number of instances in them was more than 3% of the total data and the scattering of the dependent variable 
prevented them from turning into leaves. At the level two, nodes 2, 7, 10, and 11were qualified for further exam-
ination. Likewise, at the level three, node 8, at the level four, node 2, at the level five, node 1, and at the level six, 
node 1 were selected for further examination. Therefore, the depth of the constructed tree is 7. 
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K S T V

2,2
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2,7

2,8 2,12
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<=1506530 >1506530
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Hospitalization Period

Max R2=0.4057

<=1.5 >1.5

Selected variable:

Insurance Type

Max R2=0.5227

A K S T

3,2

3,7 3,10 3,11

4,1 4,2

4,3 4,4 4,5 4,6 4,7 4,8 4,9

Selected variable:

Hospitalization Period

Max R2=0.5334

<=1.5 >1.5

Selected variable:

Other costs

Max R2=0.3088

<=600989 >600989

Selected variable:

Insurance Type

Max R2=0.1782

K S T

Selected variable:

Other costs

Max R2=0.2256

<=1854540 >1854540

4,8

5,1 5,2 5,3 5,4

Selected variable:

Age Group

Max R2=0.1878

22-40 41-60 61-70 71-...

5,2

6,1 6,2

Selected variable:

Costs of Consumer goods

Max R2=0.1911

<=58324000 >58324000

6,1

7,1 7,2

Selected variable:

Surgery costs

Max R2=0.1529

<=37008224 >37008224

7,1

8,1 8,2 8,3

Selected variable:

Insurance Type

Max R2=0.1078

A S T

1,1

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,10 2,11 2,12

Selected variable:

Referral Month

Max R2=0.4121

November December
Februar

y
January March April June October August May September July

 
Figure 4. The nodes examined in the created tree 

In the created tree, eight nodes turned into leaves that are shown in Figure 5. As mentioned before, in nodes that 
have become leaves, the number of instances in them was more than 3% of the total data and the scattering of the 
dependent variable caused them to turn into leaves. With these conditions at level 1, five leaves, at level 2, two 
leaves, and at level 3, one leaf are identified. 
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February

January March
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2,2

3,8

December

T

 
Figure 5. The nodes turned into leaves in the created tree  

Each rule is created for each leaf from root to the leaf. Therefore, it is clear that the number of rules is equal to the 
number of leaves. The eight extracted rules with accuracy and coverage amounts are given in Table 5. As can be 
seen in the structure of the rules, “referral month”, “insurance type”, and “visit cost” have the greatest impact on 
the “diagnosis code” as dependent variables. 

Table 5. Extracted rules 

Accuracy Coverage 
ncorrec

t 
ncover 

Rule consequent 
(Diagnosis Code) 

Rule antecedent (Precondition) 
Rules Leaves 

87.9% 13.9% 109 124 Z03.5 - - 
referral month 

="November " 
Rule 1 Leaf 1 

54.7% 7.2% 35 64 Z03.5 - 
referral 
month 

="June" 

insurance type = 
“T” 

Rule 2 Leaf 2 

50.0% 5.4% 24 48 I51.9 
referral 
month 

="August " 

insurance 
type = "S " 

visit cost <= 
600989 

Rule 3 Leaf 3 

75.7% 11.5% 78 103 Z03.5 - - 
referral month 

="September " 
Rule 4 Leaf 4 

92.7% 12.3% 102 110 Z03.5 - - 
referral month 

="December" 
Rule 5 Leaf 5 

74.6% 6.6% 44 59 Z03.5 - 
referral 
month 

="August " 

insurance type = 
“T” 

Rule 6 Leaf 6 

75.4% 7.3% 49 65 Z03.5 - - 
referral month 

="May " 
Rule 7 Leaf 7 

92.3% 8.7% 72 78 Z03.5 - - 
referral month 

="June" 
Rule 8 Leaf 8 

 

As it can be seen in the above table, out of 651 instances in the leaves, 513 instances are classified correctly. Thus, 
according to the tree evaluation process, the accuracy of the proposed tree is 78.8%, which is a satisfactory value. 
In DT algorithms, the complexity of DT model is an important factor that needs to be considered. There is proba-
bly an enormous amount of leaf nodes in a fully-grown tree, and only a few training instances are in each leaf 
node. If the algorithm searches too long or concentrates an excessive amount on a few hard-to-learn instances, 
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the problem of over fitting can occur. In addition, the performance of the DT might be also reduced when dealing 
with a noise dataset (Abellán et al., 2018; Czajkowski & Kretowski, 2019). On growing DTs, the tree complexity is 
measured by one of the following metrics: tree depth, total number of leaves, and number of variables used 
(Przybyła-Kasperek & Aning, 2021).  
The effectiveness and efficiency of our proposed algorithm is evaluated against well-known algorithms such as 
C5.0, CART, CHAID, EXCHAID, and QUEST. The models are applied separately on the train data. Diagram of 
the models and their complexity are shown in Figure 6 and 7, respectively. Also, the accuracy of models is given 
in Table 6. As can be seen, the proposed model is in a satisfactory situation in terms of complexity compared to 
other models. In addition, the proposed model has the highest accuracy.  

  

 

Figure 6. DT models in clementine environment 

 

 

Figure 7. Comparison of model’s complexity 
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Table 6. Comparison models accuracy 

C5 CHAID CART Quest EXCHAID Proposed model 

77.80% 67.60% 66.40% 60.10% 66.40% 78.80% 

 
Due to the high accuracy of the proposed model, it can be concluded that this model extracts useful knowledge 
(with more certainty and less error) from data. As a result, managers can trust the extracted rules and use them 
for fraud detection and decision-making. 

4.2.  Testing phase 

In order to test the proposed algorithm, we apply it to 20% of our date (200 instances). The result of applying the 
proposed algorithm is shown in Table 7 as follows: 

Table 7. Model evaluation in test data 

Rules Accuracy Number of data covered by 
the rule 

Number of data classified correctly 
by the rule i 

Number of data not correctly classified 
by the rule i 

1 87.90% 15 13 2 

2 54.70% 14 14 0 

3 50.00% 24 15 9 

4 75.70% 33 14 19 

5 92.70% 20 19 1 

6 74.60% 15 4 11 

7 75.40% 20 20 0 

8 92.30% 20 20 0 

Sum 161 119 42 

The result shows that 39 records are not covered by any of the rules identified in the training phase (Rules 1 to 8). 
Among the 161 remaining records, the following results are obtained: based on Table 7 and the formulas 3, 4, and 
5, the average accuracy of the proposed algorithm is 64.31% with regard to the test data covered by the rules (161 
data). 

5. Sensitivity analysis 

Most studies have examined the cause and effect association between the target variable and the input variables 
(Davis, 1989). Measuring the importance of predictor variables is often recognized as sensitivity analysis, which 
is relative to the importance of each variable when making predictions (Delen, et al., 2013). Nonetheless, in this 
article sensitivity analysis is treated differently. To investigate the efficiency and effectiveness of our proposed 
algorithm, sensitivity analysis on the proposed algorithm is performed in three parts: the importance of Disper-
cent and Conpercent values, the type of dependent variable, and the amount of data. 

5.1. Change in Dispercent and Conpercent values 

The values of Dispercent and Conpercentare considered according to the type of dependent variable (discrete or 
continuous). In this study, the discrete dependent variable (detection code) is defined. Hence, after creating a 
split by an independent variable, in each created node if the amount of data with the same dependent variable is 
greater than Dispercent value, the node turns into a leaf. By default, in implementation of the proposed model, 
the Dispercent value was considered to be 0.5. Here, the Dispercent value is changed from 0.1 to 1 and the results 
are shown in Figure 8. As expected, the higher Dispercent value results in the lower number of leaves and the 
greater number of deleted nodes. In other words, with the increase of Dispercent value, the construction of the 
DT becomes stricter. 
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Figure 8. Number of leaves and deleted nodes in Dispersant value change conditions   

As shown in the above figure, changing in the Dispercent value did not result in any significant change in the 
number of created leaves. Therefore, it can be said that the proposed model is almost robust under the conditions 
of changing Dispersant value. The mentioned mode is true for the case in which the dependent variable is con-
tinuous, with a Conpercent value. 

5.2. Change in the type of dependent variable 

In the first run of the proposed model, the discrete variable “diagnosis code” was considered as a dependent 
variable. In this part, to analyze the proposed model in different situations the continuous variable "drug costs" is 
considered as a dependent variable. A DT is created based on applying the model on the training data (1000 in-
stances). As it can be seen in Figure 9, only one node (root node) in the tree has been examined and a branch has 
been created from it. The constructed tree has only one level with 54 nodes. Among the created nodes, there are 6 
leaves and consequently 6 rules and 48 nodes have been removed. The number of instances in the 54 nodes creat-
ed is shown in Figure 10. It has already been stated that according to the stop criteria, a node is deleted, exam-
ined or turned into a leaf. 

 

Figure 9. The created tree by the implementation of the proposed algorithm 
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Figure 10. Number of instances in each node 

In the root node, as the only node examined, the "Diagnosis code" variable with the highest value of R is selected 
as the split variable. Figure 11 shows the labeling of the created nodes based on selected independent variable. 

 

Figure 11. The nodes examined further in the created tree 

The created tree has only one level and all 6 detected leaves in the tree are at this level. The labeling of the leaves 
can be clearly seen in Figure 12. Also, the rules assigned to each leaf are given in Table 8. According to the result, 
743 out of 895 instances in the leaves are classified correctly. Therefore, the accuracy of the proposed tree is 
83.02%, which is acceptable and it can be concluded that useful, pure and reliable knowledge is obtained. The 
extracted rules indicate that “diagnostic code” has the greatest impact on “drug cost” as a dependent variable, 
which is a perfectly valid and logical issue. 
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If Diagnosis Code= "E 8.66 " Then Mean of drug costs= 219,495,1

I25.1 I51.6

1,1

2,4

2,22 2,28 2,30

2,47

2,50

I51.9

E66.8

R69

Z03.5

If Diagnosis Code= "I 1.25 " Then Mean of drug costs= 181,391,3 If Diagnosis Code= "I 6.51 " Then Mean of drug costs= 144,161,3

If Diagnosis Code= "I 9.51 " Then Mean of drug costs= 885,772,3

If Diagnosis Code= "R69" Then Mean of drug costs= 918,058,11

If Diagnosis Code= "Z 5.03 " Then Mean of drug costs= 995,444,3

 
Figure 12. The nodes turned into leaves  

 

Table 8. Extracted rules 

Accuracy Coverage ncorrect ncover 
Rule consequent 

(Mean of drug costs) 

Rule antecedent 
(Precondition) 

Rules Leaves 

81.8% 3.30% 27 33 1,495,219 
Diagnosis Code= 

"E66.8 " 
Rule 1 Leaf 1 

70.7% 4.10% 29 41 3,391,181 
Diagnosis Code= 

"I25.1" 
Rule 2 Leaf 2 

82.2% 7.30% 60 73 3,161,144 
Diagnosis Code= 

"I51.6" 
Rule 3 Leaf 3 

82.5% 12.00% 99 120 3,772,885 
Diagnosis Code= 

"I51.9" 
Rule 4 Leaf 4 

89.4% 6.60% 59 66 11,058,918 Diagnosis Code= "R69" Rule 5 Leaf 5 

83.5% 56.20% 469 562 3,444,995 
Diagnosis Code= 

"Z03.5" 
Rule 6 Leaf 6 

 

Comparing the proposed model with other models (CART, CHAID and EXCHAID), we achieved that the pro-
posed model has a proper performance and a slight degree of complexity. Therefore, the proposed model has the 
desired performance for both types of discrete and continuous dependent variables. The evidence is displayed in 
Figures 13 and 14, and Table 9. 
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Figure 13. DT models in clementine environment 

 

 

Figure 14. Comparison of model’s complexity 
 

Table 9. Comparison models accuracy 

CART CHAID EXCHAID Proposed model 

75.47% 72.49% 71.17% 83.02% 
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6. Conclusion and Future research 

This research presented a novel DT algorithm by incorporating the concept of regression and more specifically 
the coefficient of determination. The proposed model can be summarized in three steps: tree construction, prun-
ing and evaluation. The developed DT showed promising results as compared to those of the existing algorithms 
such as C5.0, CART, CHAID, EXCHAID, and QUEST. The uniqueness of the proposed tree is to manage discrete 
and continuous variables as independent and dependent variables in DT construction by applying a coefficient 
of determination in node split. The results indicated the high accuracy and low complexity of the proposed tree 
compared to other models. The high accuracy of the proposed model indicated that the rules are extracted with 
greater purity and therefore useful knowledge is achievable. Also, performing sensitivity analysis on the type of 
dependent variable and changes in Conpercent and Dispercant values demonstrated strength and stability of the 
proposed tree compared to other models. In the future, several independent variables in each node may be con-
sidered during construction of DT (i.e., constructing an oblique DT). 
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Appendix. MATLAB codes 

clc;clear; 
rowNumber=895; 
colNumber=14; 
deVarType='D'; 
inVarType=['D';'D';'D';'C';'C';'C';'C';'C';'C';'C';'C';'C';'C']; 
minDataNumber=30; 
disPercent=0.5; 
conPercent=0.5; 
inVarNumber=colNumber-1; 
[num,txt]=xlsread('data.xlsx',['A',num2str(1),':','A',num2str(rowNumber)]); 
if deVarType=='D' 
    deVarData=txt; 
else 
    deVarData=num; 
end 
inVarData=cell(1,colNumber-1); 
for i=2:colNumber 
    [num,txt]=xlsread('data.xlsx',[xlcolumnletter(i),num2str(1),':',xlcolumnletter(i),num2str(rowNumber)]); 
    if inVarType(i-1)=='C' 
        inVarData{i-1}=num; 
    else 
        inVarData{i-1}=txt;    
    end 
end 
createdNodes(1,1)=1; 
leafNodes(1,1)=0; 
deletedNodes(1,1)=0; 
investigatedNodes=[]; 
currentLevel=1; 
currentNumber=1; 
nodes(1,1).includedRow=ones(1,rowNumber); 
nodes(1,1).selectedVar=[]; 
nodes(1,1).rSquare=[]; 
nodes(1,1).leaf=0; 
nodes(1,1).deleted=0; 
nodes(1,1).rootNumber=[]; 
nodes(1,1).direction=[]; 
nodes(1,1).Value={}; 
nodes(1,1).separation=[]; 
nodes(1,1).allowedVars=(1:inVarNumber); 
lastNumber=zeros(1,inVarNumber+1); 
lastNumber(1)=1; 
counter=0; 
tic; 
warning('off','all') 
while 1 
    counter=counter+1; 
    currentDataIndex=find(nodes(currentLevel,currentNumber).includedRow==1); 
    currentDataNumber=size(currentDataIndex,1); 
    allowedVars=nodes(currentLevel,currentNumber).allowedVars; 
    if deVarType=='C' 
       Rsq=zeros(1,length(allowedVars)); 
       for i=1:length(allowedVars) 
           if inVarType(allowedVars(i))=='C' 
              temp=[inVarData{allowedVars(i)}]; 
              X=[ones(size(currentDataIndex))',temp(currentDataIndex,:)]; 
              Y=deVarData(currentDataIndex,:); 
              b=X\Y; 
              Y_hat=X*b; 
              Rsq(i)=1-sum((Y - Y_hat).^2)/sum((Y - mean(Y)).^2); 
           elseif inVarType(allowedVars(i))=='D' 
              temp=[inVarData{allowedVars(i)}]; 
              X=temp(currentDataIndex,:); 
              X_dummy=dummyvar(nominal(X)); 
              X_dummy=X_dummy(:,1:size(X_dummy,2)-1); 
              Y=deVarData(currentDataIndex,:); 
              X_prim=[ones(size(currentDataIndex))',X_dummy]; 
              [~,~,~,~,stats]=regress(Y,X_prim); 
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              Rsq(i)=stats(1); 
           end 
       end 
       sortedRsq=sort(Rsq,'descend'); 
       candidateIndex=find(Rsq==sortedRsq(1)); 
       selectedVar=datasample(allowedVars(candidateIndex),1,'replace',false); 
       nodes(currentLevel,currentNumber).selectedVar=selectedVar; 
       nodes(currentLevel,currentNumber).rSquare=Rsq(candidateIndex); 
    elseif deVarType=='D' 
       n=length(currentDataIndex); 
       nagelkerke=zeros(1,length(allowedVars)); 
       for i=1:length(allowedVars) 
           if inVarType(allowedVars(i))=='C'  
              temp=[inVarData{allowedVars(i)}]; 
              X=temp(currentDataIndex,:); 
              Y=deVarData(currentDataIndex,:); 
              Y_dummy=dummyvar(nominal(Y)); 
              Y_dummy=Y_dummy(:,1:size(Y_dummy,2)-1); 
              logLikePart1=zeros(size(currentDataIndex,2),size(Y_dummy,2)); 
              logLike0Part1=zeros(size(currentDataIndex,2),size(Y_dummy,2)); 
              logLikePart2=zeros(size(currentDataIndex,2),1); 
              logLike0Part2=zeros(size(currentDataIndex,2),1); 
              for j=1:size(Y_dummy,2) 
                  [b,~,~]=glmfit(X,Y_dummy(:,j),'binomial', 'link', 'logit'); 
                  %[B,~,~]=mnrfit(X,categorical(Y)); 
                  %b=B(:,j); 
                  lin=b(1)+b(2)*X; 
                  logLikePart1(:,j)=Y_dummy(:,j).*lin; 
                  logLikePart2(:,j)=exp(lin); 
                  X0=zeros(size(Y_dummy(:,j))); 
                  [b0,~,~] = glmfit(X0,Y_dummy(:,j),'binomial','link','logit'); 
                  %[B0,~,~]=mnrfit(X0,categorical(Y)); 
                  %b0=B0(:,j); 
                  logLike0Part1(:,j)=Y_dummy(:,j).*b0(1); 
                  logLike0Part2(:,j)=exp(ones(size(currentDataIndex,2),1)*b0(1)); 
              end 
              logLike=sum(sum(logLikePart1,2)-log(1+sum(logLikePart2,2))); 
              logLike0=sum(sum(logLike0Part1,2)-log(1+sum(logLike0Part2,2))); 
              nagelkerke(i)=(1-(exp((logLike0-logLike)*(2/n))))/(1-exp(logLike0*(2/n))); 
           elseif inVarType(allowedVars(i))=='D' 
                 temp=[inVarData{allowedVars(i)}]; 
                 X=temp(currentDataIndex,:); 
                 X_dummy=dummyvar(nominal(X)); 
                 X_dummy=X_dummy(:,1:size(X_dummy,2)-1); 
                 Y=deVarData(currentDataIndex,:); 
                 Y_dummy=dummyvar(nominal(Y)); 
                 Y_dummy=Y_dummy(:,1:size(Y_dummy,2)-1); 
                 if isempty(X_dummy) 
                     X_dummy=zeros(size(Y_dummy,1),1); 
                 end 
                 logLikePart1=zeros(size(currentDataIndex,2),size(Y_dummy,2)); 
                 logLike0Part1=zeros(size(currentDataIndex,2),size(Y_dummy,2)); 
                 logLikePart2=zeros(size(currentDataIndex,2),1); 
                 logLike0Part2=zeros(size(currentDataIndex,2),1); 
                 for j=1:size(Y_dummy,2) 
                      [b,~,~]=glmfit(X_dummy,Y_dummy(:,j),'binomial', 'link', 'logit'); 
                      %[B,~,~]=mnrfit(X_dummy,categorical(Y)); 
                      %b=B(:,j); 
                      lin=b(1)+X_dummy*b(2:size(b,1)); 
                      logLikePart1(:,j)=Y_dummy(:,j).*lin; 

                      logLikePart2(:,j)=exp(lin); 

                      X0=zeros(size(Y_dummy(:,j))); 
                      [b0,~,~] = glmfit(X0,Y_dummy(:,j),'binomial','link','logit'); 

                      %[B0,~,~]=mnrfit(X0,categorical(Y)); 

                      %b0=B0(:,j); 
                      logLike0Part1(:,j)=Y_dummy(:,j).*b0(1); 

                      logLike0Part2(:,j)=exp(ones(size(currentDataIndex,2),1)*b0(1)); 

                 end 
                  logLike=sum(sum(logLikePart1,2)-log(1+sum(logLikePart2,2))); 

                  logLike0=sum(sum(logLike0Part1,2)-log(1+sum(logLike0Part2,2))); 

                  nagelkerke(i)=(1-(exp((logLike0-logLike)*(2/n))))/(1-exp(logLike0*(2/n))); 
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           end 

       end 

       sortedNag=sort(nagelkerke,'descend'); 

       candidateIndex=find(nagelkerke==sortedNag(1)); 
       selectedVar=datasample(allowedVars(candidateIndex),1,'replace',false); 

       nodes(currentLevel,currentNumber).rSquare=nagelkerke(candidateIndex); 

       nodes(currentLevel,currentNumber).selectedVar=selectedVar; 
    end 

    temp=[inVarData{selectedVar}]; 

    selectedInVarData=temp(currentDataIndex); 
        if inVarType(selectedVar)=='C' 

     createdNodes(currentLevel+1,lastNumber(currentLevel+1)+1:lastNumber(currentLevel+1)+2)=ones(1,2); 

        nodes(currentLevel+1,lastNumber(currentLevel+1)+1).rootNumber=currentNumber; 
        nodes(currentLevel+1,lastNumber(currentLevel+1)+2).rootNumber=currentNumber; 

        nodes(currentLevel,currentNumber).separation=min(selectedInVarData)+(max(selectedInVarData)-min(selectedInVarData))/2; 

        nodes(currentLevel+1,lastNumber(currentLevel+1)+1).direction='<=';     
nodes(currentLevel+1,lastNumber(currentLevel+1)+1).value=nodes(currentLevel,currentNumber).separation; 

        nodes(currentLevel+1,lastNumber(currentLevel+1)+2).direction='>';      

nodes(currentLevel+1,lastNumber(currentLevel+1)+2).value=nodes(currentLevel,currentNumber).separation; 
        index1= selectedInVarData<=nodes(currentLevel,currentNumber).separation; 

        index1=currentDataIndex(index1); 

        index2= selectedInVarData>nodes(currentLevel,currentNumber).separation; 
        index2=currentDataIndex(index2); 

        includedRow1=zeros(1,rowNumber); 

        includedRow2=zeros(1,rowNumber); 
        includedRow1(index1)=1; 

        includedRow2(index2)=1; 
        nodes(currentLevel+1,lastNumber(currentLevel+1)+1).includedRow=includedRow1;        

nodes(currentLevel+1,lastNumber(currentLevel+1)+1).allowedVars=allowedVars(allowedVars~=selectedVar);        

nodes(currentLevel+1,lastNumber(currentLevel+1)+2).allowedVars=allowedVars(allowedVars~=selectedVar); 
        if sum(nodes(currentLevel+1,lastNumber(currentLevel+1)+1).includedRow)<minDataNumber 

            nodes(currentLevel+1,lastNumber(currentLevel+1)+1).deleted=1; 

            deletedNodes(currentLevel+1,lastNumber(currentLevel+1)+1)=1; 
        else 

            nodes(currentLevel+1,lastNumber(currentLevel+1)+1).deleted=0; 

            deletedNodes(currentLevel+1,lastNumber(currentLevel+1)+1)=0; 
        end 

        nodes(currentLevel+1,lastNumber(currentLevel+1)+2).includedRow=includedRow2; 

        if sum(nodes(currentLevel+1,lastNumber(currentLevel+1)+2).includedRow)<minDataNumber 

            nodes(currentLevel+1,lastNumber(currentLevel+1)+2).deleted=1; 

            deletedNodes(currentLevel+1,lastNumber(currentLevel+1)+2)=1; 

        else 
            nodes(currentLevel+1,lastNumber(currentLevel+1)+2).deleted=0; 

            deletedNodes(currentLevel+1,lastNumber(currentLevel+1)+2)=0; 

        end 
        investigatedNodes(currentLevel+1,lastNumber(currentLevel+1)+1)=0; 

        investigatedNodes(currentLevel+1,lastNumber(currentLevel+1)+2)=0; 

        if deVarType=='D' 
            uniqueCell1=uniquecell(deVarData(includedRow1==1)); 

            for i=1:length(uniqueCell1) 

                classSize=length(find(strcmp(deVarData(includedRow1==1),uniqueCell1(i))==1)); 
                if classSize/length(find(includedRow1==1))>=disPercent 

                    leafStatus=1; 

                    break; 
                else 

                    leafStatus=0; 

                end 
            end 

            if leafStatus==1 && deletedNodes(currentLevel+1,lastNumber(currentLevel+1)+1)==0 

               nodes(currentLevel+1,lastNumber(currentLevel+1)+1).leaf=1; 
               leafNodes(currentLevel+1,lastNumber(currentLevel+1)+1)=1;  

            else 

               nodes(currentLevel+1,lastNumber(currentLevel+1)+1).leaf=0; 
               leafNodes(currentLevel+1,lastNumber(currentLevel+1)+1)=0;  

            end  

            uniqueCell2=uniquecell(deVarData(includedRow2==1)); 
            for i=1:length(uniqueCell2) 

                classSize=length(find(strcmp(deVarData(includedRow2==1),uniqueCell2(i))==1)); 

                if length(classSize)/length(find(includedRow2==1))>=disPercent; 
                    leafStatus=1; 

                    break; 

                else 
                    leafStatus=0; 

                end 

            end 
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            if leafStatus==1 && deletedNodes(currentLevel+1,lastNumber(currentLevel+1)+2)==0 

               nodes(currentLevel+1,lastNumber(currentLevel+1)+2).leaf=1; 

               leafNodes(currentLevel+1,lastNumber(currentLevel+1)+2)=1;  

            else 
               nodes(currentLevel+1,lastNumber(currentLevel+1)+2).leaf=0; 

               leafNodes(currentLevel+1,lastNumber(currentLevel+1)+2)=0;  

            end 
        elseif deVarType=='C' 

            dataMean=mean(deVarData(includedRow1==1)); 

            dataStd=std(deVarData(includedRow1==1)); 
            status=(deVarData(includedRow1==1)<dataMean+dataStd)+(deVarData(includedRow1==1)>dataMean-dataStd); 

            classSize=length(find(status==2)); 

            if classSize/length(find(includedRow1==1))>=conPercent && deleted-
Nodes(currentLevel+1,lastNumber(currentLevel+1)+1)==0 

               nodes(currentLevel+1,lastNumber(currentLevel+1)+1).leaf=1; 

               leafNodes(currentLevel+1,lastNumber(currentLevel+1)+1)=1;  
            else 

               nodes(currentLevel+1,lastNumber(currentLevel+1)+1).leaf=0; 

               leafNodes(currentLevel+1,lastNumber(currentLevel+1)+1)=0;  
            end  

            dataMean=mean(deVarData(includedRow2==1)); 

            dataStd=std(deVarData(includedRow2==1));            sta-
tus=(deVarData(includedRow2==1)<dataMean+dataStd)+(deVarData(includedRow2==1)>dataMean-dataStd); 

            classSize=length(find(status==2)); 

            if classSize/length(find(includedRow2==1))>=conPercent && deleted-
Nodes(currentLevel+1,lastNumber(currentLevel+1)+2)==0 

               nodes(currentLevel+1,lastNumber(currentLevel+1)+2).leaf=1; 
               leafNodes(currentLevel+1,lastNumber(currentLevel+1)+2)=1;  

            else 

               nodes(currentLevel+1,lastNumber(currentLevel+1)+2).leaf=0; 
               leafNodes(currentLevel+1,lastNumber(currentLevel+1)+2)=0;  

            end 

        end             
        if currentLevel==inVarNumber && deletedNodes(currentLevel+1,lastNumber(currentLevel+1)+1)==0 

           nodes(currentLevel+1,lastNumber(currentLevel+1)+1).leaf=1; 

           leafNodes(currentLevel+1,lastNumber(currentLevel+1)+1)=1; 
        end  

        if currentLevel==inVarNumber+1 && deletedNodes(currentLevel+1,lastNumber(currentLevel+1)+2)==0         

           nodes(currentLevel+1,lastNumber(currentLevel+1)+2).leaf=1; 

           leafNodes(currentLevel+1,lastNumber(currentLevel+1)+2)=1; 

        end 

        lastNumber(currentLevel+1)=lastNumber(currentLevel+1)+2;         
    elseif inVarType(selectedVar)=='D'         

        uniqueValues=unique(selectedInVarData);        created-

Nodes(currentLevel+1,lastNumber(currentLevel+1)+1:lastNumber(currentLevel+1)+length(uniqueValues))=ones(1,length(uniqueVal
ues)); 

        nodes(currentLevel,currentNumber).separation=uniqueValues;    

        oneClass=0; 
        for i=1:length(uniqueValues) 

            nodes(currentLevel+1,lastNumber(currentLevel+1)+i).rootNumber=currentNumber; 

            nodes(currentLevel+1,lastNumber(currentLevel+1)+i).direction='='; 
            nodes(currentLevel+1,lastNumber(currentLevel+1)+i).value=uniqueValues(i); 

            index= strcmp(selectedInVarData,uniqueValues(i))==1; 

            index=currentDataIndex(index); 
            includedRow=zeros(1,rowNumber); 

            includedRow(index)=1; 

            nodes(currentLevel+1,lastNumber(currentLevel+1)+i).includedRow=includedRow; 
            if sum(nodes(currentLevel+1,lastNumber(currentLevel+1)+i).includedRow)<minDataNumber 

                nodes(currentLevel+1,lastNumber(currentLevel+1)+i).deleted=1; 

                deletedNodes(currentLevel+1,lastNumber(currentLevel+1)+i)=1; 
            else 

                nodes(currentLevel+1,lastNumber(currentLevel+1)+i).deleted=0; 

                deletedNodes(currentLevel+1,lastNumber(currentLevel+1)+i)=0; 
            end            nodes(currentLevel+1,lastNumber(currentLevel+1)+i).allowedVars=allowedVars(allowedVars~=selectedVar); 

            investigatedNodes(currentLevel+1,lastNumber(currentLevel+1)+i)=0; 

            if deVarType=='D' 
               uniqueCelli=uniquecell(deVarData(includedRow==1)); 

               for j=1:length(uniqueCelli) 

                   classSize=length(find(strcmp(deVarData(includedRow==1),uniqueCelli(j))==1)); 
                   if classSize/length(find(includedRow==1))>=disPercent 

                      leafStatus=1; 

                    break; 
                else 

                    leafStatus=0; 

                   end 
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               end 

               if leafStatus==1 && deletedNodes(currentLevel+1,lastNumber(currentLevel+1)+i)==0 

                   nodes(currentLevel+1,lastNumber(currentLevel+1)+i).leaf=1; 

                   leafNodes(currentLevel+1,lastNumber(currentLevel+1)+i)=1;  
                else 

                   nodes(currentLevel+1,lastNumber(currentLevel+1)+i).leaf=0; 

                   leafNodes(currentLevel+1,lastNumber(currentLevel+1)+i)=0; 
                end 

            elseif deVarType=='C' 

                 dataMean=mean(deVarData(includedRow==1)); 
                 dataStd=std(deVarData(includedRow==1)); 

                 status=(deVarData(includedRow==1)<dataMean+dataStd)+(deVarData(includedRow==1)>dataMean-dataStd); 

                 classSize=length(find(status==2)); 
                 if classSize/length(find(includedRow==1))>=conPercent && deleted-

Nodes(currentLevel+1,lastNumber(currentLevel+1)+i)==0 

                   nodes(currentLevel+1,lastNumber(currentLevel+1)+i).leaf=1; 
                   leafNodes(currentLevel+1,lastNumber(currentLevel+1)+i)=1;  

                else 

                   nodes(currentLevel+1,lastNumber(currentLevel+1)+i).leaf=0; 
                   leafNodes(currentLevel+1,lastNumber(currentLevel+1)+i)=0; 

                 end 

            end                 
            if currentLevel==inVarNumber+1 && deletedNodes(currentLevel+1,lastNumber(currentLevel+1)+i)==0 

               nodes(currentLevel+1,lastNumber(currentLevel+1)+i).leaf=1; 

               leafNodes(currentLevel+1,lastNumber(currentLevel+1)+i)=1; 
           end 

        end 
        lastNumber(currentLevel+1)=lastNumber(currentLevel+1)+length(uniqueValues); 

    end 

    investigatedNodes(currentLevel,currentNumber)=1; 
    selectedLevel=0; 

    for i=2:size(createdNodes,1) 

        index=find(createdNodes(i,:)==1); 
       if ~isempty(find(investigatedNodes(i,index)+leafNodes(i,index)+deletedNodes(i,index)==0, 1)) 

          selectedLevel=i; 

          break; 
       end 

    end 

    if selectedLevel~=0 

        candidateNumbers=find(1-

createdNodes(selectedLevel,:)+leafNodes(selectedLevel,:)+investigatedNodes(selectedLevel,:)+deletedNodes(selectedLevel,:)==0); 

        selectedNumber=candidateNumbers(1); 
    else 

        break; 

    end 
    currentLevel=selectedLevel; 

    currentNumber=selectedNumber; 

end 
toc; 

[cIndex1,cIndex2]=find(createdNodes==1); 

[dIndex1,dIndex2]=find(deletedNodes==1); 
[lIndex1,lIndex2]=find(leafNodes==1); 

disp('Number of created nodes:'); 

disp(length(cIndex1)); 
disp('Number of leaf nodes:'); 

disp(length(lIndex1)); 

disp('Number of deleted nodes:'); 
disp(length(dIndex1)); 

disp('Writing results to excel...'); 

for i=1:length(lIndex1) 
    level=lIndex1(i); 

    number=lIndex2(i); 

    rowNumbers=find(nodes(level,number).includedRow==1)'; 
    xlswrite('leaves.xlsx',rowNumbers,['leaf',num2str(i),'-','rows'],['A1',':','A',num2str(length(rowNumbers))]); 

    xlswrite('leaves.xlsx',deVarData(rowNumbers),['leaf',num2str(i),'-','rows'],['B1',':','B',num2str(length(rowNumbers))]); 

    count=0; 
    while level>1 

        count=count+1; 

        rootNumber=nodes(level,number).rootNumber; 
        xlswrite('leaves.xlsx',nodes(level-1,rootNumber).selectedVar,['leaf',num2str(i),'-

','rule'],['A',num2str(count),':','A',num2str(count)]); 

        xlswrite('leaves.xlsx',nodes(level,number).direction,['leaf',num2str(i),'-','rule'],['B',num2str(count),':','B',num2str(count)]); 
        xlswrite('leaves.xlsx',nodes(level,number).value,['leaf',num2str(i),'-','rule'],['C',num2str(count),':','C',num2str(count)]); 

        number=nodes(level,number).rootNumber; 

        level=level-1; 
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    end 

end 

for i=1:length(dIndex1) 

    level=dIndex1(i); 
    number=dIndex2(i); 

    rowNumbers=find(nodes(level,number).includedRow==1)'; 

    if ~isempty(rowNumbers) 
        xlswrite('deleted.xlsx',rowNumbers,['deleted',num2str(i),'-','rows'],['A1',':','A',num2str(length(rowNumbers))]); 

        xlswrite('deleted.xlsx',deVarData(rowNumbers),['deleted',num2str(i),'-','rows'],['B1',':','B',num2str(length(rowNumbers))]); 

    end   
end 
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