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Abstract 

Customer churn prediction has been gaining significant attention due to the increasing competition among mobile service pro-

viders. Machine learning algorithms are commonly used to predict churn; however, their performance can still be improved due 

to the complexity of customer data structure. Additionally, the lack of interpretability in their results leads to a lack of trust 

among managers. In this study, a step-by-step framework consisting of three layers is proposed to predict customer churn with 

high interpretability. The first layer utilizes data preprocessing techniques, the second layer proposes a novel classification model 

based on supervised and unsupervised algorithms, and the third layer uses evaluation criteria to improve interpretability. The 

proposed model outperforms existing models in both predictive and descriptive scores. The novelties of this paper lie in propos-

ing a hybrid machine learning model for customer churn prediction and evaluating its interpretability using extracted indicators. 

Results demonstrate the superiority of clustered dataset versions of models over non-clustered versions, with KNN achieving a 

recall score of almost 99% for the first layer and the cluster decision tree achieving a 96% recall score for the second layer. Addi-

tionally, parameter sensitivity and stability are found to be effective interpretability evaluation metrics. 

Keywords: machine learning; customer churn prediction; interpretability; clustering; classification.
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1. Introduction

Customer is the most crucial business asset in an exceedingly dynamic and competitive environment (Coussement 
et al., 2017). They leave their current service providers because of dissatisfaction with the service or receiving better 
offers from other service providers, a phenomenon known as customer churn. Thus, predicting customer churn is 
vital to various businesses as it can help predict changes in revenue and to address the issue by proposing more 
attractive products in hope of reducing the churn rate (Vahidi Farashah et al., 2021). It makes sense to try to retain 
current customers as it is usually a lot cheaper than the cost of acquiring new ones. So, identifying customers who 
were most likely to leave businesses is vital; so that accommodations would be proposed to prevent this behavior. 
In telecommunications industry proposing customer retention plans is a common way to achieve this goal. There-
fore, companies employ intelligent methods to anticipate and provide customer retention solutions. A growing 
body of the literature indicates that these solutions and suggestions lead to lower companies' costs (Mardani et al., 
2015). Machine learning is one of the most commonly used methods for predicting customer churn (Umayaparva-
thi & Iyakutti, 2016). Achieving improved performance frequently entails escalating model complexity, leading to 
a reduction in interpretability. Indeed, several studies have pointed out the lack of interpretability of current ma-
chine learning-based methods for customer churn management (Došilović et al., 2018; Moosavi-Dezfooli et al., 
2017; Nguyen et al., 2015; Szegedy et al., 2013). They noted that the complexity of some machine learning algo-
rithms can make it difficult to understand the reasoning behind their predictions. These findings underline the 
importance of developing an interpretable machine learning framework for customer churn management to im-
prove the transparency and reliability of these models. 

The concept of machine learning interpretability pertains to the capacity to comprehend and explain the reasoning 
behind the judgments rendered by a machine learning model. In other words, interpretability of a model is critical 
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in ensuring that its predictions are reliable and trustworthy. Interpretability is particularly important in areas such 
as health, marketing, or automated driving, where ethical issues and justice are naturally raised (Lipton, 2016). The 
aim of this study is to explore the issue of machine learning interpretability and provide insights into how this 
aspect of algorithm design can be optimized. To achieve this, two primary research questions are investigated: 
Firstly, the indicators of machine learning interpretability that are currently in use are identified and examined. 
Secondly, A method for improving the interpretability of case study machine learning model was proposed, build-
ing on the existing literature and empirical research. The use of machine learning algorithms in customer churn 
prediction is not new. However, most studies focus on improving the performance of classification algorithms 
without considering the model's interpretability. This paper addresses this gap by proposing a novel interpretable 
machine learning framework for customer churn prediction.  The framework's interpretability ensures that man-
agers can make informed decisions based on the model's predictions. Additionally, the framework's use of clus-
tering techniques is expected to enhance the predictive power of customer churn prediction models, leading to 
better customer retention strategies. The objectives of this study are twofold. Firstly, we aim to identify the metrics 
that are currently used to evaluate the interpretability of machine learning models. This will involve a comprehen-
sive review of the existing literature to determine the most commonly used metrics in practice. Secondly, we seek 
to propose and implement a machine learning framework with high interpretability that can be applied to real-
world business problems. To achieve this objective, we will employ supervised and unsupervised machine learn-
ing techniques and conduct experiments on a case study dataset containing 7044 customer records using 21 attrib-
utes related to their churn decision. Through this study, we hope to contribute to the ongoing conversation on 
interpretability in machine learning and provide a practical solution for businesses looking to improve the trans-
parency and interpretability of their predictive models. As the concern for ML models’ interpretability is somewhat 
new, very few studies have provided a comprehensive evaluation framework for interpretability metrics. Our 
study stands out by proposing improvements for the ML models’ metrics. Our approach is unique as it combines 
supervised and unsupervised machine learning techniques and employs a case study dataset to demonstrate the 
effectiveness of our approach in improving interpretability. By boosting the transparency and interpretability of 
ML business models our framework has the potential to benefit various industries that rely on machine learning 
models, such as finance, healthcare, and marketing. Overall, our study provides valuable insights into how inter-
pretability can be optimized. This paper is organized as follows: In Section 2, we conduct a thorough literature 
review of machine learning interpretability and identify key indicators for measuring interpretability. Building on 
this review, in Section 3 we propose a novel three-layer framework for enhancing the interpretability of machine 
learning models. The first layer, called pre-modeling, involves pre-processing techniques applied to the research 
dataset to prepare it for analysis. In the second layer, called modeling, we develop a novel hybrid machine learning 
model consisting of both supervised and unsupervised models. In the third layer, called post-modeling, we eval-
uate the interpretability of the resulting model using the indicators identified in the literature review. The most 
interpretable model is then selected for further analysis. The results of our study demonstrate that the proposed 
framework outperforms previous approaches to machine learning interpretability. Finally, in Conclusions, we 
summarize the main findings of our study, highlight its contributions to the field, discuss its limitations, and sug-
gest directions for future research. Figure 1 illustrates the conceptual framework of this study. 

 

Figure 1:Conceptual framework 

2. Literature review 

In this section, a survey is conducted on machine learning algorithms and their interpretability. In a review of 
previous research on customer churn prediction based on machine learning algorithms, it was observed that most 
researchers intended to improve the performance of classification algorithms. Several researchers aimed to dis-
cover the factors influencing churn. Also, some studies have considered the customer churn prediction problem as 
a binary classification so that the customers could be placed in both churner and non-churner categories. This 
classification process was performed using a single machine learning algorithm (Dolatabadi & Keynia, 2017) (Ying 
et al., 2008). In addition, some researchers have focused on statistical issues and improved algorithms such as 
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Random Forest (RF) Decision Tree (DT), Artificial Neural Network (ANN), Support Vector Machine (SVM), and 
Logistic Regression (LR). Other researchers have improved the prediction performance of different models using 
hybrid or ensemble algorithms (Brânduşoiu et al., 2016; Coussement & Van den Poel, 2008; Dahiya & Bhatia, 2015; 
Gürsoy, 2010; Vafeiadis et al., 2015) For interpretability, the most famous articles that studied machine learning 
interpretability were reviewed. These articles were selected based on the delivery of measurable indicators for 
interpretability. This review examines the possibility of using these indicators to provide the required research 
framework. Since the user trust and local explanations of ML models are critical items in customer churn prediction 
models, it is necessary to consider the interpretability of these models. For example, a comprehensive interpreta-
tion of a neural network depends on the user's knowledge, experience, and desires. In an interpretable system, 
explanations must be simple and sufficiently understandable to the users. This interpretation is achieved by having 
a system that behave predictably in various circumstances. Doshi-Velez and Kim stated that a single metric, such 
as classification accuracy, is an incomplete description of most real-world task which needs humans trust (Doshi-
Velez & Kim, 2017). It is hard to trust systems whose decisions cannot be well interpreted, especially in the areas 
such as health, marketing, or automated driving, where ethical issues and justice are naturally raised. This situation 
confirms the need for reliable, transparent, and high-performance models for real-world applications, resulting in 
interpretable machine learning models (Gunning & Aha, 2019). In other words, applying a highly interpretable 
framework helps managers make fundamental decisions.  Nowadays, the volume of research on machine learning 
interpretability is rapidly growing. This sub-section investigates the studies that provide indicators for evaluating 
the interpretability of machine learning algorithms. Researchers have addressed machine learning interpretability 
through ontology and semantics. Most of these studies were focused on purely subjective perceptions of interpret-
ability (Du et al., 2019). Hermann represented the necessity of paying more attention to the interpretability of sys-
tems that use human evaluations. The author showed a specific and robust tendency toward more straightforward 
descriptions and warned that simply paying attention to them could make the system not to be interpretable and 
complete but to be convincing. Also, he described an ethical challenge: to what extent can an interpretation be 
ethically manipulated to persuade users? In addition, different people may have various tendencies regarding the 
interpretability of a model. This situation makes it challenging to determine the interpretability of a model (Her-
man, 2017). Lage et al. showed that the subjective evaluation of the interpretability of algorithms developed for 
intelligent automobiles provides algorithms with faster reaction times than more accuracy (Lage et al., 2019). 
Velez and Kim introduced three strategies (i.e., application-grounded, human-grounded, and function-grounded) 
for assessing interpretability. The application-grounded analysis involves conducting human experiments under 
real-world scenarios. For example, a doctor can decide through the disease diagnosis results. The human-grounded 
analysis is linked to the realization of additional simple human-subject experiences that maintain the essence of 
the target application. Although the functionally-grounded analysis does not require human experience, it uses a 
formal definition of interpretability as a proxy for explanatory quality (Doshi-Velez & Kim, 2017). 
Murdoch et al. introduced (PDR) framework to discuss ML interpretation. Their framework provides three over-
arching requirements for evaluation: predictive accuracy, descriptive accuracy, and relevance judged relative to a 
human audience. Also, they categorized the criteria into two groups, including model-based and post-hoc (Mur-
doch et al., 2019). Yang Do et al. divided the ability to interpret machine learning into two dimensions: scale and 
method. In the scale dimension, there are two interpretations (i.e., local and global). The global interpretation refers 
to the overall model structure, and the local interpretation refers to the model behavior in a particular instance or 
state of the problem. Interpretation methods are divided into two categories, including model-based and post-hoc 
interpretations. They used three criteria (i.e., generalization, transparency, and persuasiveness) to evaluate inter-
pretations. The interpretability evaluation metric proposed in this study included three layers. The generalization, 
persuasiveness, and transparency were the first, second, and third layers, respectively. Also, the structure of this 
framework was hierarchical (Yang et al., 2019). Moraffah et al decomposed the interpretability concept of machine 
learning algorithms into two categories. The first category was related to the essence of the model. It comprises the 
models whose training and decision-making processes were intuitive. The authors introduced decision tree mod-
els, rule-based models, linear regression, and belief networks as inherently interpretable models. The second cate-
gory, post-hoc interpretability, was related to the ability to interpret models after their decision. It refers to creating 
explanations for interpreting an existing model using an auxiliary model. Also, the example-based models fall into 
this category (Moraffah et al., 2020). Approximations make a case to represent that more complex models result in 
a specific prediction by fitting a less complicated model, either regionally (approximate just for one or a couple of 
data points) or globally (approximate the behavior of the whole model). In recent years, many believed that local 
approximation was the most scientific and promising method to explain how complex models behave (Mittelstadt 
et al., 2019). However, local models can solely be a particular domain of a model, and thus they can be deceptive 
and inaccurate outside the domain. The main characteristics of machine learning interpretability reported in men-
tioned studies are listed in Table 1. 
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Table 1. Machine learning interpretability in literature 

Reference scope  framework Model based Post-hoc 

(Murdoch et al., 2019) 1.Modeling 

2.Post Hoc 

1.Predictive accuracy(modeling) 

2.Descriptive accuracy (post hoc) 

3.Relevancy (post hoc) 

1.sparsity 

2.Simulatability 

 3. Modularity 

4.Domain Based Feature 

Engineering 

5.Model-Based Feature Engineering 

1.Dataset-Level Interpreta-

tion  

2.Prediction-Level Interpre-

tation  

(Yang et al., 2019) 1.Intrinsic local and global 

2.Post hoc local and global 

1.generalizability 

2.fidelity 

3.persuasibility 

 

1.Local and global 

2.Generalizability 

3.Model performance 

 

 

Fidelity 

 

(Lipton, 2018) transparency post-hoc in-

terpretation 

 

 An algorithm is simple enough to be 

examined all at once by a human 

 

1. natural language explana-

tions 

2. visualizations approxima-

tions 

 

3. Methodology 

In this section, we will present the step-by-step framework proposed to predict customer churn with high inter-
pretability. The framework design consists of three layers that work together to preprocess and classify data, and 
to evaluate and improve the interpretability of the prediction model. The first layer involves data preprocessing 
techniques such as cleaning, filtering, and transforming the data to make it suitable for analysis. The second layer 
proposes a novel classification model based on supervised and unsupervised algorithms to predict customer 
churn. Finally, the third layer uses evaluation criteria to improve the interpretability of the prediction model. This 
section will describe the framework's components in detail and explain how they work together to predict cus-
tomer churn with high accuracy and interpretability.The literature survey indicated that machine learning inter-
pretability was associated with three steps (Lage et al., 2019). There are regional and global interpretability tech-
niques before constructing a prediction model, within the modeling process, and after modeling.The framework 
of the present study consists of three modules: pre-model, model-based, and post-hoc. The pre-model module uses 
model-independent techniques that can only be utilized independently for the data. In the model-based module a 
hybrid classification model with clustering and classification used, finally in post-modeling module interpretabil-
ity of predictions were evaluated.The first step of CCP is associated with data collection. Indeed, different aspects 
of data collection can affect interpretability. In the second step, a prediction model is developed. Interpretability 
considerations at this step are often related to selection between simpler and easier models for interpreting and 
black-box models with more prediction performance. After training the model, the user analyzes the results and 
answers how the model performed the results. The interpretability is maximized by clustering customers based on 
behavioral characteristics. In clustering, data points with similar characteristics are placed in the same group so 
that the members of each group have the most similarity. Also, they have the slightest similarity with the members 
of other groups. Since the group members are homogenous, the prediction accuracy of classification algorithms 
can be improved (Sivasankar & Vijaya, 2019). With this effect, the readability of the input data and the prediction 
process become understandable to the user, and the user can observe the prediction for separate behavioral groups. 
The clustering methods are divided into four categories: segregated algorithms, hierarchical, density-based, and 
model-based clustering algorithms. 

 

3.1. Pre-modeling 

Different aspects of the data-collection process can affect the interpretation pipeline (Murdoch et al., 2019). This 
type of interpretation usually takes place before choosing a model. Indeed, it is vital to have a good understanding 
of the data before selecting a model. A meaningful display of features and showing them with higher importance 
using EDA can increase interpretability (Komorowski et al., 2016). These methods include traditional data explo-
ration such as principal component analysis (PCA) (Howley et al., 2005) and t-SNE (Hung, 2017) or newer methods 
such as K-Means and MMD. 

3.2. Model-based 

This module focuses on constructing models that quickly provide information for relationships they have learned. 
In this case, the model-based interpretability techniques usually require simpler models, leading to predictive per-
formance reduction. Therefore, model-based interpretability is the best option when the underlying relationship 
is sufficiently straightforward to permit the model-based techniques to attain affordable predictive performance. 
The literature survey revealed that most classification algorithms were evaluated under predictive and descriptive 
performance to predict customer churn. Besides, the logistic Regression, Support Vector Machine, Decision Tree, 
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Random Forest, Ada-boost, and Multilayer Perceptron algorithms were applied before and after hyperparameter 
tuning to determine the best configuration for high predictive performance. The model generalization is the same 
as the prediction (Lakkaraju et al., 2016; Letham et al., 2015). Also, the post-hoc generalization considers the same 
metrics on test data (Che et al., 2015; Frosst & Hinton, 2017). Although the transparency factor assessment is not 
precisely defined for the model, the essence of most of the developed models is transparent.  

3.3. Post-hoc interpretability 

In post-hoc interpretation methods, the model is first trained. Then, information about relationships between the 
features and target is extracted from what the model has learned. These are helpful when the high-dimensional 
complicated dataset forces modelers to use complex or black-box models to achieve high predictive performance, 
which sometimes leads to low descriptive performance. In these cases, descriptive proxies with a different struc-
ture can be used. In this regard, introducing perturbations and ablations to data have been proposed (Fong & 
Vedaldi, 2017; Nguyen et al., 2015). The main objective of these methods is to change the algorithm input to observe 
their effect on prediction. Another aspect of post-hoc interpretation approaches involves separating learning tasks 
and the model explanation (Adadi & Berrada, 2018). These explanations may be expressed using visualizations, 
natural language or text, rules, examples, and other formats (Adadi & Berrada, 2018; Escalante et al., 2018). Also, 
these  approaches  can be categorized  into  two groups, including model-specific  and  model-agnostic approaches 
(Došilović et al., 2018). The model-based methods can only be used for specific models. They rely on the idiosyn-
crasies of their internal mechanisms. These explanations may target local and global levels, but the global expla-
nations tend to be more frequent. The model-agnostic explanation approaches are not related to any model or 
algorithm. In other words, they consider the original model as a black-box system. Also, they only analyze the 
inputs and outputs of the model and then explain the model behavior. In addition, these approaches provide ex-
planations at the global and instant levels. The instance-level explanations are more common than the global levels. 
But their completeness level is lower than other approaches. Besides, they can typically provide high comprehen-
sibility and offer the attractive advantage of being generalizable. More specifically, the model-agnostic post-hoc 
explanation approaches provide general explanation formats that allow customization to fit user information 
needs, enable comparisons of different models, and facilitate the switching out process of a model in a deployed 
ML system. 

3.4. Evaluation criteria 

True positive (TP), true negative (TN), false positive (FP) and false negative (FN) measures are generally consid-
ered to evaluate the performance of a machine learning classification model. These are described by a confusion 
matrix, which has classification label frequencies in four variables. These variables include accuracy, sensitivity 
(recall), specificity, precision, error rate, F-score, and Area Under the Receiver Operator Characteristic (ROC) 
(AUC) derived from the Confusion Matrix. The present study considered F1, recall, accuracy, and AUC using 
Equations (1-4).  

Precision = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄    (1) 

Recall = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄   (2) 

F1 = 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙) (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)⁄  (3) 

Accuracy = (𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)⁄   (4) 

The interpretability evaluation indexes are defined in the study framework  

Table 1. Also, the clustering and classification algorithm hyperparameters were tuned for the recall score. Then, 
prediction model stability and its parameter sensitivity were evaluated. The recall score was chosen because the 
true positive rate in telecom churn prediction is more valuable than other metrics. Indeed, the cost of losing a true 
churner is more than its retention. However, other metrics are important while evaluating a classification algo-

rithm. 

Table 1. Indexes for interpretability evaluation 

Pre-modeling Model-base Post-hoc1  Post-hoc2 

Missing value 

Feature selection 

Balancing 

Normalization and scaling 

Hyperparameter tuning 

Training score 

 

 

Intrinsic interpretability  Stability 

Generalizability 

Parameter sensitivity 
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1-model specific 2-model-intrinsict  

The current article summarizes the main characteristics of machine learning interpretability reported in these stud-
ies, such as the three strategies for assessing interpretability introduced by Doshi-Velez and Kim, the framework 
for discussing ML interpretation proposed by Murdoch et al., and the ability to interpret machine learning divided 
into two dimensions proposed by Yang Do et al.  Indicators identified during this review has enabled us to propose 
an interpretable ML framework for customer churn prediction. 

4. Implementation 

The proposed framework has been implemented using the IBM telecommunication dataset. The data used is a 
dataset that was updated in 2021. This data is used because it has a variety of features and no missing pieces of 
data, it is very suitable to be used as a model for machine learning. this dataset provides 7043 customers with 21 
features. Python programming language was used to implement clustering, classification, dimensionality reduc-
tion, visualization techniques, and data preprocessing 

4.1. Data preprocessing 

The raw data must be preprocessed for application in machine learning algorithms. The dataset includes infor-
mation about Customers who left within the last month – the column is called Churn, Services that each customer 
has signed up for – phone, multiple lines, internet, online security, online backup, device -protection, tech support, 
and streaming TV and movies, Customer account information – how long they’ve been a customer, contract, pay-
ment method, paperless billing, monthly charges, and total charges Demographic info about customers – gender, 
age range, and if they have partners and dependents. Table 3 shows other features. 

 
Table 2.Costumer main features in IBM dataset 

Attribute Definition Attribute Definition 

CustomerID A unique ID that identifies each customer Number of 

Dependents 

 

the number of dependents that live with the customer. 

Gender 

 

The customer’s gender: Male, Female Phone Ser-

vice 

if the customer subscribes to home phone service with the company: 

Yes, No 

Senior Citizen 

 

Indicates if the customer is 65 or older: Yes, No Multiple 

Lines 

f the customer subscribes to multiple telephone lines with the com-

pany: Yes, No 

Married (Partner)  Indicates if the customer is married: Yes, No Internet Ser-

vice 

Indicates if the customer subscribes to Internet service with the com-

pany: No, DSL, Fiber Optic, Cable. 

Dependents 

 

if the customer lives with any dependents: Yes, 

No. Dependents could be children, parents, 

grandparents, etc. 

Online Secu-

rity 

Indicates if the customer subscribes to an additional online security 

service provided by the company: Yes, No 

Online Backup 

 

if the customer subscribes to an additional 

online backup service provided by the company: 

Yes, No 

 

Device Pro-

tection Plan 

 

if the customer subscribes to an additional device protection plan for 

their Internet equipment provided by the company: Yes, No 

 

Premium Tech 

Support 

 

if the customer subscribes to an additional tech-

nical support plan from the company with re-

duced wait times: Yes, No 

 

Streaming 

TV 

 

if the customer uses their Internet service to stream television pro-

graming from a third-party provider: Yes, No. The company does not 

charge an additional fee for this service. 

 

Streaming Mov-

ies: 

 

Indicates if the customer uses their Internet ser-

vice to stream movies from a third-party pro-

vider: Yes, No. The company does not charge an 

additional fee for this service. 

 Contract Indicates the customer’s current contract type: Month-to-Month, 

One Year, Two Year. 

Paperless Billing 

 

if the customer has chosen paperless billing: 

Yes, No 

Payment 

Method 

how the customer pays their bill: Bank Withdrawal, Credit Card, 

Mailed Check 

 

Monthly Charge the customer’s current total monthly charge for 

all their services from the company. 

 

Total 

Charges 

 

Indicates the customer’s total charges, calculated to the end of the 

quarter specified above. 

 

Tenure 

 

the total amount of months that the customer 

has been with the company. 

 

  

 
It is important to deal with null or missing values in the dataset and to check the dataset for imbalanced class 
distributions, which has been one of the emerging problems of machine learning (García et al., 2009). The problem 
of imbalanced dataset can be solved through re-sampling techniques (Qureshi et al., 2013) or by enhancing evalu-
ation metrics (Burez & Van den Poel, 2009), etc. The number of churners is often less than non-churners as in the 
dataset used in this study (Gattermann-Itschert & Thonemann, 2021; Pan et al., 2020), which drives an imbalanced-



147 M. Jafari et al. 

 

 

data problem. The distribution of target in dataset used in this study shown in Figure 2. It can be observed that 
percentage of non-churners (26.5%) is significantly smaller than the percentage of churners. A balanced dataset 
would typically have an equal or nearly equal distribution of the target variable categories. Table 4represents how 
the imbalanced data problem affects interpretability (Seiffert et al., 2009). 

 

 
Figure 2. Churn class distribution 

Table4. Imbalance dataset effects on interpretability 

 
Imbalance data problems Consequence Interpretability 

The insignificant number for independent variable data Difficulty in finding template pattern Decreased predictive performance 

The insignificant number compared to other variables Inaccurate evaluation of results Decreased descriptive performance 

Data fragmentation for training and testing Heterogeneous distribution in k-fold or split-

ting methods 

Decreased predictive and descriptive accu-

racy 

 

The SMOTE preprocessing technique is a pioneering approach for the research community in classification prob-
lems. After its release, several developments have been made to improve its performance under various scenarios. 
The smote is used in most imbalanced data problems because of the popularity of this method (DeCastro-García 
et al., 2019). Therefore, it has been considered to balance the datasets in this study. 

4.1.1. Normalization and transformation 

Since most machine learning models only accept numerical variables, preprocessing the categorical variables be-
comes a necessary step. Label encoding and dummy encoding were used for both ordinal and nominal variables 
in dataset.  data normalization is also an essential pre-processing step which involves the transformation of features 
in a common range so that higher numeric feature values would not dominate the smaller ones. The main aim is 
to minimize the bias of those features whose numerical contribution is higher in discriminating pattern classes. A 
study showed that data scaling techniques such as MinMax normalization and standardization have also signifi-
cant effects on data analysis (Ambarwari et al., 2020). Amin et al for LR, KNN, SVM, DT and RF in their study are 
affected with using data scaling (Amin et al., 2019). In this study we applied standard scalar technique to scale 
dataset. 

4.1.2. Identification of most suitable data 

Most classification problems (e.g., CCP) include many features, leading to lower predictive performance. The post-
hoc interpretation is also affected by many low-importance features, which reduces the descriptive performance 
of the models. The correlation matrix of features is employed to select features. The Pearson (product-moment) 
correlation coefficient is a measure to determine the linear relationship between two features Equation (5).  

𝑟 = ∑ ((𝑥𝑖 − 𝑚𝑒𝑎𝑛(𝑥))(𝑦𝑖 − 𝑚𝑒𝑎𝑛(𝑦))) (√∑ (𝑥𝑖 − 𝑚𝑒𝑎𝑛(𝑥)
𝑖𝑖

 )2 √∑ (𝑦𝑖 − 𝑚𝑒𝑎𝑛(𝑦))2

𝑖
)2 (5) 
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Figure 3. Correlation matrix of attributes 

The r denotes a value between -1 and 1 in which the higher number shows a stronger correlation. Correlation 
matrix of attributes (ratio of the covariance of x and y to the product of their standard deviations) was considered 
to find the correlation between input features in this study. In this study, the independency of features was main-
tained by omitting features with a correlation of more than 80. This threshold was chosen based on previous re-
search indicating that highly correlated features can lead to overfitting, increased computational costs, and reduced 
interpretability of the resulting model. Figure 3 displays the correlation scores between all pairs of features, with 
values ranging from -1 to 1. Negative scores indicate a negative correlation, while positive scores indicate a positive 
correlation. The diagonal of the matrix is always 1, as it represents the correlation of each feature with itself. 

4.2. Hybrid prediction model  

The preprocessed data were given to the clustering algorithm in the model-based module. Here, the numeric fea-
tures of Tenure in Months, Avg Monthly Long-Distance Charges CLTV, Monthly Charge, and Avg Monthly GB 
Download were considered for clustering customers. In order to determine the appropriate number of clusters, the 
Elbow method was used. This a visual method to test the consistency of the best number of clusters by comparing 
the difference of the sum of square error (SSE) of each cluster, the most extreme difference forming the angle of the 
elbow shows the best cluster number. Table5 compares the performance scores of different clustering algorithms 
with a fixed number of clusters equal to 2, which was determined to be the optimal number of clusters for this 
dataset using the Elbow method. The table includes four columns: name of clustering algorithm, Silhouette score, 
Calinski-Harabasz score, and Davies-Bouldin score. The 'Silhouette', 'Calinski-Harabasz', and 'Davies-Bouldin' col-
umns provide performance scores for each algorithm. The Silhouette score measures how well each data point is 
clustered with its own group compared to other groups, while the Calinski-Harabasz score measures the ratio of 
between-cluster variance to within-cluster variance. The Davies-Bouldin score measures the average similarity be-
tween each cluster and its most similar cluster, considering the distance between their centroids. Table 3 shows the 
performance of various clustering algorithms on the dataset used in this study, as measured by the Silhouette, 
Calinski-Harabasz, and Davies-Bouldin indices. K-means achieved the highest Silhouette and Calinski-Harabasz 
scores, indicating that it produced clusters with high intra-cluster similarity and low inter-cluster similarity. The 
Davies-Bouldin index for K-means was also relatively low, suggesting that the clusters produced by this algorithm 
were well-separated. Results for Agglomerative clustering (hclust) and Birch were similar, with moderate Silhou-
ette and Calinski-Harabasz scores, and low Davies-Bouldin scores. These algorithms are known for their ability to 
handle large datasets and produce hierarchical cluster structures. DBSCAN and Kmods produced the lowest Sil-
houette scores, indicating that the clusters produced by these algorithms had low intra-cluster similarity. However, 
DBSCAN achieved a low Davies-Bouldin score, suggesting that the clusters it produced were well-separated. 
Kmods, on the other hand, had a high Davies-Bouldin score, indicating that the clusters produced by this algorithm 
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were not well-separated.Overall, K-means performed the best among the tested algorithms, followed by hclust 
and Birch. DBSCAN and Kmods had relatively poor performance, but may be useful in certain scenarios where 
well-separated clusters are desired, or when dealing with high-dimensional data.The K-means clustering algo-
rithm is an unsupervised technique that splits a large set of elements based on their features and characteristics 
into K groups. In this case, each group is called a cluster. Also, the intra- and extra-cluster distances should be 
minimized and maximized, respectively. This issue means that the elements of one cluster are similar, while these 
elements are different from the elements of other clusters (Han et al., 2011).  

Table 3. Clustering algorithms scores comparison with number of clusters equal to 2 

Algorithm Silhouette Calinski-Harabasz Davies-Bouldin 

K-means 0.31* 3497* 1.32* 

ap  2  0.17 390.2 1.38 

sc3 0.31 3324 1.23 

hclust4 0.29 2767 1.25 

dbscan5 0.27 27.4 1.55 

Kmods 0.11 543.7 2.83 

Birch 0.28 2830.6 1.346 

 
All clusters would be used as input for all chosen classification algorithms (Logistic Regression, Support Vector 
Machine, K-NearestNeighbor (KNN), Decision trees (DT), RandomForest(RF), Gradient Boosting(GB),XGrediant 
boosting(XGB) ). In each execution, the Grid search method would be employed to select the best hyperparameter 
values and maximize the recall score. The training data will be fed to the model in cross validation method. This 
means training data is randomly divided into n equal parts and in each iteration one of them is used as the input 
for all classification algorithms (Cullen, 1993).    
Trained models performing acceptably on validation data (recall >= 0.75), are chosen for processing the test data. 

 

4.3. Results and evaluation 

All models were trained on IBM dataset using training and test sets chosen by cross validation with partition types 
“hold-out” 20% and “k-fold” where the k value used is 10. Testing scores with and without clustering are shown 
in Table 4 and Table 6 respectively. Our experiment shows the best result is obtained using clustering. It also shows 
a significant boost in recall score in comparison with all results published in previous research (Beeharry & Tsoki-
zep Fokone, 2022; Ebrah & Elnasir, 2019; Lian-Ying et al., 2019; Momin et al., 2020). Error! Reference source not 

found. presents the pseudo-code of the study proposed prediction algorithm.  

4.3.1. Hyperparameter optimization 

Hyperparameter optimization is a systematic process that helps in finding the right hyperparameter values for a 
machine learning algorithm. In this work, Grid Search (GS) (Syarif et al., 2016) has been used to optimize the pa-
rameters of eight classifiers.Grid search was compared to other hyperparameter optimization techniques in a study 
by Bergstra and Bengio (2012) and was found to be an effective and reliable method for tuning hyperparameters. 
The study found that grid search produced better or comparable results to more advanced techniques in many 
cases(Bergstra & Bengio, 2012). Therefore, grid search is a recommended method for hyperparameter tuning, es-
pecially when the hyperparameter space is small or the computational resources are limited. we have used GS to 
optimize the hyperparameter of all the classifiers in this study. Specifically, we have used the GridSearchCV 
method from the sklearn python library(Syarif et al., 2016). Table 5 provides a detailed summary of the hyperpa-
rameter tuning candidates for each algorithm used in our analysis. The table consists of three columns: 'Classifier', 
'Meta-parameter', and 'Candidate settings'. The 'Classifier' column lists the name of each algorithm, while the 
'Meta-parameter' column lists the hyperparameters that were tuned for each algorithm. The 'Candidate settings' 
column shows the range of values tested for each hyperparameter. 

 

 

 
2 Affinity Propagation 
3 Spectral Clustering 
4 Agglomerative Clustering 
5 Density-Based Spatial Clustering 
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Table 4. Classification generalization scores before clustering 

 F1  Recall  ROC AUC  Accuracy  

Logistic Regression 0.844515 0.868506 0.833907 0.835008 
SVM 0.839969 0.873377 0.826827 0.828308 
KNN 0.819549 0.88474 0.796176 0.798995 
Decision Tree 0.801308 0.795455 0.796516 0.796482 
Random Forest 0.868654 0.875 0.863106 0.863484 
AdaBoost 0.832268 0.845779 0.823409 0.824121 
GradientBoost 0.851133 0.853896 0.845633 0.845896 
XGBoost 0.858521 0.866883 0.852127 0.852596 

Table 5. Hyperparameter tuning candidates for each hyperparameter 

Classifier Meta-parameter 
 

Candidate settings 

 
 
Gradient Boosting 

n_estimators 
colsample_bytree 
max_depth 
num_leaves 
reg_alpha 
reg_lambda 
min_split_gain subsample 

[100, 200, 400, 700, 1000] 
[0.5, 0.6, 0.7, 0.8] 
[15,20,25] 
[25, 50, 100, 200] 
[0, 1e-1, 1, 2, 5, 7, 10, 50, 100] 
[0, 1e-1, 1, 2, 5, 7, 10, 50, 100] 
[0.3, 0.4] 
[0.4, 0.5, 0.6, 0.7, 0.8, 0.9] 

 
Support Vector Machine 

C 
Gamma 
Kernel 
Class_weight 

[0.1,1, 10, 100] 
[1,0.1,0.01,0.001] 
['rbf', 'poly', 'sigmoid'] 
['balanced', None] 

 
 
K nearest neighbor 

n_neighbors 
leaf_size 
p 
weights 
metric 

[11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43] 
[20,40,1] 
[1,2] 
['uniform', 'distance'] 
['minkowski', 'chebyshev'] 

 
 
Random Forest 

bootstrap 
max_depth 
max_features 
min_samples_leaf 
min_samples_split 
n_estimators 

[True, False] 
[10, 20, 30, 40, 50] 
['auto', 'sqrt'] 
[1, 3, 4] 
[2, 6, 10] 
[5, 20, 50, 100] 

 
Logistic Regression 

Penalty 
C 
Solver 
max_iter 

['l1', 'l2', 'elasticnet', 'none'] 
[-1,0,0.00001,0.0001,0.001,0.01,0.1,1] 
['lbfgs','newton-cg','liblinear','sag','saga'] 
[100, 1000,2500, 5000] 

 
Decision Tree 

max_depth 
min_samples_leaf 
criterion 

[2, 3, 5, 10, 20] 
[5, 10, 20, 50, 100] 
["gini", "entropy"] 
 

 
Ada boost 

n_estimators 
learning_rate 
algorithm 

[40,50,60,70,80, 90,350] 
[0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2,0.7] 
['SAMME.R', 'SAMME'] 

Table 6. Classification generalization scores on clustered data 

  
Cluster1 

 
Cluster2 

Algorithm F1  Recall ROC  Accuracy  F1  Recall  ROC  Accuracy  
LR 0.89 0.91 0.89 0.89 0.85 0.86 0.84 0.84 
SVM 0.82 0.96 0.78 0.79 0.82 0.86 0.81 0.81 
KNN 0.88 0.99 0.88 0.87 0.82 0.93 0.79 0.79 
DT 0.9 0.92 0.9 0.90 0.82 0.96 0.78 0.79 
RF 0.86 0.88 0.85 0.85 0.86 0.88 0.86 0.86 
GB 0.91 0.92 0.91 0.91 0.81 0.80 0.80 0.8 
XGB 0.95 0.94 0.94 0.95 0.88 0.88 0.87 0.87 
AdaBoost 0.83 0.96 0.81 0.81 0.80 0.97 0.74 0.75 

It can be observed that using clustering with grid search hyperparameter tuning generally improves scores across 
all algorithms. Table 7  shows top three algorithms for each of aforementioned experiments. It is shown that KNN 
performs great in both experiments although other algorithms like SVM performs much better using clustering. 
One can remark that AdaBoost outperforms other algorithms in 2nd cluster situations.  
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Table 7. Algorithm ranking for prediction 

Experiment First  Second  Third  

Without clustering KNN SVM LR 
Cluster-based 1st KNN SVM AdaBoost 
Cluster-based 2nd AdaBoost DT KNN 

 

4.4. Parameter sensitivity 

Machine learning (ML) algorithms configurations by their hyperparameters are virtually limitless. On the other 
hand, this choice can considerably influence the complexity, behavior, and learning speed of the model. As men-
tioned before, Hyperparameter optimization finds the best values for hyperparameters of a prediction algorithm 
to maximize the model predictive performance. A global visual representation of how one or two hyperparameter 
influence the predicted outcome of the model, with other features held constant is provided in  

 

Model creation phase homogenization:  

Split D in Dtr and Dval and Dtst 

Input: (training) data  
       Define the number of clusters by Elbow method equal to K 

       Calculate initial K-means on Dtr spanning the total space C 

      Define subspaces Ct based on a set of Clusters K for which  𝐶 = ⋃ 𝐶𝑡
 
𝑡∈𝐾  , ∀ tt′: 𝐶𝑡 ⋂ 𝐶𝑡′= 

           Assign initial values for 𝐶1 , 𝐶2 , …, 𝐶𝐾 

           Repeat  

                Assign each item 𝐷𝑖  to the clusters which has the closet mean; 

                Calculate new mean for each cluster; 

           Until convergence criteria is met; 

Output: Model M 

 

 

Model creation phase classification algorithm:  

Input: training data (𝐷𝑡𝑟) and validation data (𝐷𝑣𝑎𝑙) 

          Define set Classifiers = {} 

          For t=1 to k do: 

             For 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑟𝑒𝑗  in Classifiers do: 

                     Apply classifier specific for 𝐶𝑡 

                     Optimize classifier with Random search on candidate spaces 

                     Save the evaluation result of 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑟𝑒𝑗 on 𝐶𝑡 

              End for 

              Select  𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑟𝑒 in result for 𝐶𝑡 

         End for 

 

Output: best classifier for each cluster 

 

 

Prediction phase: 

Input: test data (𝐷𝑡𝑠𝑡) =  {(𝑋𝑖 , 𝑌𝑖)} 𝑖=1
𝑁   

          Apply clustering rules of model M on 𝐷𝑡𝑠𝑡 spanning the total space C, resulting in clusters 

          with t = 1…k  

          For 𝑖 = 1 𝑡𝑜 𝑘 do: 

                Apply selected classifier specific for Ct 

                For 𝐽 = 1 𝑡𝑜 𝑛𝑖 do: 

   Calculate predictions for all 𝑛𝑖 instances in Ct 

                End For; 

         End For; 

          Combine predictions 

 Output: one prediction for every instance in C 
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Table 8. In this study, hyperparameter sensitivity curves show how much the model performance is changed by 
altering the hyperparameter values. The y-axis is recalled to be maximized, and the x-axes are different hyperpa-
rameters for each algorithm. Unlike other interpretability criteria, hyperparameter sensitivity does not have a spe-
cific preference to be chosen. However, a less sensitive model can be preferred by the less experienced users when 
it is easier to train with acceptable results (Lavesson & Davidsson, 2006). Table 10 gives the parameter sensitivity 
for the best algorithms in each cluster. 

4.5. Stability 

In (Mohr & van Rijn, 2022), the authors used the learning curve concept to assess the performance of a learning 
algorithm with respect to a certain resource, e.g. the number of training examples or the number of training itera-
tions. Figueroa et al. (Figueroa et al., 2012) introduced the desired shape for learning curves produced by a machine 
learning algorithm. Based on this shape, there is a rapid performance increase, followed by a turning point with a 
less rapid performance increase, and eventually, the curve becomes flat. Table 10 provides a summary of the de-
scriptive performance of the top three classification algorithms, as determined by their prediction score. To evalu-
ate their interpretability, we examined two key indicators: How the learning curve evolves when new data points 
are fed to the model, assessing model's ability to generalize (stability) and how it changes when hyperparameters 
are changed, determining the model's parameter sensitivity. These indicators allow us to assess how the algorithms 
perform as their complexity changes, how robust they are to changes in hyperparameters and how they perform 
against new data. The table includes three columns: the name of the algorithm, the parameter sensitivity plot with 
its corresponding hyperparameter values, and the learning curve for each model. By examining these indicators, 
we can gain insight into how the algorithms function and make more informed decisions about their interpretabil-
ity. 

5. Conclusion 

Predicting customer churn is one of the most important factors in business planning in TELCOs. To improve the 

churn prediction interpretability, we first extracted machine learning interpretability in literature and explored 

ways to make machine learning algorithm more interpretable. Second, a 3-step framework is proposed, combining 

best clustering techniques with eight different machine learning classifiers (K-Nearest neighbor (KNN), Logistic 

regression (LR), Random Forest (RF), Decision tree (DTree), Gradient boosting (GB), Gradient boosting (XGB), 

Support Vector Machine (SVM), Adaboost).  Feature selection method was applied to remove unwanted features 

and grid search technique was used for hyperparameter tuning. The KNN, SVM, LR for cluster 1 and Adaboost, 

DT and KNN for cluster 2 are the top performing classifiers. We evaluated our methods in terms of recall score. 

Then the stability and parameter sensitivity of those top algorithms were evaluated. We compared our proposed 

models with other state-of-the-art techniques and found that the performance of our proposed model is signifi-

cantly better than that of state-of-the-art techniques. Our proposed framework can be tested on the other telecom 

datasets to examine the generalization of our results at a larger scale. Last but not the least, work can be done to 

extend our approach to customer churn datasets from other business sectors to study the generalization of our 

claim across business domains 
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Figure 4. Pseudo-code of proposed Hybrid prediction mod  

 

 

Model creation phase homogenization:  

Split D in Dtr and Dval and Dtst 

Input: (training) data  
       Define the number of clusters by Elbow method equal to K 

       Calculate initial K-means on Dtr spanning the total space C 

      Define subspaces Ct based on a set of Clusters K for which  𝐶 = ⋃ 𝐶𝑡
 
𝑡∈𝐾  , ∀ tt′: 𝐶𝑡 ⋂ 𝐶𝑡′= 

           Assign initial values for 𝐶1 , 𝐶2 , …, 𝐶𝐾 

           Repeat  

                Assign each item 𝐷𝑖  to the clusters which has the closet mean; 

                Calculate new mean for each cluster; 

           Until convergence criteria is met; 

Output: Model M 

 

 

Model creation phase classification algorithm:  

Input: training data (𝐷𝑡𝑟) and validation data (𝐷𝑣𝑎𝑙) 

          Define set Classifiers = {} 

          For t=1 to k do: 

             For 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑟𝑒𝑗  in Classifiers do: 

                     Apply classifier specific for 𝐶𝑡 

                     Optimize classifier with Random search on candidate spaces 

                     Save the evaluation result of 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑟𝑒𝑗 on 𝐶𝑡 

              End for 

              Select  𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑟𝑒 in result for 𝐶𝑡 

         End for 

 

Output: best classifier for each cluster 

 

 

Prediction phase: 

Input: test data (𝐷𝑡𝑠𝑡) =  {(𝑋𝑖 , 𝑌𝑖)} 𝑖=1
𝑁   

          Apply clustering rules of model M on 𝐷𝑡𝑠𝑡 spanning the total space C, resulting in clusters 

          with t = 1…k  

          For 𝑖 = 1 𝑡𝑜 𝑘 do: 

                Apply selected classifier specific for Ct 

                For 𝐽 = 1 𝑡𝑜 𝑛𝑖 do: 

   Calculate predictions for all 𝑛𝑖 instances in Ct 

                End For; 

         End For; 

          Combine predictions 

 Output: one prediction for every instance in C 
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Table 8:Parameter sensitivity and learning curve for algorithms with best recall score 

Algorithm Parameter Sensivity Learning curve 

Cluster1 

 

 

 

 

SVM  

Best Parameters of GridSearchCV: 

{'classifier__C': 10, 'classifier__l1_ratio': 0.0, 'classifier__penalty': 'l2'} 

 

 

 

 

KNN 

 

Best Parameters of GridSearchCV: 

leaf_size=10, metric='minkowski',n_neighbors=11,p=1,weights='distance' 
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Adaboost 

 

Best Parameters of GridSearchCV: 

algorithm='SAMME’, learning rate=1.01, estimators=10 

 

 

 

Cluster2 

 

 

 

KNN 

 

 

Best Parameters of GridSearchCV: 

leaf_size=10, metric='minkowski',n_neighbors=11,p=1,weights='distance' 

 

 

 

 

 

DT 

 

Best Parameters of GridSearchCV: 

class weight='balanced’, criterion='entropy’, max_depth=3, min_samples_leaf=5 
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Adaboost 

 

Best Parameters of GridSearchCV: 

algorithm='SAMME',learning_rate=0.97,n_estimators=2 
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