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Abstract 

Supply chains in the world are increasingly exposed to disruptions caused by disasters in every part of the world. The emergence 
of risk in today's business environment due to globalization, disruptions, poor infrastructure, forecast errors and various uncer-
tainties affects every management decision. The present study was an attempt to propose an emergency order and production 
planning for a multi-product multi-item problem where products are made up of several ingredients. A side from the main 
supplier, the backup supplier can be used to supply each component where orders must be delivered within a certain time 
interval (specified time window). In the present study attempts are made to use sourcing strategies to realize supply chain flexi-
bility under disruptions. A scenario-based mathematical model encompassing different uncertainties such as those arising from 
disruption and operational risks is formulated. A case study analysis is carried out to appraise the output of risk attitudes adopted 
by different decision-makers (both risk-neutral and risk-averse). The present study presents strategies to create flexible supply 
bases that diminish the cost of the worst scenario in the face of supply chain risks. By increasing the number of primary and 
supporting suppliers, VAR and C-VR values will increase, so the management offer is that the number of suppliers should be 
kept constant within acceptable limits to prevent a sharp increase in the number of suppliers. Suppliers should release orders in 
time by establishing time windows and setting deadlines in order to receive orders. Also, this paper shows that the values of 
VAR and C-VR decrease with the increase of primary supply capacity, and with the increase of primary supply capacity, costs 
are reduced by about 99%, which reduces the effect of disruption on the capacity of primary suppliers. 
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1. Introduction 

Human life has been associated with disasters and disasters throughout history and has always been an attempt 
to identify dangers and escape from it. With the advancement of science and technology, the general knowledge 
about the nature of accidents and their consequences has increased but in the same proportion of its technology 
has caused numerous incidents that have affected the lives of all living creatures in a region. In disasters two 
aspects are of importance. First, preparedness in emergency situations and second dealing with consequences of 
disaster where these consequences include destructive effects of psychological and social impacts on human be-
ings. Preparedness and reaction is very important and valuable is readiness in these conditions. Due to the increas-
ing importance and complexity of supply chain management for organizations in today's noisy business environ-
ment, it is necessary to predict and implement the resilience abilities necessary to meet or prevent disruptions in 
organization activities. According to the literature, production outage can be defined as any disruption such as 
material shortages, machine failures, power outage, tool failures or any unexpected or manmade outages that may 
occur during the production process. The COVID19 epidemic is an example of this type of disruption, which has 
led to production outage by manufacturers such as Hyundai and Fiat Chrysler NV (Ivanov, 2020). Supply chain 
disruption as an unpredicted event halt or slows down the normal flow of substances (Bunch et al., 2007) and has 
possibly negative outcomes for supply chain members (Blackhurst et al., 2011). It is possible to spread even a very 
small initial disruption across the supply chain (Blackhurst et al., 2011). The proliferation of disruptions can signif-
icantly affect performance, including reduced profits, and in extreme cases, viability of supply chain. For example 
(Hendricks and Singhal, 2003), during a study concluded that disruptions can reduce market capitalization by 10%. 
When it comes to sourcing, selection of the best supply base can significantly affect the success rate of supply chains 
in different markets all around the world. survival and competitiveness of companies is dependent, to a large 
extent, on the procurement strategies used by them (Merzifonluoglu, 2015).  
In such cases, optimal sourcing strategies are necessary to minimize supply shortages. Being larger, longer, and 
more sophisticated, Modern supply chains are more likely to increase disruption risk (Blackhurst* et al., 2005) 
(Scheibe and Blackhurst, 2018). When using a resilient backup sourcing strategy, the original suppliers are, 
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regardless of uncertain parameters, the first to receive notifications of orders, and backup suppliers will get notifi-
cations of emergency orders once new data on emergency orders is available. The noteworthy point is that in the 
flexible backup sourcing strategy proposed in the present study, the quantity of order released to the backup sup-
plier is equal, in the best scenario, to the amount of order the original suppliers are notified about. Several re-
searches have been done to understand how to increase the flexibility of organizations and supply chains against 
these irregularities (Bhamra et al., 2011). Although supply chain disruptions are inevitable, successful companies 
try to figure out how they can minimize disruptions and maintain effective supply chain operations. Sawik devel-
oped an approach to manage supply disruptions by selecting primary suppliers and retrieving orders from a com-
pany perspective (Sawik, 2016). Nevertheless, even when primary disruptions are limited to a single company, 
they may spread through the system, causing losses in other supply chains. Thus, a supply chain failure may 
trigger failures in other institutions and may even lead to the complete closure of the supply chain. Nevertheless, 
one can still cope with disruptions affecting a company by dispersing purchases among different suppliers (He et 
al., 2016). 
In the present study, attempts are made to propose a novel decision model that can help design flexible supply 
strategies with the power to flexibly deal with uncertainties caused by disruptions. The proposed decision model 
encompasses a large number of standard industry strategies namely visibility, collaboration, backup suppliers, 
and spot purchases, and. Backup suppliers help companies effectively deal with unanticipated supply disruptions 
(Merzifonluoglu, 2015). Thanks to the spot purchasing strategy, buyers can instantly buy products on the day they 
need the goods, without having to conclude basic contracts. Cooperation and visibility between buyers and sup-
pliers play an important role as powerful strategies for disruptive risk coverage which have a positive effect on 
suppliers' recovery rates and alertness of buyers. During the first stage of a two-stage model a primary decision is 
taken before the emergence of a stochastic destructive scenario. The primary decision contains selecting a supplier, 
determining storage capacity in supplier backup, and determining the investment in cooperation and visibility. In 
the second step, one can set scenario-dependent parameters to offset the adverse effects of decisions made in the 
first stage. Then, the company can use a backup supplier or local market to recover its capacity or wait to find an 
unreliable supplier. The main contributions of this paper are summarized as follows. First, a multi-period and 
multi-product planning model with uncertainty in production and demand is developed. Second, a flexible sup-
port protocol that operates on the basis of inventory reserve of an emergency support supplier is proposed. Third, 
the effectiveness of emergency planning decisions along with the sequential concepts that support the system with 
higher flexibility is evaluated. In this environment all the constituents that are supposed to be delivered by suppli-
ers are needed to produce the end product and the absence of any item can make it impossible to manufacture the 
end product. These questions are answered in the following paper. 
1-How can we proceed to identify single and multiple sourcing strategies in a multiple - product and multi-com-
ponent environment? 
2-How to integrate production planning and inventory model in the presence of uncertainty of raw materials as 
well as the final product demand? 
3- How time constraints are applied in receiving orders? 
The rest of this paper is organized as follows. The literature reviewed in section 2. In section 3, the proposed math-
ematical model is presented. In section 3, a mathematical model based on risk is proposed. Computational exper-
iments and sensitivity analysis are presented in Section 4. Conclusions and managerial insights are presented in 
section 5. 

2. Literature review 

Supply chain disruptions have received a lot of attention from many researchers and professionals over the last 
decade. However, single suppliers are characterized by some benefits, such as minimizing costs incurred by the 
system by paying suppliers' management costs or reducing unit prices by offering discounts. Such a strategy, how-
ever, may increase system vulnerablity to potential supply disruptions. For example, (Ferrer, 2003) investigated a 
sole sourcing strategy for a newsvendor s problem (Xiao and Qi, 2008) examined one supplier and two competing 
retailers for a newsvendor problem. In another study, Sargut and Qi investigated a supplier with random supply 
efficiency in order to cope with a one-period inventory problem with definite demand. (Sargut and Qi, 2012) con-
sidered an unreliable supplier that only supplies a retailer. They relied on inventory reduction tactics without 
regard for any alternative source in the above articles, only for managing disruptions. Meanwhile, various studies 
consider sourcing reduction strategies as an effective tool to deal with uncertainty. The relevant literature has pro-
posed two distinct types of sourcing reduction models. The first type, which forms typical multi-sourcing models, 
involves problems in which decisions are adopted about order quantities at a time and corrective actions are pro-
hibited once new data on uncertainties are made available. Some of the main articles published in this field are 
listed in the following. Svoboda et al. reviewing the literature on multiple sourcing strategy, defining the charac-
teristics of the strategy as a trade-off between the costs of multiple suppliers and the inventory shortage costs of a 
single supplier (Svoboda et al., 2021). 
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In order to cope with a sales newspaper problem, Wang et al. conducted a study on process improvement strategies 
meant to enhance the reliability of unreliable suppliers in the face of disruptions. In this study, they used as dual 
sourcing system with exactly the same sources and checked the system efficiency in different conditions (Wang et 
al., 2010). In the second type of multiple sourcing models which are referred to as emergency / contingency order 
models, orders will be delivered to an unreliable supplier before the uncertain parameters are met. Emergency 
orders can be sent to a reliable, expensive supplier once uncertainty is identified. Babich, considered a case with 
two suppliers, in which one supplier has a shorter waiting time as an emergency source (Babich, 2006).   This 
assumption in its model that it can wait a while for the recovery of an unreliable supplier and safety stocks can be 
used during the waiting time (Qi, 2013). Dong and Tomlin tried to draw an analogy between the emergency order 
and interruption management insurances in their problem (Dong and Tomlin, 2012). Wang et al. investigated a 
supply chain in which the buyer purchases end items from a supplier to meet a random market demand in which 
supplier production is subject to random returns and demand may be met using emergency backup sourcing 
(Wang et al., 2014). Gupta et al. a system of two suppliers of two products was investigated in which two supply 
channels were unknown. In this case, the retailer offered the products to the end customers and customers chose 
each. pricing decisions including wholesale price and retail price were determined (Gupta and Ivanov, 2020). In 
an attempt to offer a flexible supply base in the face of operational disruption risks, Torabi et al developed a two-
objective hybrid stochastic programming model to cope with problems posed by selection of supplier and the 
allocation of order (Torabi et al., 2015). Yoon et al suggested a two - objective random model. This model integrates 
the supplier selection and risk reduction strategies (Yoon et al., 2018). According to the literature, the uncertainties 
regarding the return of suppliers can be regarded as a main source of order reception uncertainty. Gupta et al. 
considered the stochastic ordering yield as a result of supply disruption, the disruption considered in their research 
work occurred within a selling period, and the yield was dependent on not only the point in time where the dis-
ruption took place within the selling period but also on the length of the selling period (Gupta and Ivanov, 2020). 
Only small segment of the literature focuses on the multi-product environment, whereas much studies have been 
carried out on the single-product environment. Tomlin and Wang investigated dual sourcing and hybrid flexibility 
problems in a company that is working to sell several products without permission to replace products (Tomlin 
and Wang, 2005). In contrast, Tomlin and Wang investigated two products that could replace a risk-neutral deci-
sion maker (Tomlin and Wang, 2008). As we know, only one deliverable product is considered by most of the 
existing articles on inventory management models with disruptions, except for the studies carried out by Tomlin 
and Wang, 2008. Furthermore, a potential order policy is used to enhance model efficiency in the face of uncertain-
ties one may face during reception of raw materials.These models have concentrated preparedness or redundancy 
strategies, for example: rescheduling operations, optimal inventory policy, and risk assessment. Simchi et al. create 
visibility and cooperation, supply chain flexibility by improving the buyer-supplier relationship, reducing recov-
ery time after disruptions, and the possibility of progressive disruption alerts (Simchi‐Levi et al., 2018). The cost-
benefit of applying the strategy, however, has not been taken into account in limited studies on visibility and col-
laboration. Dubey et al investigated the potential effect of behavioral dimensions such as trust and cooperation on 
resilience of supply chains (Dubey et al., 2017).Khalili et al argued that integrated production and sourcing plan-
ning can, thanks to its additional capacity of production equipment, pre-determination of position or inventory 
and back-up logistics, significantly contribute to enhancement of supply chain resilience (Khalili et al., 2017). 
Ivanov et al concluded that a flexible and efficient supply chain design is indispensable (Ivanov et al., 2019b). It is 
possible to develop low supply chain uncertainties by combining greater flexibility in the process and use of re-
sources. Altay et al. investigated the potential impact of agility and resilience efforts of business organizations on 
supply chain performance before and after the event (Altay et al., 2018). In a systematic review of the relevant 
literature, Hosseini et al.  tried to address mathematical quantitative models that have been specifically developed 
to enhance supply chain flexibility (Hosseini et al., 2019). Kumar (2019) investigated the strategic effect of product 
and market characteristics on producer decisions to complete the sales channel using a direct and online channel. 
the concept of interaction guides the members of the supply chain to a coherent work to identify the dependencies 
among themselves so that goals, redefined, and risks and outcomes of fair valuation are shared (Krishnan et al., 
2022). The performance of the optimal supply chain requires implementation of a set of activities that are not al-
ways in the best position among supply chain members and this leads to poor performance of the whole chain. the 
optimal performance will be achievable if the companies are under contract to align with the goal of the whole 
supply chain and to deal with the economic issues of both parties and supply chain profitability (Choi et al., 2013). 
there are several other reasons for the adoption of contracts in a bilateral space due to the decrease in the conflicts 
in transactional relationships (Valentijn et al., 2015). (Kumar et al., 2020) They showed that there are only 24% of 
studies with proposed methods to deal with demand distribution planning in production-distribution environ-
ment. In this article, an inventory planning for a period is examined and a possible and random demand is as-
sumed.Merzifonluoglu, has investigated the cash market, as a tool that can be used to effectively cope with dis-
ruption risks (Merzifonluoglu, 2015). In this strategy, daily market price is paid for receivables. Spot markets have 
been broadly used in the livestock, food, memory chip, and oil industries. in his attempt to formulate optimization 
models for a company's purchasing portfolio to maximize anticipated profit or minimize risk, Merzifonluoglu, 
used C-VR as a risk factor (Merzifonluoglu, 2015). In their attempt to detect optimal procurement strategies en-
compassing support contracts, forward contracts, and cash markets, they checked several scenarios. Snyder et al 
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concluded flexibility and redundancy strategies make up the majority of recovery strategies for disruption risks 
(Snyder and Shen, 2006). Sawik, used emergency questionnaires to support suppliers and enhance the resilience 
of supply chains (Sawik, 2013). C-VR criteria were used to optimally select the supply portfolio for custom manu-
facturing companies with the risk of disruption and customer's constant demand. They used stochastic mixed in-
teger programming models (MIP) to offer strategies that allow for flexible supplier selection and order allocation. 
In another study conducted by PrasannaVenkatesan and Goh, complex stochastic mixed integer programming was 
employed to deal with problems posed by integrated supplier selection and order allocation in the face of risks 
and under operating conditions (PrasannaVenkatesan and Goh, 2016). Khalili et al used probable mixed models 
for production and distribution planning for the risky two-tier supply chain (Khalili et al., 2017). Rezapour et al 
proposed mixed, nonlinear integer models, and concluded that flexible supply chains designed face different types 
of uncertainties (Rezapour et al., 2017).In their study, Hasani and Khosrojerdi, presented some resilience strategies 
and found that three strategies namely multiple sourcing, facility dispersion and facility reinforcement have the 
most dramatic effect on performance of supply chains (Hasani and Khosrojerdi, 2016). Sahebjamnia et al. offered 
a credibility-based fuzzy chance programming model to design a reliable distribution network under partial and 
full potential disruptions (Sahebjamnia et al., 2016). Behzadi et al. established a two-step model to select optimal 
sustainable and flexible strategies for an agricultural business supply chain (Behzadi et al., 2017). Sawik proposes 
a two-objective stochastic mixed integer programming approach for joint supplier selection and production and 
distribution planning in a multilevel supply chain (Sawik, 2016). Using the developed multi-objective model, 
PrasannaVenkatesan and Goh showed that the probability of supplier failure has a significant effect on the overall 
expected cost more than the supplier flexibility and loss cost (PrasannaVenkatesan and Goh, 2016). It has examined 
the challenge of supplier integration in the industry Also, supplier integration strategies are suggested by provid-
ing insights from expert interviews (Müller, 2019). Hlioui et al. presented an integrated production, re-supply, 
supplier selection and raw material quality control policy to minimize the total cost of a production-oriented sup-
ply chain system under unreliable changes and supplier stochastic parameters (Hlioui et al., 2017). Dutta and 
Shrivastava et al. Studies by modeling uncertainty during harvesting, product size, product quality, performance, 
selling price, cost, supply of unreliable sources, delay in transportation, etc. have focused on supply side issues 
(Dutta and Shrivastava, 2020).  Merzifonluoglu, presented effective modeling techniques and solutions on maxim-
izing the performance of a production system by optimally selecting customer demands, the amount of procure-
ment, buying the spot market and using option contracts (Merzifonluoglu, 2017). Hosseini et al.  By considering 
the possibility of supplier disruption using the Bayesian network approach, taking into account different levels of 
supplier capacity and stages of disruption, they have modeled the wave effect in the supply chain (Hosseini and 
Ivanov, 2019).  Aazami et al. a seller-buyer model with demand as a linear function of price, advertising in an 
integrated production-distribution environment was developed. This study promotes promotion strategies such 
as discounts, returns and credits at the retail level to increase customer demand (Aazami and Saidi-Mehrabad, 
2021).  
This research desires to fill the following research gaps: 

Although many studies have considered the integration of production and inventory, to our best of our knowledge, 
the potential sourcing in a multi-item environment has been addressed only in few studies. This study was an 
attempt to detect single and multiple sourcing strategies under multiple disruption scenarios in a multi-product, 
multi-component environment. It also suggests the integrated framework of production and inventory planning 
in the presence of raw materials and the end product demand uncertainty, which is an emergency response strat-
egy to address it. Also, no study has carried out on the effect of time window and creating time limit on receiving 
orders, which is addressed in this study. Table 1 provides the characters of previous studies also in this paper, 
some solutions for creating flexible source databases that reduce the cost of the worst-scenario in the face of supply 
chain risks in this paper, VAR and C-VR methods are used to guide the risk management of local supply chain 
that has not been previously performed in other papers.   
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Table 1.  Classification of disruption problems-related articles 

Authors / Year 

Type of demand Type of sourcing 
Alternative 
and emer-

gency source 
product type time window 

 

certain uncertain 
Single 
source 

Two 
sources 

Multiple 
sources 

Single and 
multiple 
sources 

✓ X 
Single 
prod-

uct 

Multiple 
products 

✓ X 

(Parlar and Perry, 1996) *   *    * *   * 

(Dada et al., 2003) *    *   * *   * 

(Ferrer, 2003) *  *     * *   * 

(Tomlin and Wang, 
2005) 

 *  *    *  *  * 

(Babich, 2006)  * *    *  *   * 

(Tomlin, 2006)  * *    *  *   * 

(Chopra et al., 2007)  * *    *  *   * 

(Babich et al., 2007)  *   *   * *   * 

(Xiao and Qi, 2008) *  *     * *   * 

(Keren, 2009) *  *     * *   * 

(Wang et al., 2010)  * * *    * *   * 

(Sargut and Qi, 2012) *  *     * *   * 

(Altay et al., 2018)  *   *   * *   * 

(Yoon et al., 2018) *    *   *  *  * 

(Namdar et al., 2018)  *    * *  *   * 

(Scheibe and Blackhurst, 
2018) 

 *   *   *  *  * 

(Ivanov et al., 2019a)  *   *   *  *  * 

(Hosseini et al., 2019) *    *   *  *  * 

(Svoboda et al., 2021) *    *   *  *  * 

(Aazami and Saidi-
Mehrabad, 2021) 

 *    *  *  *  * 

(Krishnan et al., 2022)  *   *   *  *  * 

This study  *    * *   * *  

3.  Problem definitions 

This study has been carried out in a multi-product and multi-item environment where each end product is com-

posed of different components. If a component is not provided, the company will be unable to produce the relevant 

end product. Two types of suppliers (reliable and unreliable) have been taken into account in this model. Orders 

are dealt with within a double-stage decision-making process, where raw materials are first released to the main 
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suppliers . Once the unknown parameters are identified, orders are released to the emergency supplier. In this 

process, the buyer and emergency supplier conclude a flexible order contract. In this contract, decisions are made 

with respect to the capacity of the emergency supplier in the first stage and it is stored for the second stage. It is 

possible to order the reserved amount to the emergency supplier. Furthermore, a part of the reserved amount must 

be ordered, and any order will be imposed higher than the stored amount. In this system only one supplier (single 

sourcing) or several suppliers (multiple sourcing) may be involved. In addition, in this study a novel decision 

model is put forward in order to develop supply strategies with the ability to flexibly deal with uncertainties 

caused by disruptions such as standard industry strategies (backup suppliers, spot purchasing, visibility) and col-

laboration. Backup suppliers provide companies with the power to deal with unexpected primary supply disrup-

tions. Spot purchasing strategy is defined as buyers make an instant purchase at market price when the product is 

required, without having to go through substantive contracts. One powerful strategy to cover disruption risk is 

cooperation and visibility between buyers and suppliers which has a positive impact on suppliers’ recovery rates 

and buyers’ warning capability. Two-stage stochastic programming model was used to develop weak supplier 

strategy that is widely used in decision making problems. The two-stage model is characterized by an initial deci-

sion which is taken in the first step before the emergence of a stochastic destructive scenario. This decision mostly 

encompasses selection of suppliers, determining the storage capacity of suppliers, and determining the investment 

in cooperation and visibility. Scenario-dependent parameters are determined in the second stage to offset the ad-

verse effects of decisions made during the first stage. Then, in order to recover its capacity, the company can either 

wait for an unreliable supplier or simply rely on local market or backup suppliers . 

Model development and formulation 
Two-stage stochastic programming model which is recognized as one of the most extensively used methods for 

dealing with two-stage decision problems, was used to develop the risk minimization mathematical model. In the 

two - stage problems, the initial decision is taken during the first step prior to release of notifications related to 

realization of random scenario and determination of the scenario-dependent parameters in the second stage.    In 

decision - making models, when the condition of the parameters is not specified in the first step, the second step 

cannot be started and decision making, but in the traditional models, this is not the case and there is no decision - 

making steps. The advantage of VAR and C-VR to evaluate the risk criterion is this option is better for continuous 

distribution with a certain confidence level over a given time period.  

3.1.  Assumptions 

• It can be assumed that the backup supplier is always accessible. In other words, the possibility of a simultaneous 

disruption between the main supplier and the backup is insignificant. 

• The major suppliers’ capacity equals the total demand where each initial supplier can fulfill the entire demand 

of the manufacturer or buyer in the absence of potential disruptions. 

• Primary suppliers have several levels of recovery rate and buyers have several levels of warning capability. 

•Each cooperation strategy is characterized by its potential effect on recovery rate or supplier rate  

• Cooperation levels are characterized by their diverse recovery rates and executive costs they incur. 

3.2. In mathematical formulation 

Sets and indexes : 

Set of raw materials required to produce products r = 1…. R  r 

 Set of manufactured products p = 1… P      p 

 Set of unreliable or primary suppliers i = 1… I   i 

 Set of reliable or backup suppliers j = 1… J   j 

 Set of periods of time t = 1… T    t 

 Set of uncertainty scenarios s = 1… S   s 

 Different levels of warning capability for different suppliers l = 1… L   l 

Different levels of recovery capabilities for different suppliers u = 1… U  u 
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Parameters : 

Fixed fee to contract with primary suppliers i for raw material r 𝑮𝒊: 

Fixed fee to contract with backup suppliers i for raw material r 𝑨𝒋: 

 
The probability of the scenario of the s 𝝅𝒔: 

 Cost of purchasing each unit of raw material r from backup supplier i as reserved material during the period 
t  

𝑷𝑰𝑼𝒓,𝒊,𝒕:  

The purchase cost of each raw material unit r from backup j in period t 𝑷𝑰𝑹𝑹𝒓,𝒋,𝒕: 

Backorder penalty cost of product p under scenario s 𝑩𝑷𝒑,𝒔: 

Large number 𝑴: 

Equal to one if the primary supplier i is disrupted under scenario s and otherwise zero 𝜽𝒊,𝒔: 

Number of lost product P under the s scenario in the last period 𝜱𝒑,𝒔: 

Probability of primary supplier failure u 
 

𝝆𝒖: 

Percentage of residual capacity of the primary supplier u disrupted in scenario s 𝝍𝒖
𝒔 : 

The unit maintenance cost of the raw material i in period t 𝑯𝑪𝑰𝒑,𝒕: 

The cost of maintenance of the product p in period t 𝑯𝑪𝑷𝒑,𝒕: 

recovery rate for primary i supplier at level u in period t 𝜻𝒊
𝒖𝒕: 

alarm capability for primary supplier i at level l at period t 𝝃𝒊
𝒍𝒕: 

The cost of improving the recovery level for primary supplier i at the u at period t 𝒓𝒆𝒊,𝒖: 

The level of promotion of the alarm level for primary supplier i at the u at period t 𝝎𝒊,𝒍: 

The value of product demand in period t under the s 𝑫𝒑,𝒕,𝒔: 

The amount of raw material r required for the P  𝑩𝑶𝑴𝒓,𝒑: 

primary supplier capacity i 𝒐𝒊: 

The cost per unit production p in period t 𝑹𝑷𝑪𝒑,𝒕: 

The time rate of delivery of the initial material order r by the primary supplier i 𝑻𝒊𝒓,𝒊,𝒕: 

Rate of delivery time of reserved raw material order r by the backup supplier j 𝑻𝒋𝒓,𝒋,𝒕: 
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Minimum order of delivery time of order delivery in reserve and non-reservation, by the producers 𝑻𝒓: 

Continuous positive variables : 

The amount of demand met for product p during the period t under the scenario s 𝑭𝑫𝒑,𝒕,𝒔: 

Production rate for product p during the period t and scenario s 𝑷𝑹𝒑,𝒕,𝒔: 

Amount of capacity booked in the contract with the backup supplier during the period t 𝒃𝒋,𝒕: 

 The amount of raw material r purchased from primary supplier i during the period t 𝒙𝒓,𝒊,𝒕: 

 The amount of reserved order of raw material i from backup support j during the period t under the scenario s  𝒉𝒓,𝒋,𝒕,𝒔: 

 The capacity to repair to the supplier involved with the disruption during the period t 𝒍𝒃𝒊,𝒔,𝒕: 

 The amount of backorder for product p during the period t under the scenario s 𝑩𝒑,𝒕,𝒔: 

Amount of raw material consumed i during the period t under the scenario s  𝑪𝒊,𝒕,𝒔: 

 The inventory of raw material r during the period t under the scenario s 𝑰𝑰𝒓,𝒕,𝒔: 

  The inventory of product p during the t under the scenario s 𝑰𝑷𝒑,𝒕,𝒔: 

 

Zero-one variables : 

It is equal to one, if the primary supplier I is selected during the period t and zero otherwise 𝒚𝒊,𝒕: 

 It is equal to one, if a reservation agreement is concluded with the backup supplier j during the period t and 
zero otherwise     

𝒚𝒋,𝒕
′ : 

It is equal to one, If the primary supplier i during the period t is placed at the recovery level, zero otherwise  𝜸𝒊,𝒕
𝒖 : 

It is equal to one, If the primary supplier i during the period t is placed at the alarm level, zero otherwise  𝝀𝒊,𝒕
𝒍 : 

 

3.3.  Problem solving method 

3.3.1. Objective function and constraints 

Minimization of costs arising from contracts with suppliers, production costs, ordering costs, maintenance costs, 
and finally back orders is the objective of this section. 

1 

𝑀𝐼𝑁𝑍 = ∑ ∑ 𝐺𝑖 . 𝑦𝑖,𝑡

𝑡𝑖

+ ∑ ∑ ∑ 𝑃𝐼𝑈𝑟,𝑖,𝑡. 𝑥𝑟,𝑖,𝑡

𝑡𝑖𝑟

+ ∑ ∑ 𝐴𝑗 . 𝑏𝑗,𝑡

𝑡𝑗

+ ∑ ∑ ∑ 𝑟𝑒𝑖,𝑢 . 𝛾𝑖,𝑡
𝑢 + ∑ ∑ ∑ 𝜔𝑖,𝑙 . 𝜆𝑖,𝑡

𝑙 +

𝑡𝑙𝑖𝑡𝑢𝑖

∑ 𝜋𝑠. (

𝑠

 ∑ ∑ ∑ 𝑃𝐼𝑅𝑅𝑟,𝑗,𝑡. ℎ𝑟,𝑗,𝑡,𝑠

𝑡𝑗𝑟

+ ∑ ∑ 𝐻𝐶𝐼𝑝,𝑡. 𝐼𝐼𝑟,𝑡,𝑠 + ∑ ∑ 𝐻𝐶𝑃𝑝,𝑡 . 𝐼𝑃𝑝,𝑡,𝑠 + ∑ ∑ 𝐵𝑃𝑝,𝑠. 𝐵𝑝,𝑡,𝑠

𝑡𝑝𝑡𝑝𝑡𝑟

+ ∑ 𝛷𝑝,𝑠. 𝐵𝑝,𝑇,𝑠

𝑝

+ ∑ ∑ 𝑅𝑃𝐶𝑝,𝑡. 𝑃𝑅𝑝,𝑡,𝑠

𝑡𝑝

 

2  
∑ 𝑥𝑟,𝑖,𝑡

𝑟

≤ ((1 − 𝜃𝑖
𝑠). 𝑦𝑖,𝑡. 𝑜𝑖) + 𝜃𝑢

𝑠. ((𝜓𝑢
𝑠 . 𝑦𝑖,𝑡. 𝑜𝑖) + ∑ 𝑙𝑏𝑖,𝑠,𝑡

𝑢

∗ 𝜁𝑖,𝑡
𝑢 ) , ∀𝑖, 𝑠, 𝑡 
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3  ∑ 𝑥𝑟,𝑖,𝑡

𝑖

+ ∑ ℎ𝑖,𝑗,𝑡,𝑠

𝑗

= 𝐼𝐼𝑖,𝑡,𝑠 + 𝐶𝑖,𝑡,𝑠, ∀𝑟, 𝑠, 𝑡 = 1 

4 
 ∑ 𝑥𝑟,𝑖,𝑡

𝑖

+ ∑ ℎ𝑖,𝑗,𝑡,𝑠

𝑗

+ 𝐼𝐼𝑖,𝑡−1,𝑠 = 𝐼𝐼𝑖,𝑡,𝑠 + 𝐶𝑖,𝑡,𝑠, ∀𝑟, 𝑠, 𝑡 ≥ 2 

5  𝑃𝑅𝑝,𝑡,𝑠 − 𝐵𝑝,𝑡−1,𝑠 = 𝐼𝑃𝑝,𝑡,𝑠 + 𝐷𝑝,𝑡,𝑠 − 𝐵𝑝,𝑡,𝑠, ∀𝑝, 𝑠, 𝑡 = 1 

6  𝑃𝑅𝑝,𝑡,𝑠 + 𝐼𝑃𝑝,𝑡−1,𝑠 − 𝐵𝑝,𝑡−1,𝑠 = 𝑃𝑝,𝑡,𝑠 + 𝐷𝑝,𝑡,𝑠 − 𝐵𝑝,𝑡,𝑠, ∀𝑝, 𝑠, 𝑡 ≥ 2 

7  𝐹𝐷𝑝,𝑡,𝑠 + 𝐵𝑝,𝑡,𝑠 = 𝐷𝑝,𝑡,𝑠, ∀𝑝, 𝑡, 𝑠 

8 
 ∑(𝐵𝑂𝑀𝑟,𝑝. 𝑃𝑅𝑝,𝑡,𝑠)

𝑝

= 𝐶𝑟,𝑡,𝑠, ∀𝑟, 𝑡, 𝑠 

9  ∑ ℎ𝑖,𝑗,𝑡,𝑠𝑟 ≤ 𝑏𝑗,𝑡, ∀𝑗, 𝑠, t 

10  𝑏𝑗,𝑡 ≤ 𝑀. 𝑦𝑗,𝑡
′ , ∀𝑗 

11  𝑙𝑏𝑖,𝑠,𝑡 . 𝜁𝑖,𝑡
𝑢 ≤ 𝑀. 𝛾𝑖,𝑡

𝑢 , ∀𝑖, 𝑢, 𝑡, 𝑠 

12 
 ∑ 𝛾𝑖,𝑡

𝑢 =

𝑢

𝑦𝑖,𝑡, ∀𝑖, 𝑡 

13  𝑙𝑏𝑖,𝑠,𝑡 . 𝜉𝑖
𝑙𝑡 ≤ 𝑀. 𝜆𝑖,𝑡

𝑙 , ∀𝑖, 𝑙, 𝑠 

14 
 ∑ 𝜆𝑖,𝑡

𝑙 =

𝑙

𝑦𝑖,𝑡, ∀𝑖, 𝑡 

15 
 ∑ 𝑦𝑖,𝑡 =

𝑖

1, ∀𝑡 

16 
 ∑ 𝑦𝑗,𝑡

′ =

𝑗

1, ∀𝑡 

17  𝑦𝑖,𝑡 + 𝑦𝑗,𝑡
′ ≤ 2, ∀𝑖, 𝑗, 𝑡 

18 
 ∑ 𝑥𝑟,𝑖,𝑡 . (1 − 𝑇𝑖𝑟,𝑖,𝑡) + ∑ ℎ𝑖,𝑗,𝑡,𝑠. (1 − 𝑇𝑗𝑟,𝑗,𝑡) ≤ (1 − 𝑡𝑟)

𝑗𝑖

. (𝐼𝐼𝑖,𝑡,𝑠 + 𝐶𝑖,𝑡,𝑠), ∀𝑟, 𝑡, 𝑠 

19 𝑦𝑖,𝑡 , 𝑦𝑗,𝑡
′ , 𝜆𝑖,𝑡

𝑙 , 𝛾𝑖,𝑡
𝑢 ∈ {0,1} 

20 𝐹𝐷𝑝,𝑡,𝑠, 𝑃𝑅𝑝,𝑡,𝑠, 𝑏𝑗,𝑡, 𝑥𝑟,𝑖,𝑡, ℎ𝑟,𝑗,𝑡,𝑠, 𝑙𝑏𝑖,𝑠,𝑡, 𝐵𝑝,𝑡,𝑠, 𝐶𝑖,𝑡,𝑠, 𝐼𝐼𝑟,𝑡,𝑠, 𝐼𝑃𝑝,𝑡,𝑠 ≥ 0 

Equation 1, the objective function is minimizing total costs. Equation 2 shows the amount of raw material pur-
chased by the order from the original suppliers due to the absence of scenario or scenario occurrence and recovery 
of its capacity. Equation 3 and 4 are balance Equations related to the amount of inventory of each type of raw 
material in different periods under the existing scenarios. Equations 5 and 6 are balance constraints related to the 
inventory of each product during different periods under the existing scenarios. Equation 7 balances demand to 
meet demand and unfulfilled orders. Equation 8 calculates the amount of raw material consumed of each type and 
in each period in the total production of products. Equation 9 indicates the bookable capacity of back up suppliers. 
Equation 10 indicates selected backup suppliers according to its capacity. Equation 11 indicates the level of capacity 
recovered in each period. According to Equation 12 the number of capacity levels that could be recovered in each 
period cannot exceed 1. Equation 13 indicates the level of warning capacity in each period. Equation 14 indicates 
that it activates only one alarm level in each period.  Equation 15 indicates that only one primary supplier is selected 
in each period. Equation 16 indicates that only one backup supplier is selected in each period. Equation 17 indicates 
the possibility of using more than one source. Equation 18 indicates the time limit for sending and delivering raw 
materials at a specified time rate. Equations 19 and 20 show the binary and positive variables. 

3.4. value at risk 

Value at risk (VAR) is a measure of the risk of loss for investments. It estimates how much a set of investments 
might lose (with a given probability), given normal market conditions, in a set time period such as a day. VAR is 
typically used by firms and regulators in the financial industry to gauge the amount of assets needed to cover 
possible losses. For a given portfolio, time horizon, and probability p, the p VAR can be defined informally as the 
maximum possible loss during that time after excluding all worse outcomes whose combined probability is at 

https://en.wikipedia.org/wiki/Portfolio_(finance)
https://en.wikipedia.org/wiki/Time_horizon
https://en.wikipedia.org/wiki/Probability
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most p. The VAR is not a coherent risk measure since it violates the sub-additivity property, 𝑥 , 𝑦 Є 𝐿, then  𝜌(𝑥 +
𝑦) ≤ 𝜌(𝑥) +  𝜌(𝑦). 

However, it can be bounded by coherent risk measures like Conditional Value-at-Risk (C-VR) or entropic value at 
risk (E-VR). C-VR is defined by average of VAR values for confidence levels between 0 and α. However, VAR, 
unlike C-VAR, has the property of being a robust statistic. A related class of risk measures is the 'Range Value at 

Risk' (R-VR), which is a robust version of C-VR. For 𝑋 ∈  𝐿𝑀+ (with  𝐿𝑀+the set of all Borel measurable func-
tions whose moment-generating function exists for all positive real values) we have   

 𝑉𝑎𝑅1−𝛼(𝑋) ≤ 𝑅𝑉𝑎𝑅𝛼,𝛽(𝑋) ≤ 𝐶𝑉𝑎𝑅1−𝛼(𝑋) ≤ 𝐸𝑉𝑎𝑅1−𝛼(𝑋),  

Where; 

 

𝑉𝑎𝑅1−𝛼(𝑋) ∶= 𝑖𝑛𝑓𝑡Є𝑅{ 𝑡: 𝑃𝑟(𝑥 ≤ t) ≥ 1- α}, 

 

𝐶𝑉𝑎𝑅1−𝛼(𝑋) ∶=
1

𝛼
∫ 𝑉𝑎𝑅1−𝛾(𝑋)

𝛼

0
 𝑑𝛾, 

𝑅𝑉𝑎𝑅𝛼,𝛽(𝑋) ∶=
1

𝛽−𝛼
∫ 𝑉𝑎𝑅1−𝛾(𝑋)

𝛽

𝛼
 𝑑𝛾, 

𝐸𝑉𝑎𝑅1−𝛼(𝑋) ∶=  𝑖𝑛𝑓𝑍 > 0{ 𝑍−1 ln( 𝑀𝑋(𝑍)/𝛼)},  

 

To manage uncertainty, a C-VR analysis was applied for analysis of the model. It is assumed that a risk-neutral 
decision maker optimizes expected values of almost all objectives. 
Although disruptions are infrequent, the expectable value is not the best optimization option. Thus, Minimization 
of maximum damage to a system in the face of disruptions seems to be the most effective option. In the face of the 
worst-case scenario, this approach could be a serious obstacle for the supply chain network. In such a case, the 
decision maker is likely to take risks and may give priority to other optimization procedures such as robust opti-
mization, value at risk (VAR), conditional value at risk (C-VR) and the worst value of the objective function. 
In the present study, the model which is used to control supply risk in portfolio management is analyzed using 
value at risk (VAR) and conditional value at risk (C-VR) in the process of financial engineering. Usually, two-stage 
random models are large models that require a solution method, but in this model, considering a limited number 
of scenarios, the model was run in a couple of minutes. 
In this mathematical model, attempts are made to minimize the anticipated costs in a risk-neutral environment, 
but the decision maker neutralizes an unbridled risk at the worst expected cost.  
For example, in %100(1-α), the output scenario may be the value (VAR) expected where α∈ (0,1) is predetermined 
at a reliable and probabilistic level. (C-VR) refers to a conservative measure taken in the face of the risk imposed 
by an investment on less profitable products. Conditional value at risk a (a- C-VR) refers to the minimum expected 
amount of costs in the worstcase cases 100% (1-α).    
Using the confidence level α, one can easily control the risk of losses incurred by chain disruptions. Suppose that 
a decision maker intends to approve only portfolios where the likelihood of scenarios with costs greater than (VAR) 
doesn’t exceed (1-a). The level of confidence besides determines the risk mode. Its greater value indicates the 
greater risk against the decision maker. The equivalent of the opposite risk model is presented after introducing 
two non-negative variables (𝑧𝑠, Г) and an additional constraint. The cost of follow 𝑧𝑠 is defined as a value whose 
costs are greater than that in the s. The performance of the objective function is to minimize the cost of the worst 
mode scenario and order allocation problem. Equation (21) is a risk Equation that measures the extent to which the 
cost of following 𝑧𝑠  in the scenario s is greater than that of Г. Thus, the inclusion of the conditional value at risk 
makes it possible to consider the risk of the decision maker in the model. 

 
21 𝑀𝑖𝑛 − 𝐶 − 𝑣𝑎𝑟 = Г + (1 − 𝛼)−1 ∑ 𝜋𝑠 .

𝑠

𝑍𝑠 

https://en.wikipedia.org/wiki/Coherent_risk_measure
https://en.wikipedia.org/wiki/Conditional_Value-at-Risk
https://en.wikipedia.org/wiki/Entropic_value_at_risk
https://en.wikipedia.org/wiki/Entropic_value_at_risk
https://en.wikipedia.org/wiki/Robust_statistics
https://en.wikipedia.org/wiki/Borel_measure
https://en.wikipedia.org/wiki/Measurable_function
https://en.wikipedia.org/wiki/Measurable_function
https://en.wikipedia.org/wiki/Moment-generating_function
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22 ∑ ∑ 𝐺𝑖 . 𝑦𝑖,𝑡 + ∑ ∑ ∑ 𝑃𝐼𝑈𝑟,𝑖,𝑡. 𝑥𝑟,𝑖,𝑡

𝑡𝑖𝑟𝑡𝑖

+ ∑ ∑ 𝐴𝑗 . 𝑏𝑗,𝑡

𝑡𝑗

+ ∑ ∑ ∑ 𝑟𝑒𝑖,𝑢. 𝛾𝑖,𝑡
𝑢 + ∑ ∑ ∑ 𝜔𝑖,𝑙 . 𝜆𝑖,𝑡

𝑙 +

𝑡𝑙𝑖𝑡𝑢𝑖

∑ 𝜋𝑠 . (

𝑠

 ∑ ∑ ∑ 𝑃𝐼𝑅𝑅𝑟,𝑗,𝑡 . ℎ𝑟,𝑗,𝑡,𝑠

𝑡𝑗𝑟

+ ∑ ∑ 𝐻𝐶𝐼𝑝,𝑡. 𝐼𝐼𝑟,𝑡,𝑠 + ∑ ∑ 𝐻𝐶𝑃𝑝,𝑡 . 𝐼𝑃𝑝,𝑡,𝑠 + ∑ ∑ 𝐵𝑃𝑝,𝑠. 𝐵𝑝,𝑡,𝑠

𝑡𝑝𝑡𝑝𝑡𝑟

+ ∑ 𝛷𝑝,𝑠. 𝐵𝑝,𝑇,𝑠

𝑝

+ ∑ ∑ 𝑅𝑃𝐶𝑝,𝑡. 𝑃𝑅𝑝,𝑡,𝑠

𝑡𝑝

−  Г ≤ 𝑍𝑠 

 

4. Analysis of results 

4.1. Analysis based on different experiments 

The proposed plan is introduced for a nut and bolt factory located in Iran (Semnan). The company is considered 

one of the leading companies in Iran in the field of manufacturing industrial bolts and nuts, including the automo-

tive industry, construction and bridges and buildings. Raw materials are supplied from several reliable and unre-

liable suppliers. For the purpose of data collection, several meetings were penciled in with employees of the com-

pany with different ranks, which creates commitment contracts of the board of directors during the data collection 

process needed to test problems in which there are 5 primary suppliers and one backup supplier. Suppose that 

there is a negative correlation between the purchase price and the likelihood of disruption in a supplier system. 

The purchase price plus the cost of contract concluded for the most reliable supplier, incur the highest costs. 

The most trustworthy supplier that is least significantly affected by disruptions is recognized as supplier 1. 

While, the supplier with the most disruption is considered as the supplier 5. 

The following 4 parameters are considered by increasing the supplier index number increasingly or decreasingly. 

𝜓1
𝑠 ≥ 𝜓2

𝑠 ≥ ⋯ ≥ 𝜓5
𝑠,   ∀𝑠                                                                                                                                                   23                                

𝐺1 ≥ 𝐺2 ≥ ⋯ ≥ 𝐺5,   ∀𝑖                                                                                                         24                                           

𝑃𝐼𝑈𝑟,1,𝑡 ≥ 𝑃𝐼𝑈𝑟,2,𝑡 ≥ ⋯ ≥ 𝑃𝐼𝑈𝑟,5,𝑡,   ∀𝑟, 𝑖, 𝑡                                                                                                                      25 

𝜌1 ≤ 𝜌2 ≤ ⋯ ≤ 𝜌5,   ∀𝑖                                                                                                                                                     26 

Price changes and percentage changes in the remaining capacity of the disruption for the 5 suppliers are listed in 

Table 2 as follows: 

Table 2. Price changes and changes in the percentage of remaining capacity of the disruption 

Index number Price Percentage of remaining capacity of the disruption 

1 200-180 0.80 -0.75 
2 150-175 0.74 -0.70 
3 145-130 0.69 -0.60 
4 130-115 0.59 -0.55 
5 115-100 0.54 -0.50 
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Figure 1. Increase in price based on the number of suppliers 

 

Figure 2. Increase in the percentage of capacity remaining from the disruption based on the number of suppliers 

4.2. Analysis of optimal solutions of model for multi-source strategy by considering disruptions 

The value of C-VR increases with any rise in confidence level α. α is a measure of risk confrontation and incom-

patibility, and any rise in this measure triggers risks with greater incompatibility. As the risk against the decision 

maker increases, the total cost indicated by (C-VR) increases. Because, the decision maker concentrates selecting 

suppliers by decreasing the likelihood of financial loss or the worst-case scenario. Also, according to this strategy, 

decision-maker will focus more on supply diversity through the selection of more suppliers in terms of risk-taking. 

In this model, the decision maker is assumed to be able to select not more than two primary suppliers and a sec-

ondary supplier in each period. Due to the reduction in 1- order of ordering the supplier 2- residual capacity of the 

disruption 3-contract costs with suppliers, at most α levels, suppliers will be selected at lower prices and lower 

management costs. With respect to the existing disruption and the assumption of the maximum of two suppliers 

in each of α , the two suppliers are selected in each period .As the level of risk-neutral reduces, the decision maker 

will sometimes assign his/her order to the cheapest supplier in case of highest rate of disruption. In this situation, 

buyers increase their level of reliability in the face of disruptions by investing in a recovery and warning strategy.  

Due to the recovery and alert levels in the facilities of the primary suppliers, a percentage of their lost capacity will 

be recovered and a percentage of the orders is allocated to the supporting suppliers to prevent the imbalance be-

tween supply and demand due to the costs of the contract and the purchase and recovery. Given that it is possible 
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to conclude a contract between suppliers with backup suppliers with unlimited capacity and on the other hand 

there is the ability to recover by receiving an alarm the order will be fulfilled according to all available capacity for 

raw materials at different levels of disruption. Suppliers with cheaper prices and lower capability will be selected 

even at higher α. In larger disruptions, suppliers with slightly higher prices and higher reliability are more likely 

to be selected. 

The results of low-level disruptions in primary suppliers are listed in Table 3: 

Table 3. Lower disruptions in the primary suppliers 

Confidence level (a) VAR C-VR Service level  

0 0 287121945 0.949 
0.25 287167800 287154820 1 
0.5 287167800 287167800 1 

0.75 287167800 287167800 1 
0.95 287167800 287167800 1 
0.99 287167800 287167800 1 

Table 4. Comparison of primary and secondary suppliers by considering lower disruptions 

Level Confidence 
(α) 

supplier selected in C-VR Primary 
with fewer disruptions 

supplier selected in C-VR Secondary 
with fewer disruptions 

Period 1 Period 2 Period 3 Period 1 Period 2 Period 3 

0 
5 5 5 

3 1 2 
U4/L3 

U4/L3 U4/L3 

0.25  

5 5 5 
1 1 1 U4/L3 U4/L3 U4/L3 

0.5 
5 5 5 

1 1 1 U4/L3 U4/L3 U4/L3 

0.75 
5 5 5 

1 1 1 U4/L3 U4/L3 U4/L3 

0.95 
5 5 5 

1 1 1 U4/L3 U4/L3 U4/L3 

0.99 5 5 5 1 1 1 

As shown in Table 4, at high-level disruptions, the most expensive and with the least disruptions are selected up 
to α less than 80%. At α greater than 90%, supplier 3 is selected from the primary suppliers. The results of high-
level disruptions in primary suppliers are listed in Table 5: 

Table 5. High-level disruptions in primary suppliers 

Confidence Level ( α  ) VAR C-VR 

 
 

Service level 
  

0 287654761 287725289 0.938 
0.25 287654761 287816250 0.938 
0.5 287655761 287898325 0.964 

0.75 287655761 287912354 0.964 
0.95 287968971 287968971 0.995 
0.99 287968971 28768971 0.999 
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Table 6.  Comparison of primary and secondary by considering larger disruptions 

Level Confidence 
(α) 

supplier selected in C-VR Primary   
with fewer disruptions 

supplier selected in C-VR Secondary   
with fewer disruptions 

Period 1 Period 2 Period 3 Period 1 Period 2 Period 3 

0 
1 1 1 

2 2 1 
U3 U3 U3 

0.25  
1 1 1 

2 2 1 
U3 U3 U3 

0.5 
1 1 1 

2 2 1 
U2/L2 U2/L2 U2/L2 

0.75 
1 1 1 

2 1 2 
U2/L2 U2/L2 U2/L2 

0.95 
3 3 3 

1 2 2 
U4/L3 U4/L3 U4/L3 

0.99 3 3 3 3 3 3 

 

 

Figure 3. Service level versus confidence level 

 

Figure 4. C-VR versus confidence level 
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Table 7. The effect of demand variations on the amount of objective function and unfulfilled orders 

 
Demand changes  

 
the amount of VAR 

 
the amount of C-VR 

 
The amount of back order  

1500-2000 324441000 324441000 37685 
2000-2500 415064500 415064500 49086 
2500-3000 505688000 505688000 58712 
3000-3500 596311600 596311600 72667 
3500-4000 686935100 686935100 49685 

 

 

Figure 5. C-VR versus demand variations 

As shown in Figure 5, as demand increases, the values of VAR and C-VR increase at a decreasing rate. Costs, 
including lost sales penalties, will increase significantly, as demand increases and suppliers' capacity remains con-
stant. Disruption in capacity and different scenarios have a significant effect on all incremental intervals of VAR 
and C-VR values. 
Table 8 shows the effect of primary supplier capacity variations for raw material production on the target values 
to reduce costs based on VAR and C-VR with α = 99%: 

Table 8. The effect of primary supplier capacity variations to produce raw material on the target values to reduce costs based on VAR and C-VR with α = 99% 

Changes in primary supplier capacity  the amount of VAR the amount of C-VR   

1000-2000 287167800 287167800 
2500-3000 286738300 286738300 
3500-4000 286130500 286130500 
4500-5000 285882700 285882700 
5000-5500 285668800 285668800 
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Figure 6. C-VR versus capacity variations 

As shown in Figure 6, the values of VAR and C-VR decrease with increasing primary supply capacity. As the 
primary supplier capacity increases, the costs, including lost sales penalties reduces. The effect of the disruption 
on the capacity of primary suppliers will be reduced. Table 9 indicate of VAR and C-VR values based on increasing 
number of suppliers: 

Table 9. The values of VAR and CVAR by increasing the number of suppliers 

Level Confidence 
(α) 

I = 7 
J = 4 

VAR CVAR 

Primary supplier 
selected 

Backup supplier 
selected 

Period 1 Period 2 Period 3 Period 1 Period 2 Period 3 

0 0 252841754 
5 5 5 

2 
2 2 

U2/L1 
U2/L1 U2/L1 

0.25  
252843800 252843800 5 5 5 2 

2 2 
U2/L1 U2/L1 U2/L1 

0.5 
252843800 252843800 5 5 5 2 

2 2 
U2/L1 U2/L1 U2/L1 

0.75 
252843800 252843800 5 5 5 2 

2 2 
U2/L1 U2/L1 U2/L1 

0.95 
252843800 252843800 5 5 5 2 

2 2 
U2/L1 U2/L1 U2/L1 

0.99 
  

252843800 252843800 
5 5 5 

2 
2 2 

Table 10. The values of VAR and CVAR by considering primary supplier and backup supplier 

Level Confidence 
(α) 

I = 7 
J = 4 

VAR C-VR 

Primary supplier 
selected 

Backup supplier 
selected 

Period 1 Period 2 Period 3 Period 1 Period 2 Period 3 

0 0 277966980 
9 9 9 

7 5 5 
U1/L1 U1/L1 U1/L1 

0.25  277968500 277968500 
9 9 9 

7 5 5 
U1/L1 U1/L1 U1/L1 

0.5 277968500 277968500 
9 9 9 

7 5 5 
U1/L1 U1/L1 U1/L1 

0.75 277968500 277968500 
9 9 9 

7 5 5 
U1/L1 U1/L1 U1/L1 

0.95 277968500 277968500 
9 9 9 

7 5 5 
U1/L1 U1/L1 U1/L1 

0.99 277968500 277968500 
9 9 9 

7 5 5 
U1/L1 U1/L1 U1/L1 

 

As shown in Table 10, it is assumed that there are ten primary suppliers and seven backup suppliers. The primary 
supplier has constant values at different confidence levels over different periods, when the values for the backup 
supplier are different under the same conditions. 
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Table 11. Table provision of selected primary and provisioning of backup selection 

Level Confidence 
(Α ) 

I = 14 
J = 10 

Level Confidence 
(α) 

I = 7 
J = 4 

VAR 
C-VR 

Primary supplier 
selected 

Period 1 Period 2 Period 3 Period 1 Period 2 Period 3 

0 0 298166821 
10 10 10 

1 9 10 
U4/ L2 U4/ L2 U4/ L2 

0.25  264805900 298167600 
10 10 10 

1 9 10 

U4/ L2 U4/ L2 U4/ L2 

0. 5  
264805900 298167600 

10 10 10 
1 9 10 

U4/ L2 U4/ L2 U4/ L2 

0.75 
264805900 298167600 

10 10 10 
1 9 10 

U4/ L2 U4/ L2 U4/ L2 

0.95 
264805900 298167600 

10 10 10 
1 9 10 

U4/ L2 U4/ L2 U4/ L2 

0.99 
264805900 298167600 

10 10 10 
1 9 10 

U4/ L2 U4/ L2 U4/ L2 

We consider fourteen primary suppliers and ten backup suppliers. The selected primary supplier with different 
reliability levels during different periods takes constant values of VAR contingent upon the supporting supplier 
has variable values of VAR with the same values of confidence levels during different periods. 

5. Managerial insights and conclusion 

In the present study attempts are made to investigate a multi-product multi-item environment in which the final 
product is manufactured by several items. Decision-making is carried out within the framework of a two-stage 
stochastic programming model in which items are released to unreliable suppliers during the first stage and within 
a specific time interval and the original plan to manufacturer end product is determined, while emergency deci-
sions are made, including emergency order and emergency production plan in the second stage. 
Also, the present study presents strategies to create flexible supply bases that minimize the cost of the worst sce-
nario in the face of supply chain risks. VAR and C-VR techniques are used. These techniques are centralized to 
guide supply chain risk management. The hybrid stochastic optimization problem is developed as a mixed-integer 
programming with C-VR as a risk criterion. A scenario-based method calculates potential disruption scenarios. 
VAR and C-VR values increase, as the number of primary and backup suppliers increase. In the present study 
attempts were made to further delve into disruption planning and minimize disruptions to gain a profounder 
comprehension of the relationship between flexibility and supply chain characteristics. The results of this research 
can help supply chain managers to redesign the order allocation process and select their traditional supplier and 
match the dynamic industry dynamics. The proposed framework can be used as a decision - making tool by the 
business organization that can help supply chain managers to evaluate the suppliers’ options to technological ca-
pabilities as well as their ability to ensure business continuity from disasters. Research findings indicate that the 
supplier segmentation and prioritization process in this paper will help business organizations to proactively de-
sign a set of reliable suppliers who minimize the risk of supplier and thereby reduce the impact of disruptions in 
disaster occurrence. In addition, the number of suppliers must be kept constant within acceptable limits to prevent 
a sharp increase in the number of suppliers. Suppliers should release orders in time by setting up time windows 
and setting deadlines to receive orders. Also, this study shows that by increasing the initial supply capacity, VAR 
and C - VR values decrease and by increasing the initial supply capacity, the costs decrease to about 99 % which 
reduces the initial degradation effect on capacity. In the end, for future papers, it is suggested that emergency 
orders with disruption be checked by applying other restrictions, such as limiting the number of goods and receiv-
ing orders from the supplier and the number of items. It is suggested to use methods other than C-VR for risk 
assessment. And the impact of the disorder in this context should be investigated. 
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