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Abstract 

The purpose of this paper is to optimize the integrated problem of lot-sizing and scheduling in a flexible job-shop environment 
considering energy efficiency. The main contribution of the paper is simultaneously considering lot-sizing and scheduling deci-
sions, while accounting for energy efficiency.  In order to achieve this objective, a mathematical model has been developed for 
integrated optimization of scheduling and lot-sizing problems. The developed model uses a big bucket approach and is pre-
sented as a mixed integer nonlinear problem (MINLP). The BARON solver in GAMS software has been used to solve the pro-
posed MINLP model. By defining the relative optimality limit (OPTCR) of 0.05 for the termination criterion in BARON solver, 
GAMS has not been able to solve large problems at a specified time to achieve relative optimality. Therefore, due to the NP-
hard nature of the problem, a new genetic-based evolutionary algorithm has been developed to solve the problem of large 
scale. In the developed algorithm, a different approach (instead of cross-over and mutation operators) is used to generate a new 
solution. By presenting and solving various problems, the efficiency of this algorithm for solving big problems is shown. Com-
paring the values of the objective function obtained from the genetic algorithm and the exact method shows that, especially in 
large problems, the genetic algorithm has been able to achieve a better solution than GAMS software in a limited time. It has 
also been shown that energy efficiency has a significant effect on the solution of the problem. 
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1. Introduction 

Today, production planning is one of the most important problems in the manufacturing industry and decision 
making is one of the challenges of industry managers in this area (Ahmadi et al., 2016).  Production planning is 
an activity that seeks to make the best use of production resources in a way that meets production objectives such 
as production requirements and expected sales in a time interval of time called the planning horizon (Brucker 
and Schlie., 1990).  These problems are divided into three classes based on time intervals: long-term, medium-
term and short-term. One of the most important and widely used problems in -production planning, which is a 
part of the medium-term problems, is the lot-sizing problem. This problem determines production levels and 
scheduling (Karimi et al., 2003). 
Correct and appropriate calculation of the lot-size is one of the factors affecting the performance of the system, its 
efficiency, as well as maintaining the ability and competitiveness in the market. Therefore, the development and 
improvement of models and methods to determine the lot-size is very important. Lot-sizing problems can be 
categorized into different modes. This categorization includes production structure, including single-stage and 
multi-stage structures, production with limited or unlimited capacity, existance one or more resources, as well as 
one or more products, etc. (Bitran and Yanasse, 1982). 
In recent years, manufacturing systems need plans for problems such as increasing product diversity, rapid 
changes in market and customer demand and the need for high flexibility, competitive environment, the need to 
reduce costs, reduce delivery time, etc. (Xiong and Fu., 2018).  The details are more accurate and realistic, and for 
this reason, the researchers studied the problems of simultaneous lot-sizing optimization and scheduling by con-
sidering the conditions of scheduling problems and the sequence of operations in lot-sizing problems. On the 
other hand, with the increase in computing power of the new generation of computers and extensive research 
conducted to provide more efficient and faster solution methods, the concern of increasing computational com-
plexity resulting from the combination of these two problems has been somewhat reduced (Rouhanineja, 2015).  
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In this study, we examine simultaneous optimization of lot-sizing and scheduling of operations in a flexible job-
shop production environment.  
Scheduling problems can be classified in different ways. For example, scheduling problems can be categorized as 
dynamic or static, deterministic or stochastic, single-product or multi-product, single-process or multi-process, 
etc. Depending on the number of operations required to process a task and the number of machines available for 
processing each operation, various flow patterns can be enumerated (Choy., 2011).  
The problem of flexible job-shop production is an extension of the job-shop production problem first proposed 
by Brucker and Schlie (1990). The problem of job-shop production is one of the types of scheduling problems that 
seeks to determine the best sequence of work in a multi-machine environment when the therout of the works is 
predetermined and can be different. In the classic mode, there is n jobs that each job is to be processed by a max-
imum of m machine and the problem is to find the sequencing of tasks on each machine. The problem of job-
shop production in generally NP-hard (Garey, 1976). However, in the flexible form of the problem, any operation 
at any station can be processed on a set of machines. Therefore, flexible job-shop production scheduling prob-
lems include two sub-problems. The first is to assign each operation to a machine from the set of machines al-
lowed for that operation, and the second is to determine the sequence of all operations in such a way that the 
predetermined objectives are achieved. For this reason, having two variables of assignment and sequencing deci-
sion has a higher level of complexity than the problem of job-shop production with one variable of sequencing 
decision. Due to the nature of the flexible job-shop production environment, the problem studied in this research 
has a multi-stage and multi-machine structure. In this problem, we seek to determine the optimal or near-optimal 
production plan in a finite planning horizon while the capacity of machines is limited. In this problem, it is nec-
essary to determine the sequence of production and the amount of production for each product regarding the 
sequence and allocation of products within a time interval (Rohaninejad, 2015). 
Two problems that a production manager usually faces in managing a company at the planning level are: 1) De-
termine the number of products that should be produced in a time interval in order to minimize production 
costs, these costs include production, time interval and set-up costs. 2) Determining the best resource allocation 
and the best times to start and finish jobs in order to optimize some criteria such as minimizing the make-span, 
maximizing efficiency or operational capacity, etc. (Gomez et al., 2014). The first problem falls into the category 
of medium-term decision problems and is called the lot-sizing problem, while the second problem belongs to 
short -term decision problems and is called scheduling problem (Sifaleras et al., 2015) . These two categories of 
decision –making problems are very close to each other; because the output of lot-sizing is an input for sequence 
and scheduling. Proposed models for integrated lot-sizing and scheduling problems may be classified into small 
bucket and big bucket. In small bucket problems, first the larger time interval is broken down into smaller time 
intervals and then modeling is done (Baki et al., 2014).  This method greatly increases the complexity of the prob-
lem. In models with a small bucket, it is usually assumed that one or a maximum of two products may be pro-
duced in each time interval. Models with a big bucket allow production of different products in one time inter-
val, but do not specify the production sequence of these products (Baki et al., 2014).  Capacitated Lot Sizing Prob-
lem (CLSP) is a model with a big bucket. Small-bucket lot-sizing problems include Discrete Lot sizing and 
Scheduling Problem (DLSP), Continuous Setup Lot-sizing Problem (CSLP), Proportional Lot-sizing and Schedul-
ing Problem (PLSP). General Lot sizing and Scheduling Problem (GLSP) is a generall model that incorporates 
previously presented models (Zhang et al., 2011).  
A production system usually has different steps to perform multiple operations in order to convert raw materials 
into the final product. In these systems, production planning, which aims to find the best way to use production 
resources to achieve production objectives on the planning horizon, will be important for system management 
(Zarrouk et al., 2019) . On the other hand, the traditional production planning problem considers performance 
indicators such as processing time, cost and quality as optimization objectives in production systems; however, it 
does not consider energy consumption and environmental impacts (Zhang et al., 2020) . 
Flexible production planning with multi-stage, multi-product, multi-machine, and multi-time interval can be 
described as follows (Giglio et al., 2017) : 
The demand for each type of product in each time interval is deterministic. During each time interval, a number 
of used products are returned to the factory where they are recycled and stored in the returned inventory. The 
number of return products in each time interval is provided by the forecasting unit and it is assumed that this 
number is deterministic. There is no disposal option in the system intended for return products and it is assumed 
that raw materials are always available in any quantity in any time interval. It is also assumed that there is no 
difference between final products obtained through production and those obtained through remanufacturing, 
and all final products are stored in a usable inventory to meet demand. A simple design of this system is shown 
in Figure 1.  
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In this system, both raw and returned materials are transferred to a flexible job-shop system to follow their pro-

duction processes. Several product classes are processed in the system, each product class has a specific prece-

dence network and properties. Each class of products has a single processing path on different work stations, in 

each station (at least one of the stations) there are at least two similar machines in parallel to perform each step. 

The processing path is the same for both production and remanufacturing methods. Nominal processing times of 

products on different machines are fixed and predetermined. Each time interval has a duration (time capacity) 

and all machines must complete the allocated operation in a time interval in the available time. The main contri-

bution of the paper is simultaneously considering lot-sizing and scheduling decisions, while accounting for ener-

gy efficiency. We also propose a novel genetic algorithm to solve the problems of large scale. The rest of the pa-

per includes following sections: Section 2 presents literature review; Mathematical modelling and problem for-

mulation is presented in Section 3; Section 4 entails experimental results; finally, conclusion and future research 

directions is presented in Section 5. 

2. Literature Review 

2.1. Flexible Job-shop Scheduling Problem (FJSP) 

FJSP is a classic generalized job-shop model in which operations are performed on a set of flexible machines. The 

following is a brief overview of the FJSP literature . 

FJSP was first proposed by Brucker and Schlie (1990). This paper used a polynomial time algorithm to solve FJSP. 

Brandimarte (1993) proposed a hierarchical and innovative two-tier Tabu Search approach to minimize comple-

tion time in FJSP. In addition, Hurink et al. (1994) proposed another Tabu Search algorithm to solve FJSP. Mixed 

integer optimization for FJSP with sequence-dependent setup was introduced by Choi and Choi (2002). Kacem et 

al. (2000) developed three dispatching rules to decide on the problem of sequencing and advanced genetic ma-

nipulation to improve the solution. To minimize machine idle time, Chan et al. (2006) proposed a resource con-

straint in FJSP. Gao et al. (2008) tried to jointly minimize the manufacturing time interval, the maximum machine 

workload, and the total workload using a genetic algorithm and a variable neighborhood descent. In addition, 

Pezzella et al. (2008) introduced and analyzed an improved genetic algorithm for FJSP. Chen et al. (2008) studied 

an industrial sample in a weapons factory using FJSP. To obtain the optimal make-span, Xing et al. (2010) 

worked on a hybrid algorithm based on the ant colony optimization algorithm. Chan and Choy (2011) designed a 

genetic algorithm-based job scheduler for the real-world FJSP with multiple products, parallel machines, and set-

up times. In another study, Mahdavi et al. (2010) proposed a decision support system for FJSP with industrial 

data. In addition, Zhang et al. (2011) combined global selection and local selection strategies and proposed a ge-

netic algorithm to find an effective planning for FJSP. Al-Turki et al. (2011) proposed different dispatching rules 

for FJSP with setup time, batch processing, and uncertain data. Xiong and Fu (2018) designed a multi-agent sys-

tem for the FJSP that seeks to reduce complexity and cost, improve flexibility, and increase robustness. In addi-

tion, Gao et al. (2015) examined the arrival of new work to the FJSP and developed effective exploratory methods 

to minimize the maximum workload and total workload of the machines. In addition, Ahmadi et al. (2016) de-

veloped an evolutionary algorithm for optimizing multi-objective FJSP with random machine failure. 
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Figure 1: Integrated manufacturing/remanufacturing system (Giglio et al., 2017) 
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2.2. Lot-Sizing with recycled products and remanufacturing 

Over the past five decades, a great deal of research has been done on lot-sizing and scheduling of production 

systems. Drexl and Kimms (1997) and Jans and Degraeve(2008) presented a review of metaheuristic approaches 

to lot-sizing problems. Dynamic lot-sizing is presented, while in Buschkuhl et al. (2010) the authors categorize 

and review methods for solving lot-sizing problems with capacity constraints. However, few studies on lot-

sizing in remanufacturing systems, called Dynamic Lot Sizing with Product Returns and Remanufacturing 

(DLSPR), have been reported in the literature review. 

Richter and Sombrutzki (2000) refer to the production planning and dynamic inventory control model in both 

remanufacturing systems and hybrid production / remanufacturing systems. They provide the mathematical 

formulation for DLSP for these two types of systems. Richter and Weber (2001) expanded the previous work of 

Richter and Sombrutzki (2000) by adding the variables of remanufacturing and production costs. Golany et al. 

(2001) studied the production planning of a single product system with the option of reproducing in which the 

demand and rate of return are deterministic and there is also the option of disposal. Yang et al. (2005) focused on 

the concave cost version of the production planning problem proposed by Golani et al. (2001). They addressed 

the problem of unrestricted capacity in which all cost functions are concavet. In this study, it is stated that even if 

the costs are fixed, the problem is NP-hard. To solve the problem, the network flow type is formulated and an 

innovative method with polynomial time is used by using the special structure of the optimal extreme point solu-

tion. Teunter et al. (2006) studied the problem of capacity planning without capacity constraints, in which two 

different cases are considered for set-up costs; Joint setup costs for both production and remanufacturing, mean-

ing that there is a single production line, or different setup costs when the production lines are separate. In case 

of common production line, a precise dynamic programming algorithm with polynomial time is used to solve the 

problem . 

Teunter et al. (2009) developed rapid heuristic methods for the problems presented in the previous work of Te-

unter (2006). Pineyro and Viera (2009) address a dynamic lot-sizing problem with remanufacturing and disposal 

and propose a tabu search algorithm to solve the problem. Pineyro et al. (2010) examined the problem of lot-

sizing in which the demand for new products and remanufacturing are different. Demand for reproducible 

products can be met by new products, but not vice versa. This one-way substitution comes with a cost to the 

model. This study also shows that the problem, even with fixed cost, is NP-hard. A tabu search-based method 

was provided for a near-optimal solution. Wang et al. (2011) examined the problem of lot-sizing in which sepa-

rate production lines are considered for production and remanufacturing processes, and outsourcing is allowed 

to meet demand. This is a generalization of one of the problems raised in Teunter (2006) with separate product 

lines. In case of large amounts of return products, a dynamic programming method is adopted to obtain the op-

timal solution and the complexity of this method is expressed as O (T2) that T is the number of time intervals on 

the planning horizon. Baki et al. (2014) introduced a new mathematical formulation for DLSPR and proved that it 

is an NP-hard problem. They developed a dynamic programming method to solve it. Sifaleras et al. (2015) pro-

vide a variable neighborhood search for DLSP with product return and recycling. It is worth noting that all of the 

above works show the problem of lot-size with product return and remanufacturing without capacity con-

straints . Mehdizadeh and Fatehi (2017) proposed an algorithm for solving a fuzzy model which determines the 

lot-size of a single machine system . 

2.3. Problem of Integrated lot-sizing and scheduling 

A General Lot sizing and Scheduling Problem (GLSP) for the flexible job-shop production problem is presented 

by Rouhaninejad (2015). Roshani et al. (2015) investigated a specific case of simultaneous lot-sizing and schedul-

ing optimization by combining the lot-sizing problem and the scheduling problem in a flexible job-shop produc-

tion environment. In order to determine a combination of two -year decision variables with the aim of minimiz-

ing system costs, a new hybrid integer programming model is presented as a big bucket model by combining 

genetic algorithm with particle swarm optimization algorithm. Rouhaninejad et al. (2016) also examine the prob-

lem of integrated lot-sizing and flexible job-shop scheduling. The problem involves simultaneous decision mak-

ing about sequence operations, batch size, and machine allocation to operations to optimize a multi-objective 

function, including minimizing total system costs, machine workload, and make-span, while providing demand 

without shortages. Due to the complexity of the problem, a metaheuristics method was developed based on ge-

netic algorithm and particle swarm optimization. In addition, the Taguchi method is used to set effective me-

taheuristic parameters. Sahraeian et al. (2017) proposed an integrated problem of lot-sizing and flexible job-shop 

production with limited capacity of machines and have used the small-bucket model to formulate the problem. A 

new harmony search algorithm has been developed to solve the problem. This paper also uses a mixed integer 

programming model. 
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Zarrouk et al. (2019) provide a two-stage particle swarm optimization algorithm for the flexible job-shop schedul-

ing problem. The first stage determines the operation of the machines, while the second level determines the se-

quence of operations on the machines. To reduce the number of visited solutions, a boundary checking strategy 

is used based on the value of the objective function. This algorithm is tested on a considerable number of differ-

ent standard problems with the existing algorithms for the flexible job-shop scheduling problem, and is shown to 

have acceptable performance. Zhang et al. (2020) designed a new two-stage framework with important schedul-

ing features selection to explore the scheduling solution with only the features selected for flexible job-shop 

scheduling. The results show that their proposed genetic algorithm can successfully achieve a good scheduling 

with fewer decision variables . Hajibabaei and Behnamian (2021) investigated the effect of flexible resources on 

the problem of flexible job-shop scheduling with parallel machines and sequence - dependent setup times. Also, 

by presenting the linear programming model of complex integer program, they tried to minimize production, 

total delays, delivery time and inventory costs. After the model is solved by GAMS, due to the NP-Hard nature 

of problem, the Tabu Search algorithm is used for large problems. Finally, the obtained results are compared 

with the genetic algorithm. 

As can it be seen in the literature presented above, none of the studies in the fields of flexible job-shop schedul-

ing, lot-sizing, and remanufacturing have considered these three problems together. Therefore, the main contri-

bution of this paper is to simultaneously consider lot-sizing, flexible job-shop scheduling and remanufacturing 

with the aim of minimizing production costs, remanufacturing costs and also minimizing energy costs consumed 

by machines. We also consider energy efficiency considerations in the integrated lot-sizing and scheduling of a 

flexible job-shop problem. In addition, we proposed a new genetic algorithm to solve the problems of large scale. 

3. Problem formulation  

This section introduces sets, parameters, and variables. In addition, the mathematical model is presented includ-

ing constraints and objective functions . 

3.1. Sets 

𝒫 = {1. … . 𝑃} Set of product classes 

𝒦 = {1. … . 𝐾} Set of machines 

𝒯 = {1. … . 𝑇} Set of time intervals 

ℱ = {𝑀. 𝑅}Set of different production methods; manufacturing (M) and remanufacturing (R ( 

ℋ𝑖 = {1. … . 𝐻𝑖} Product operations set, i∈P 

𝒪𝑖 = {𝛫(1). 𝛫(2). … . 𝛫(𝑜𝑖𝐻𝑖
)} A set of 𝐻𝑖 sets of machines that are able to process materials for producing final 

products of class i∈P. Where the 𝛫(𝑜𝑖ℎ) is set of machines able to perform operations 𝑜𝑖ℎ (ℎ ∈ ℋ𝑖). 

3.2. Parameters 

𝐻𝑖: Number of operations required for the product i∈P 

𝑞𝑖ℎ𝑘
𝑓

: The nominal processing time of operations ℎ ∈ ℋ𝑖 of product i∈P on the machine 𝑘 ∈ 𝛫(𝑜𝑖ℎ)when using 

the production method f∈F 

𝑒𝑖ℎ𝑘
𝑓

: Maximum compression time of operations ℎ ∈ ℋ𝑖of product i∈P on the machine 𝑘 ∈ 𝛫(𝑜𝑖ℎ) when using 

the production method f∈F 

𝑒𝑖ℎ𝑘
𝑓

: Number of returned products of class i∈P in the time interval t∈T 

𝑑𝑖𝑡: Demand for products of class i∈P in the time interval t∈T 

𝑣𝑖𝑡
𝑓

: The production cost for each unit of product i∈P in the time interval t∈T produced by the method f∈F 

𝑤𝑖ℎ
𝑘 : setup cost of machine k to perform operations h on the product i∈P 

𝑠𝑖ℎ
𝑘 : setup time of machine k to perform operations h on the product i∈P 

𝑝ℎℎ′
𝑖 : Binary parameter, 𝑝ℎℎ′

𝑖 =1 if the operation ℎ ∈ ℋ𝑖 of the product i∈P is a precedence for the operation 

ℎ′ ∈ ℋ𝑖. 
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ℎ𝑖𝑡
𝑢 : The time interval cost of a unit of returned inventory for product class i∈P at the time interval t∈T 

ℎ𝑖𝑡
𝑠 : The time interval cost of a unit of usable inventory for product class i∈P at the time interval t∈T 

ℎ𝑖𝑡
𝑏 : The shortage cost of a unit of product class i∈P at the time interval t∈T 

𝑐𝑡: Maximum time available in the time interval t∈T (production capacity   (  

𝑐𝑝𝑘: Unit cost for the energy consumption of the machine k∈K during the processing of the operations . 

𝑐𝑖𝑘: Unit cost for power consumption of the machine k∈K in idle mode (which is spent by the machine for 

each unit of time spent in idle mode( 

𝑐𝑐𝑘: Unit cost for machine k∈K power consumption to compress processing time (which is spent by the ma-

chine to reduce nominal processing time ( 

ψ: A large enough number 

𝑏𝑖𝑡
𝑓

: The maximum allowable production capacity of product i∈P in the time interval t∈T by method f∈F 

3.3. Decision variables 

3.3.1 Integer variables 

𝑋𝑖𝑡
𝑓

≥ 0: Amount of products of class i∈P produced in the time interval t∈T by the method of manufacturing 

(f=M) or remanufacturing (f=R( 

𝐼𝑖𝑡
𝑢 ≥ 0: Invenory level of returned product i∈P in the time interval t∈T 

𝐼𝑖𝑡
𝑠 ≥ 0: Available inventory level of the usable product i∈P in the time interval t∈T 

𝐼𝑖𝑡
𝑏 ≥ 0: Shortage for the product i∈P in the time interval t∈T 

3.3.2. Continuous variables 

𝐶𝑃𝐻𝑆: Total cost of production, time interval and setup 

𝐶𝐸: Total cost of energy 

𝑃𝑇𝑖ℎ𝑘𝑡
𝑓

≥ 0: Actual processing time of the operation ℎ ∈ ℋ𝑖of product i∈P on the machine 𝑘 ∈ 𝛫(𝑜𝑖ℎ) in the 

time interval t∈T with the method f∈F . 

𝑍𝑖ℎ𝑘𝑡
𝑓

≥ 0: Compressed amount of processing time of the operation ℎ ∈ ℋ𝑖of product i∈P on the machine 𝑘 ∈

𝛫(𝑜𝑖ℎ) in the time interval t∈T with the method f∈F . 

𝑆𝑇𝑖ℎ𝑘𝑡
𝑓

≥ 0: Start time of the operation ℎ ∈ ℋ𝑖of product i∈P on the machine 𝑘 ∈ 𝛫(𝑜𝑖ℎ) in the time interval 

t∈T with the method f∈F . 

𝐶𝑂𝑘𝑡: Completion time of all operations assigned to the machine k∈K in the time interval t∈T 

𝐼𝑇𝑘𝑡: Machine k∈K idle time during time interval t∈T . 

3.3.3. Binary variables 

𝛿
𝑖ℎ𝑖′ℎ′
𝑘𝑡𝑓𝑔

∈ {0.1}: Binary precedence variable. 𝛿
𝑖ℎ𝑖′ℎ′
𝑘𝑡𝑓𝑔

=1 if operations ℎ′of the product 𝑖′∈P in the time interval t∈T 

and production method g is scheduled on the machine k after operations h of the product i∈P with produc-

tion method f. Otherwise 𝛿
𝑖ℎ𝑖′ℎ′
𝑘𝑡𝑓𝑔

=0. 

𝑦𝑖ℎ𝑘𝑡
𝑓

∈ {0.1}: 𝑦𝑖ℎ𝑘𝑡
𝑓

=1 if operations h of the product i∈P is scheduled in time interval t on the machine k using 

method f∈F. ; Otherwise 𝑦𝑖ℎ𝑘𝑡
𝑓

=0 

𝐵𝑖𝑡
𝑓
: lot-size production binary variable. 𝐵𝑖𝑡

𝑓
=1 In case of producing non-zero amount of product i in the time 

interval t using the method f∈F. Otherwise 𝐵𝑖𝑡
𝑓
=0 . 
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3.3.4. Mathematical model 

(1) 𝑀𝑖𝑛𝒞𝑃𝐻𝑆 + 𝒞𝐸  

 𝑆𝑡: 

(2) 𝒞𝑃𝐻𝑆 = ∑ ∑ ∑ 𝑣𝑖𝑡
𝑓

𝑋𝑖𝑡
𝑓

𝑓∈ℱ𝑖∈𝑃𝑡∈𝑇

+ ∑ ∑ ∑ ∑ ∑ 𝑦𝑖ℎ𝑘𝑡
𝑓

𝑓∈ℱ

𝑤𝑖ℎ
𝑘

𝑘∈𝐾𝑡∈𝑇ℎ∈𝐻𝑖𝑖∈𝑃

 + ∑ ∑(

𝑖∈𝑃𝑡∈𝑇

ℎ𝑖𝑡
𝑢 𝐼𝑖𝑡

𝑢 + ℎ𝑖𝑡
𝑠 𝐼𝑖𝑡

𝑠 + ℎ𝑖𝑡
𝑏 𝐼𝑖𝑡

𝑏 ) 

(3) 𝒞𝐸 = ∑ ∑ ∑ ∑ ∑ 𝑐

𝑓∈ℱ

𝑝𝑘𝑃𝑇𝑖ℎ𝑘𝑡
𝑓

ℎ∈𝐻𝑖𝑘∈𝛫(𝑜𝑖ℎ)𝑖∈𝑃𝑡∈𝑇

+ ∑ ∑ 𝑐𝑖𝑘𝐼𝑇𝑘𝑡

𝑘∈𝒦𝑡∈𝑇

+ ∑ ∑ ∑ ∑ ∑ 𝑐𝑘𝑍𝑖ℎ𝑘𝑡
𝑓

ℎ∈𝐻𝑖𝑓∈ℱ𝑖∈𝑃:𝑘∈𝛫(𝑜𝑖ℎ)𝑘∈𝒦𝑡∈𝑇

 

(4) 𝐼𝑇𝑘𝑡 = 𝐶𝑂𝑘𝑡 − ∑ ∑ ∑ 𝑃𝑇𝑖ℎ𝑘𝑡
𝑓

ℎ∈𝐻𝑖𝑓∈ℱ𝑖∈𝑃:𝑘∈𝛫(𝑜𝑖ℎ)

       ∀𝑡 ∈ 𝒯. ∀𝑘 ∈ 𝒦 

(5) 𝐼𝑖𝑡
𝑢 − 𝐼𝑖(𝑡−1)

𝑢 + 𝑋𝑖𝑡
𝑅 = 𝑟𝑖𝑡             ∀𝑡 ∈ 𝒯. ∀𝑖 ∈ 𝒫 

(6) 𝐼𝑖(𝑡−1)
𝑠 − 𝐼𝑖𝑡

𝑠 + ∑ 𝑋𝑖𝑡
𝑓

𝑓∈ℱ

+ 𝐼𝑖𝑡
𝑏 − 𝐼𝑖(𝑡−1)

𝑏 = 𝑑𝑖𝑡      ∀𝑡 ∈ 𝒯. ∀𝑖 ∈ 𝒫 

(7) 𝑋𝑖𝑡
𝑓

≤ 𝑏𝑖𝑡
𝑓

∗ 𝐵𝑖𝑡
𝑓

   ∀𝑡 ∈ 𝒯. ∀𝑖 ∈ 𝒫. ∀𝑓 ∈ ℱ 

(8) ∑ ∑ 𝑦𝑖ℎ𝑘𝑡
𝑓

𝑘∈𝒦ℎ∈ℋ𝑖

= |ℋ𝑖| ∗ 𝐵𝑖𝑡
𝑓

     ∀𝑡 ∈ 𝒯. ∀𝑖 ∈ 𝒫. ∀𝑓 ∈ ℱ 

(9) ∑ 𝑦𝑖ℎ𝑘𝑡
𝑓

𝑘∈𝛫(𝑜𝑖ℎ)

≤ 1     ∀𝑡 ∈ 𝒯. ∀𝑖 ∈ 𝒫. ∀ℎ ∈ ℋ𝑖 . ∀𝑓 ∈ ℱ 

(10) 𝑆𝑇𝑖ℎ𝑘𝑡
𝑓

≤ 𝑦𝑖ℎ𝑘𝑡
𝑓

∗ 𝑐𝑡 

(11) 𝑃𝑇𝑖ℎ𝑘𝑡
𝑓

≤ 𝑦𝑖ℎ𝑘𝑡
𝑓

∗ 𝑐𝑡 

(12) 𝑃𝑇𝑖ℎ𝑘𝑡
𝑓

= 𝑞𝑖ℎ𝑘
𝑓

𝑋𝑖𝑡
𝑓

− 𝑍𝑖ℎ𝑘𝑡
𝑓

+ 𝑦𝑖ℎ𝑘𝑡
𝑓

∗ 𝑠𝑖ℎ
𝑘      ∀𝑡 ∈ 𝒯. ∀𝑘 ∈ 𝒦. ∀𝑖 ∈ 𝒫: 𝒪𝑖 ∩ {𝑘} ≠ ∅. ∀𝑓 ∈ ℱ. ∀ℎ ∈ ℋ𝑖 

(13) 𝑍𝑖ℎ𝑘𝑡
𝑓

≤ 𝑒𝑖ℎ𝑘
𝑓

𝑦𝑖ℎ𝑘𝑡
𝑓

                   ∀𝑡 ∈ 𝒯. ∀𝑘 ∈ 𝒦. ∀𝑖 ∈ 𝒫: 𝒪𝑖 ∩ {𝑘} ≠ ∅. ∀𝑓 ∈ ℱ. ∀ℎ ∈ ℋ𝑖  

(14) 𝐶𝑂𝑘𝑡 ≤ 𝑐𝑡                             ∀𝑡 ∈ 𝒯. ∀𝑘 ∈ 𝒦 

(15) 𝑆𝑇𝑖ℎ𝑘𝑡
𝑓

+ 𝑃𝑇𝑖ℎ𝑘𝑡
𝑓

≤ 𝐶𝑂𝑘𝑡       ∀𝑡 ∈ 𝒯. ∀𝑘 ∈ 𝒦. ∀𝑖 ∈ 𝒫: 𝒪𝑖 ∩ {𝑘} ≠ ∅. ∀𝑓 ∈ ℱ 

(16) 
𝑝ℎℎ′

𝑖 ∗ ( ∑ 𝑆𝑇𝑖ℎ𝑘𝑡
𝑓

+ 𝑃𝑇𝑖ℎ𝑘𝑡
𝑓

𝑘∈𝒦

) ≤ ∑ 𝑆𝑇
𝑖ℎ′𝑘𝑡

𝑓

𝑘∈𝒦

      ∀𝑡 ∈ 𝒯. ∀𝑖 ∈ 𝒫. ∀ℎ. ℎ′ ∈ ℋ𝑖 . ∀𝑓 ∈ ℱ  

(17) 𝜓(1 − 𝛿
𝑖ℎ𝑖′ℎ′
𝑘𝑡𝑓𝑔

) + 𝑆𝑇
𝑖′ℎ′𝑘𝑡

𝑓
− 𝑆𝑇𝑖ℎ𝑘𝑡

𝑔
≥ 𝑃𝑇𝑖ℎ𝑘𝑡

𝑔
   ∀𝑡 ∈ 𝒯. ∀𝑘 ∈ 𝒦. ∀𝑓. 𝑔 ∈ ℱ. ∀𝑖. 𝑖′ ∈ 𝒫: 𝒪𝑖 ∩ 𝒪𝑖′ ∩ {𝑘}

≠ ∅. ((𝑖 ≥ 𝑖′) ∧ (𝑓 ≠ 𝑔)) ∨ ((𝑖 > 𝑖′) ∧ (𝑓 = 𝑔)). ∀ℎ. ℎ′ ∈ ⋃ ℋ𝑖

𝒫

𝑖=1

 

(18) 𝜓𝛿
𝑖ℎ𝑖′ℎ′
𝑘𝑡𝑓𝑔

+ 𝑆𝑇𝑖ℎ𝑘𝑡
𝑔

− 𝑆𝑇
𝑖′ℎ′𝑘𝑡

𝑓
≥ 𝑃𝑇

𝑖′ℎ′𝑘𝑡

𝑓
        ∀𝑡 ∈ 𝒯. ∀𝑘 ∈ 𝒦. ∀𝑓. 𝑔 ∈ ℱ. ∀𝑖. 𝑖′ ∈ 𝒫: 𝒪𝑖 ∩ 𝒪𝑖′ ∩ {𝑘} ≠ ∅. ((𝑖

≥ 𝑖′) ∧ (𝑓 ≠ 𝑔)) ∨ ((𝑖 > 𝑖′) ∧ (𝑓 = 𝑔)) . ∀ℎ. ℎ′ ∈ ⋃ ℋ𝑖

𝒫

𝑖=1

 

 

In equation (1), total cost (objective function) is presented as sum of production cost (𝒞𝑃𝐻𝑆) and energy cost (𝒞𝐸). 

Equation (2) shows 𝒞𝑃𝐻𝑆as sum of production, setup, inventory, and remanufacturing costs. The cost of energy is 

modeled by Equation (3), which is the sum of the costs paid for energy. constraint (4) calculates idle times of ma-

chines. Constraints (5) and (6) provide the dynamic equations of returned inventory and deliverable inventory. 

Constraint (7) ensures that 𝐵𝑖𝑡
𝑓
=1 when 𝑋𝑖𝑡

𝑓
> 0 . 
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Constraint (8) causes that in case of production in each time interval (𝐵𝑖𝑡
𝑓
=1), all the desired production opera-

tions will be performed in the same time interval, otherwise no operation will be performed for that product. 

Constraint (9) ensures that each operation in each time interval can be performed on a maximum of one machine. 

According to constraints (10) and (11), if the corresponding activity of the variable 𝑦𝑖ℎ𝑘𝑡
𝑓

 is performed, the start 

time and operation time of the relevant activity is less than the time capacity of the corresponding interval . 

Constraint (12) determines the compressed processing time of the operation on the machine k. Constraint (13) 

determines the upper limit of compression time. Constraint (14) causes all machines to perform their specified 

operations in the time available for the interval t. Constraint (15) specifies the processing time of each machine in 

each time interval. Constraint (16) ensures that each product follows a certain sequence. Constraints (17) and (18) 

determine the sequences of operations of h and ℎ′of products i and j. It can be seen that in this modeling time 

intervals -are not broken down into smaller time intervals and therefore the big bucket model is used. Instead, 

model handles the sequence decisions by using the variables 𝛿
𝑖ℎ𝑖′ℎ′
𝑘𝑡𝑓𝑔

. 

 

4. Excremental Results 

4.1. Numerical results 

In this section, an illustrative example of the problem is presented and problems of different sizes are solved to 

measure computational performance of the model. Tables 1 to 6 provide some sample input parameters for the 

illustrative problem. To find the best solution, the model was solved in GAMS using the BARON solver. Follow-

ing Tables and Figures 3 to 6 report the optimal solution, where the value of the objective function is 1480. To 

evaluate the performance of the proposed model in comparison with traditional lot sizing models that considers 

only production cost, this example is also solved without considering the cost of energy in the objective function. 

The obtained schedule is illustrated by Gantt charts in Figures 5 and 6. The value of the new objective function 

for this solution is 422. Table 9 shows the difference between the two solutions. As it can be seen in this table, by 

taking into account the cost of energy in the objective function, although the production cost increases (from 322 

to 422), the cost of energy decrease by 670 units (from 1658 to 988) and total cost is reduced by 570 units (from 

1980 to 1410). In addition, the total idle time of the machines is reduced from 561 to 88 time units. It can be con-

cluded that the first solution, presented by the complete model reported, is superior to the second solution, 

which only considered the 𝒞𝑃𝐻𝑆 cost . 

Table 1: Sample problem specifications 

Number of product classes Number of time intervals Number of machines Number of product 1 activi-

ties 

Number of product 2 activi-

ties 

2 2 3 4 5 

 
Table 2: Machines capable of processing each activity 

Product class Activity Machine 

1 2 3 

1 1 1 

 

1 

1 2 1 1 

 

1 3 1 

 

1 

1 4 1 1 1 

2 1 

 

1 1 

2 2 

 

1 

 

2 3 1 

 

1 

2 4 1 1 

 

2 5 

  

1 
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Table 3: Number of returned products in each time interval 

time interval 

 

Product 

1 2 

1 10 14 

2 8 10 

 

Table 4: Number of product demand in each time interval 

time interval 

 

Product 

1 2 

1 15 16 

2 12 18 

 

Table 5: Production costs for unit of product 

Product 

class 

Time inter-

val 

Production method 

manufacturing remanufacturing 

1 1 4 2 

1 2 6 4 

2 1 5 3 

2 2 8 5 

 

Table 6: Time capacity of each time interval 

Time interval 1 2 

Time capacity 250 300 

 

The precedence relationships between the activities of each product class are as follows : 

 

 

Figure 2: Precedence relationships between the activities of each product class 
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4.1.1. Solving the sample problem considering energy efficiency 

Table 7 shows the amount of production in each time interval (taking into account energy efficiency). It can be 

seen from this table that no class 2 products were produced in the second time interval . 

Table 7: Production in each time interval (taking into account energy efficiency) 

Product class Time inter-

val 

Production method 

Manufacturing Remanufacturing 

1 1 5 10 

1 2 2 14 

2 1 22 8 

 

The schedule of activities for each time interval is shown as Gantt charts in Figures 3 and 4. Purple bars indicate 

manufacturing operations and green bars indicate remanufacturing operations. In addition, the numbers dis-

played on each activity are presented as ordered tuples (i.h.k.t.f) to identify activities . 

 
Figure 3: Scheduling of activities in the first-time interval (taking into account energy efficiency   (  

 

Figure 4: Scheduling of activities in the second time interval (taking into account energy efficiency   (  

 

4.1.2. Solving the sample problem without considering energy efficiency 

Table 8 shows the amount of production in each time interval (without considering energy efficiency). 

 

 

 

 

 

 



  

139 A. Ostai et al. 

 
Table 8: Production rate in each time interval (excluding energy efficiency)  

Product class 
Time inter-

val 

Production method 

manufacturing remanufacturing 

1 1 5 10 

1 2 2 14 

2 1 4 8 

2 2 8 10 

 

The schedule of activities for each time interval is shown as Gantt charts in Figures 5 and 6. Purple bars indi-

cate manufacturing operations and green bars indicate remanufacturing operations. In addition, the numbers 

displayed on each activity are presented as ordered tuples (i,h,k,t,f) to identify activities . 

 

 

Figure 5: Scheduling activities in the first time interval (without considering energy efficiency   (  

 

Figure 6: Scheduling of activities in the second time interval (without considering energy efficiency   (  

 

Table 9: Comparison of two solutions (with and without energy efficiency   (  

 Total cost Energy cost Production costs Total idle time of machines 

Considering energy efficiency 1480 988 422 88 

Without considering energy 

efficiency 
1980 1658 322 561 

 

In order to evaluate the efficiency of the model for solving problems of different sizes, 28 problems have been 

solved with different sizes. The results of solving these problems can be seen in Table 10. By using a specified 

value (0.05) for relative optimality as algorithm termination criterion in the solver BARON, GAMS is unable to 

solve large-scale problems. From table 10, it can be seen that problems 1 to 11 have reached a relative optimality 
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of less than 0.05 in less than 100 seconds. Problems 12 and 13 have obtained feasible solutions in 100 seconds, but 

these solutions have relative optimality more than 0.05 and are away from optimality. Problems 14 to 20 have 

been solved in 200 seconds, but these solutions also have relative optimality criterion greater than 0.05. Problems 

21 to 26 have been solved in 300 seconds, but these solutions also have relative optimality criterion greater than 

0.05. Finally, problems 27 and 28 have been solved in 500 seconds, but these solutions also have relative optimali-

ty criterion greater than 0.05. 

Table 10: Solving problems in different sizes 

Problem K | | T | | H | Time to solve 

the problem 

Relative optimality 

criterion 

GAMS Objec-

tive H1 H2 

1 2 2 3 4 1/76 0/047 1153 

2 2 2 4 3 2/85 0/048 1151 

3 2 2 4 4 3/64 0/048 1246 

4 2 3 3 3 3/93 0/048 1451 

5 2 1 3 4 4 0/047 491 

6 2 1 4 5 7 0/048 577 

7 3 1 4 5 12 0/04 573 

8 3 2 4 3 15 0/049 1100 

9 3 2 3 4 22 0/049 1132 

10 2 4 4 3 24/6 0/049 2024 

11 3 2 4 4 35 0/049 1239 

12 3 2 4 5 100 0/14 1410 

13 3 2 5 5 100 0/27 1516 

14 4 2 4 4 200 0/51 1106 

15 4 4 4 4 200 0/53 2295 

16 4 4 5 5 200 0/64 3257 

17 4 3 3 3 200 0/2 1431 

18 4 3 4 4 200 0/46 1831 

19 4 4 4 3 200 0/4 2082 

20 4 3 3 3 200 0/44 1955 

21 4 4 6 6 300 0/79 5849 

22 3 4 3 4 300 0/36 2403 

23 2 4 5 5 300 0/6 2955 

24 3 4 5 5 300 0/47 2928 

25 3 5 3 4 300 0/36 3050 

26 5 4 3 4 300 0/59 2656 

27 5 4 5 5 500 0/66 3032 

28 2 3 4 4 500 0/48 1745 

 

4.2. Proposed genetic-based algorithm 

Due to the inability of GAMS in problem solving with the growth of problem size (Table 10), a genetic-based 

algorithm has been used to solve problems of different sizes. The overall process for solving the problem is 

shown in the flow chart of Figure 7. The process of the algorithm begins with generating random values for the 

amount of manufacturing and remanufacturing of products, -and the execution steps are as follows : 

The initial production of each solution in each time interval is considered as U multiplied by half the demand in 

that time interval, where U is a random number between 0.9 and 1.1. These values are determined using trial and 

error. The solution for x is displayed as a three-dimensional matrix with dimensions P*T*F . 
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Inventory, returned inventory and inventory shortage are calculated according to the specified production 

amount (x) and Equations 5 and 6 . 

Activities of the manufactured products in each time interval are randomly assigned to machines that are capable 

of performing them . 

The execution time of each activity (Pt) is determined according to Equation 12 . 

According to the activities selected for execution and the time calculated in step 4, the sequence of activities is 

determined randomly . 

Based on the objective function of Equation 1, the generated solutions are evaluated and sorted in ascending or-

der . 

Termination condition is checked. The termination condition in this algorithm is defined as achieving the maxi-

mum allowable time or achieving a better solution than the solution obtained from the exact solution by GAMS. 

If the termination conditions of the algorithm occur, the algorithm will stop. Otherwise step 8 is executed . 

The new solution generation procedure is performed as follows until the specified number of new solutions is 

generated : 

Random selection of production (x) of two solutions x^1 And x^2 among the available solutions 

Generating random parameters 𝑎 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝛼, 𝛽)and 𝑏 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝜃, 𝛾)  

value α=-3, θ=1, β=1, and γ=2 are selected by trial and error in the present algorithm. Random number ρ =

round(𝑢𝑛𝑖𝑓𝑜𝑟𝑚(a, a + b)) is defined. Then the matrix r is defined (with dimensions equal to matrices 𝑥1and 𝑥2) 

that all its elements are equal ρ . 

Modify the solutions 𝑥1and 𝑥2as follows : 

𝑥𝑛𝑒𝑤
1 = max(0, 𝑥1 + 𝑟) 

𝑥𝑛𝑒𝑤
2 = max (0, 𝑥1 − 𝑟) 

The combine generated solutions with the previous solutions and go to step 2 . 
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Figure 7: Flow chart of the genetic-based algorithm 

Table 11 shows the performance of the proposed genetic-based algorithm along with the performance of GAMS 

software to solve the problem. The termination condition of the genetic algorithm is considered to be reaching 

the time equal to the exact solution time or achievement of the solution with the objective function less than the 

objective function of GAMS. From this table, it can be seen that the genetic algorithm has not been able to get 

better solutions than GAMS (at the specified time) for problems 1 to 6. However, the solution from the genetic 

algorithm in Problem 7 is better than the exact solution (in limited time). The genetic algorithm has not been able 

to solve the problems 8 and 9 to achieve a better objective function than GAMS (in limited time). However, prob-

lems 10 to 12 are solved more efficiently than GAMS by genetic algorithm. Problems 14 to 28 also show the effi-

ciency of the proposed meta-heuristic algorithm for solving large problems compared to GAMS. The population 

size parameter (Npop) was selected according to the problem size and is reported in Table 11 . 
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Table 11: Performance of the proposed genetic-based algorithm compared with GAMS 

Problem | K | | T | 

| H | 
GAMS CPU-

Time 

Relative optimality criterion 

(optcr) 

GAMS objec-

tive 

GA objec-

tive 

GA CPU-

time 

 

Npop H1 H2 

1 2 2 3 4 1/76 0/047 1153 2159 1/76 10 

2 2 2 4 3 2/85 0/048 1151 2396 2/85 10 

3 2 2 4 4 3/64 0/048 1246 4262 3/64 10 

4 2 3 3 3 3/93 0/048 1451 1478 3/93 10 

5 2 1 3 4 4 0/047 491 520 4 70 

6 2 1 4 5 7 0/048 577 625 7 70 

7 3 1 4 5 12 0/04 573 570 10 70 

8 3 2 4 3 15 0/049 1100 1672 15 50 

9 3 2 3 4 22 0/049 1132 1260 22 50 

10 2 4 4 3 24/6 0/049 2024 1995 21 50 

11 3 2 4 4 35 0/049 1239 1141 28 50 

12 3 2 4 5 100 0/14 1410 1372 7 50 

13 3 2 5 5 100 0/27 1516 1573 100 70 

14 4 2 4 4 200 0/51 1106 1075 56 70 

15 4 4 4 4 200 0/53 2295 2216 96 70 

16 4 4 5 5 200 0/64 3257 2955 151 70 

17 4 3 3 3 200 0/2 1431 1426 96 70 

18 4 3 4 4 200 0/46 1831 1658 112 70 

19 4 4 4 3 200 0/4 2082 1689 57 70 

20 4 3 3 3 200 0/44 1955 1911 18 120 

21 4 4 6 6 300 0/79 5849 5326 192 70 

22 3 4 3 4 300 0/36 2403 2366 73 70 

23 2 4 5 5 300 0/06 2955 2865 110 100 

24 3 4 5 5 300 0/47 2928 2912 213 100 

25 3 5 3 4 300 0/36 3050 3565 300 200 

26 5 4 3 4 300 0/59 2656 2637 26 150 

27 5 4 5 5 500 0/66 3032 2754 254 100 

28 2 3 4 4 500 0/048 1745 1623 318 100 

 

Figure 8 shows a comparison of the values of the optimal objective functions obtained by the genetic algorithm 

and GAMS software. It can be seen from this figure that (especially in larger problems) the genetic algorithm has 

in most cases been able to achieve a better solution than GAMS software in less time (According to the limited 

time, the solutions of GAMS are not necessarily optimal). 

It should be noted that one of the conditions for terminating the genetic algorithm is to achieve a solution with a 

better objective function or equal to the exact solution. Therefore, due to the fact that the solutions obtained from 

GAMS software have been solved up to an optimality distance of 0.05 (or more), the genetic algorithm has been 

able to achieve better solutions in some cases (due to time constraints). 

In addition, Figure 9 shows percent time improvement caused by genetic algorithm compared to GAMS soft-

ware. From this figure, it can be seen that although for small problems (problems 1 to 7) no improvement has 

been achieved in the solution time, but in larger problems, the genetic algorithm has been able to improve the 

problem-solving time. In addition, the percentage of improvement in the genetic algorithm compared to GAMS 

software increases with problem size . 
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Figure 8: Comparison of the objective function obtained from the genetic algorithm and GAMS software 

 

 

Figure 9: Percentage of reduction of CPU time using genetic algorithm 

 

5. Conclusion 

In this paper, the problem of integrated lot-sizing and scheduling in a flexible job-shop environment was mod-

eled and solved by considering energy efficiency. To this end, a mathematical model has been developed for the 

integrated optimization of scheduling and lot-sizing problems. The developed model used a big bucket approach 

and was presented in the form of a mixed integer nonlinear programming (MINLP). To find the best solution, the 

model was solved by using GAMS. An illustrative example was presented and problems of different sizes where 

solved to assess the computational performance of the model.  

To evaluate the performance of the proposed model in comparison with traditional models of integrated lot-

sizing and scheduling that consider only production costs, an example without considering the cost of energies in 

the objective function was also solved. Solving this sample problem showed that considering energy efficiency 

has a significant effect on the resulting solution. More precisely, the results of solving a sample problem show 

that by entering the energy cost in the objective function, the cost of production increases (from 322 to 422), and 

the energy cost has 670 units of decrease (from 1658 to 988); however, these results in 570 units of reduction in 
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total cost (from 1980 to 1410). The results for the sample problem also show that the total idle time of the ma-

chines is reduced by 473 units (from 561 to 88).  

Due to the NP-hard nature of the problem under study, an evolutionary algorithm based on a genetic algorithm 

has been developed. However, it uses a different approach to generate a new solution (instead of cross-over and 

mutation operators). The efficiency of this algorithm for solving larger problems is shown by solving different 

problems. Comparison of the values of the optimal objective function obtained from the genetic algorithm and 

GAMS software shows that (especially in larger problems) the genetic algorithm has been able to achieve a better 

solution than GAMS software in less time. In addition, although GAMS software has less time to solve the small 

problems, but in larger problems, the genetic algorithm has been able to improve the problem-solving time. Also, 

the percentage of reduction in time for genetic algorithm compared to GAMS software increases as the problem 

gets larger . 

Considering sequence-dependent setup times, random production times or random demand, and modeling the 

nonlinear model as integer linear models, as well as providing exact or heuristic solutions to large-scale problems 

which can be solved in acceptable time may be considered as future research directions . 

Managerial Insight 

In this paper, we considered energy efficiency concerns in the integrated problem of lot-sizing and scheduling of 

flexible job-shop. Our results show that considering energy efficiency concerns can significantly help cost reduc-

tion in a flexible job-shop environment. More specifically, the energy cost decreases by taking into account the 

cost of energy in the objective function, while the production cost increases. However, this trade of can cause 

significant reduction in total operational cost. These results show that energy costs should be explicitly consid-

ered in integrated scheduling and lot-sizing problems in flexible job-shop environment. In addition, our pro-

posed metaheuristic algorithm can help solving the problems of real-world problems with large scales. 
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