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applying make-to-order (MTO) manufacturing strategy, due to limited resources or capacities, 
may have to reject some orders. From the viewpoint of supply chain management, it has been 
proven that firms satisfying due dates promised to the customers and shortening lead times will 
have a competitive advantage. Flow shop scheduling problem with order acceptance decision, 
the objective function of which is to maximize the total net profit of the accepted orders, has 
become the epicenter of attention during the past years. Slotnick and Morton (1996, 2007), 
Ghosh (Ghosh, 1997), Lewis and Slotnick (2002), Rom and Slotnick (2009), and Pourbabai 
(1989) are among those addressed the flow shop scheduling problem with order acceptance 
decision and predetermined process times in a single machine (or workstation) environment. It is 
crystal clear that a production line often consists of multiple stages where the process time of 
each job in one stage may be different from the one in others. As an illustration, Toyota Motor 
Corporation's vehicle production system is a multistage lean manufacturing system or a just-in-
time (JIT) system that has been established based on many years of continuous improvements 
with the objective of making and delivering the ordered vehicles in the quickest and most 
efficient way. Xiao et al. studied the order acceptance problem with weighted tardiness penalties 
in permutation flow shop scheduling problem, the process of choosing the selected orders and 
simultaneously scheduling them on a multistage production line to maximize the total net profit 
of the accepted orders (Xiao, 2012). 
In this paper, we address the order acceptance problem with weighted tardiness in permutation 
flow shop scheduling. The problem is formulated as an integer-programming (IP) model, and a 
cloud-based simulated annealing (CSA) algorithm is developed to solve the problem. Based on 
the number of candidate orders the firm receives, fifteen problems with different scales are 
generated. Each problem is considered an experiment, which is conducted five times to compare 
the efficiency of the proposed CSA algorithm with the one of a formerly suggested simulated 
annealing (SA) algorithm for the problem. The experimental results validate the improvement in 
objective function values yielded by CSA algorithm in comparison with the ones produced by 
the previously proposed SA algorithm. 

2 Literature Review 
The publication of optimal two-stage and three-stage production schedules with set-up times by 
Johnson (2010) aroused considerable interest in the flow-shop scheduling problem. Ribas et al. 
presented an extensive review of the recently published papers on hybrid flow shop (HFS) 
scheduling problems. The papers were classified first according to the HFS characteristics and 
production limitations and second according to the solution approach proposed. Sviridenko 
(2004) proposed two approximation algorithms for the permutation flow shop problem with 
make-span objective function. The first algorithm had an absolute performance guarantee, and 
the second one was an approximation algorithm. Ladhari and Haouari (2005) considered the 
classical permutation flow shop problem, the scheduling of n  jobs through m  machines to 
minimize the make-span. This problem was known to be NP-hard. They presented extensive 
computational results on both random instances, with up to 8000 operations, and well-known 
benchmarks with up to 2000 operations, denoting the proposed algorithm solved large-scale 
instances in moderate CPU time. 
Cheng et al. (2001) addressed the three-machine permutation flow-shop scheduling problem with 
release times to minimize the maximum completion time. Two dominance rules were applied to 
generating initial schedules, directing the search strategy and decomposing the problem into 
smaller ones. The proposed branch-and-bound algorithm integrated an adaptive branching rule 
with a fuzzy search strategy to narrow the search tree and lead the search to an optimal solution 
as early as possible. Ladhari and Haouari (2005) and Cheng et al. (2001) drew a conclusion that 
even though the non-permutation schedule provides shorter make-spans than the permutation 
one, the permutation schedule is a common practice to address the flow-shop scheduling 
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problem. In contrast to most of the previously published papers assuming that the process time of 
each job in each stage is predetermined, Niu et al. (2008) and Chanas and Kasperski (2001) 
addressed the scheduling problem using fuzzy process times and fuzzy due dates. 
De et al. (1993) explored a single-machine scheduling problem using random processing times 
and deadline to select a subset of the jobs and sequence the selected jobs to maximize the 
expected profit. They presumed an exponentially distributed deadline and did not allow 
preemption. They described several solution properties, presented dynamic programming (DP) 
algorithms, and proposed a polynomial time approximation scheme (1993). Based on group 
technology and JIT manufacturing concepts, Pourbabai (1992) proposed an optimal selection of 
orders in a JIT manufacturing environment. Two loading models for optimal utilization of the 
processing capabilities of an integrated manufacturing system were developed to integrate and 
utilize the available information from both the bill of materials and the process plans. Gupta et 
al. (1992) addressed the simultaneous selection of a subset of N projects and determination of an 
optimal sequence to maximize the net present value of the total return. The process consisted of 
establishing an optimal sequence of all projects, without being dependent on the particular subset 
of selected projects, and proposing an efficient polynomial DP method to solve the problem. 
Slotnick and Morton (1996) maintained that one way of adjusting the workload in a 
manufacturing facility when available jobs exceed the current capacity was to select a subset of 
jobs with the objective of maximizing total net profit, revenues minus costs, using weighted 
lateness as a criterion for time-related penalties. They developed an optimal algorithm and two 
heuristic procedures. Lewis and Slotnick (2002) elaborated on this problem by examining the 
profitability of job selection decisions over a number of periods when current orders exceed the 
capacity with the objective of maximizing profit (net revenue of processing costs minus 
weighted lateness costs per-job). Besides, they assumed that rejecting a job would adversely 
affect the future orders from that customer; in other words, they addressed the trade-offs between 
accepting or rejecting job orders and ensuring timeliness with money-back guarantees. 
Ebben et al. (2005) argued that order acceptance and production planning are functionally 
separated. As a result, order acceptance decisions are made without considering the actual 
workload in the production system, or by only considering the aggregate workload. They 
addressed the significance of a good workload-based order acceptance method in over-demanded 
job shop environments and studied approaches integrating order acceptance with resource 
capacity loading. Yang and Geunes (2007) examined single-resource scheduling when candidate 
jobs may be accepted or rejected. Their solution approaches sought to maximize the profitability 
of the resulting schedule under job-specific tardiness costs and reducible processing times. They 
presented an algorithm to maximize schedule profit for a given sequence of jobs, along with two 
heuristic approaches to generate good job sequences. Torabzadeh and Zandieh (2010) addressed 
a two-stage assembly flow shop problem with m  Machines in the first Stage to minimize the 
weighted sum of the make-span and the mean completion time for n  available Jobs. Inasmuch as 
the problem was NP-hard, they proposed a CSA algorithm to solve it. 
Above-mentioned papers fail to address the multistage flow-shop scheduling problem with order 
acceptance decision at the same time. To the best of our knowledge, there are only two relevant 
works:  
Xiao et al. (2012) studied the order acceptance problem with weighted tardiness penalties in 
permutation flow shop scheduling, the process of choosing the selected orders and 
simultaneously scheduling them on a multistage production line with the aim of maximizing the 
total net profit of the accepted orders. A heuristic algorithm named simulated annealing based on 
partial optimization (SABPO) was developed for solving the IP model and obtaining near-
optimal solutions. 
Roundy et al. (2005) proposed a capacity-driven acceptance of customer orders for a multistage 
batch manufacturing system. When a new order comes in, they look for a feasible schedule to 
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accommodate it and all of the already accepted orders. They may use multiple production 
batches to fill the new order; hence, lot-sizing decisions are made as well. They developed a 
mixed-integer linear programming (MILP) formulation of the order insertion problem, which 
bypassed detailed Gantt chart manipulations, but guaranteed feasibility. 
The prevailing approach to solving the flow-shop scheduling problem with order acceptance 
decision is to choose a subset of orders from the selected orders and schedule them by taking into 
account such criteria as total net profit, make-span, and total net present value, among others. 
Ghosh (1997) proved that one-machine flow-shop scheduling problem with order acceptance 
decision is NP-hard; consequently, exact algorithms are applied only to small-sized problems. 
Meta-heuristic algorithms such as genetic algorithm (Rom and Slotnick (2009)), SA (Xiao et al. 
(2012), Oguz et al. (2010), and Ivanescu et al. (2002, 2006)), CSA (Zandieh and Torabzadeh 
(2010)), and tabu search (Cesaret et al. (2012)), among others are used for solving medium-sized 
and large-sized problems. 
In this paper, we address the order acceptance problem with weighted tardiness penalties in 
permutation flow shop scheduling. The problem is formulated as an IP model, and a CSA 
algorithm is developed to solve the problem. The rest of the paper is organized as the following. 
In Section 3, we describe the permutation flow-shop scheduling problem with order acceptance 
and weighted tardiness and formulate it as an IP model. In Section 4, the proposed CSA 
algorithm and the SABPO algorithm presented by Xiao et al. (2012) are elaborated. In Section 5, 
computational study on fifteen different problems, along with experimental results are presented. 
In Section 6, conclusions are drawn based on the results. 
3 Problem definition and formulation 
MTO is a production strategy in which manufacturing starts only after a customer's order is 
received. Firms applying MTO, due to limited resources or capacities, may have to reject some 
orders; as a result, the order acceptance problem with weighted tardiness is of paramount 
significance to them. The problem is defined as choosing the selected orders and simultaneously 
scheduling them on a multistage production line to maximize the total net profit of the accepted 
orders. As Xiao et al. discussed earlier, the production line, comprising a single processing line 
with multiple stages, is continuously available, and n  Orders are processed through m  Stages. 
At the same time, a number of candidate orders from the outside are waiting to be selected. The 
attributes of each candidate order are a due date, revenue, a tardiness penalty weight (used when 
an order is delivered later than its due date), and a number of deterministic process times for 
each stage. The tardiness penalty is proportional to the length of the delay. Finally, the orders are 
independent from each other, and rejecting (or accepting) an order will not negatively (or 
positively) impact on other orders. Table 1 shows the notations used in this paper: 

Table 1: Notations used for formulating the problem 

i  Index of orders, ݅ = 1,2,… , ݊ 
I  Set of orders, I  i 1 i  n  

j  Index of stages, ݆ = 1,2,… ,݉ 
k  Index of ranking positions, ݇ = 1,2,… , ݊ 
ok  The ID of an order in kth  position 
Pi  Revenue of order i  
di  Due date of order i  
wi  Tardiness penalty weight of order i  
aij  Process time of order i  at stage j   

tkj  Completion time of order in kth  position at stage 
j   
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cij  Completion time of order i  at Stage j  

In permutation flow-shop scheduling problem, the processing of Order i  at Stage j  can be 
started immediately if and only if: 
Its processing at Stage j 1   has been finished. 

The processing of higher-ranked order at Stage j  has been completed. 
It is crystal clear that there is a unified processing sequence of orders through the stages in a 
permutation flow-shop system. Table 2 depicts a schematic diagram of a permutation flow-shop 
system with n  Orders and m  Stages: 

Table 2: Schematic diagram of a permutation flow-shop system with n orders and m stages 

  m  Stages for Processing Orders 
  Stage 1 Stage 2 ... Stage m 

n  Ranking 
positions 

Rank 1st O1 O1 
. 
. 
. 

O1 

Rank 2nd O2  O2  
. 
. 
. 

O2  

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
Rank nth On On ... On  

Two integer decision variables are defined for the problem. First, the acceptance or rejection 

variable Y  yi    and second, the sequence position variable S  si   . The IP model of the 

permutation flow-shop scheduling problem with order acceptance decision and weighted 
tardiness is denoted below: 

Maximize Z  f Y ,S   yi pi wi max 0,cim  di  
i1

n



Subject to :

yi  0,1 , i

1 si  n, i

si  s i , i  i

tkj 

yiai1 j 1, k  1, i  o1

tk1,1  yiai1 j 1, k 1, i  ok

yici, j1  yiaij k  1, j 1, i  o1

max yici, j1,tk1, j   yiaij k 1, j 1, i  ok














cij  tkj , k 1, j 1, i  ok

si  k, i  ok

1  

 
2  
3  
4  
 
5  

 
 
 
 
 
 
6  
7  

4 Proposed meta-heuristic algorithm 
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In this section, we first review the partial optimization strategy and the SABPO algorithm 
proposed by Xiao et al. (2012). We then present the basic concepts of cloud theory, which paves 
the way for introducing our proposed CSA algorithm for the permutation flow shop scheduling 
problem with order acceptance decision and weighted tardiness penalties. 

4.1 Partial optimization (PO) strategy 

Since the objective function f Y ,S   includes two independent decision variables, the 

prevailing approach to addressing the problem is to employ a PO strategy, which in turn 
optimizes one of the variables while fixes the other. Although this strategy has its merits, it only 
accepts solutions being better than the incumbent solution, which is prone to be trapped in a local 
optimum. Besides, the quality of the solution is dependent on the initial solution and which 
variable is optimized first. The following are the steps of PO strategy: 
 Find an initial solution as the incumbent solution. 
 Fix S  and find Y  to maximize f Y ,S  . 
 Fix Y  and find S  to maximize f Y ,S  . 
 Iterate the second and third steps until f Y ,S   cannot be improved anymore. 

4.2 Simulated annealing (SA) 

The SA algorithm, first proposed by Kirkpatrick et al. (1983), is a random search to find the 
optimal solution in stochastic combinatorial optimization problems. It is characterized by 
allowing hill climbing moves to escape the local optima and find global optimal solutions if the 
cooling schedule is slow enough. These approaches are based on the physical concepts of 
increasing temperature to reach a high value followed by a gradual cooling process and finally 
reaching to a state of a minimum potential energy. This improvement mechanism consists of two 
phases: 
 Heating phase: an initial solution is set as the incumbent solution. The algorithm repeatedly 

changes the incumbent solution, and the maximum deviation of the objective function 
between two neighboring solutions is used as the initial temperature for the next phase. 

 Cooling phase: new solutions are repeatedly generated based on the incumbent solution as 
the temperature is decreased according to a cooling schedule. These solutions are evaluated 
according to the Metropolis rule, introduced by Metropolis et al. (1953), to determine 
whether or not a new solution should be accepted as the new incumbent solution. This phase 
continues until the computational temperature drops to a predetermined threshold. The 
Metropolis rule used in SA for a maximizing objective function is as the following: 

P Xold  Xnew  
1 f  0

e
f

T otherwise






8  

In equation 8 , f  f Xnew   f Xold   is the deviation of the objective function between two 

neighboring solutions, P Xnew  Xold  is the probability of accepting a new solution, and T  is 

the computational temperature. 

4.3 Simulated annealing based-on partial optimization (SABPO) algorithm 

According to the Metropolis rule, the SABPO algorithm proposed by Xiao et al. (2012) will 
accept a worse solution with a probability that decreases as the temperature drops. As a result, 
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SABPO, unlike the PO strategy, is capable of jumping out of local optima to find a globally 
optimal solution. The parameters of SABPO algorithm are defined in Table 2. The SABPO 
algorithm proposed by Xiao et al. (2012) is elaborated in Figure 1: 

Table 2: The parameters of SABPO algorithm 

  Drop speed of the temperature,   0,1   
EndT  Threshold temperature for terminating the algorithm 

N  Number of changing the incumbent solution at each temperature level 

RY  The accepting rate (the ratio of the number of improvements to the number of 
attempts at one temperature level) when optimizing Y  

RS  The accepting rate when optimizing S  

PY  

Number of total attempts for optimizing Y while S  is fixed: 

PY  N 0.2  0.6 
RY

RY  RS







                                                                              9 

PS  

Number of total attempts for optimizing S while Y  is fixed: 

PS  N 0.2  0.6 
RS

RY  RS







                                                                             10 

T0  Initial temperature; maximum deviation of the objective function between two 
neighboring solutions 

 

Inputs:  ,EndT , N  
Outputs: Optimal Y ,S  
Begin 
%% Initialization 

1) Randomly generate decision variables; Y 0  randi 0,1 ,1,n ,S0  randsample n,n   
2) Set Y 0,S0  as the incumbent solution; Y  Y 0,S  S0

 

3) Randomly change Y  and S  for N  times. Set the Maximum Deviation of the Objective 
Function as the initial temperature T0  . 

4) T  T0 ,PY  0.05  N ,PS  0.05  N  
%% Main loop of SABPO algorithm 
     5) While T  EndT   
     %% Cooling phase (dropping the temperature) 
     6) T  T   
             %% Optimizing Y 

              7) For k  1 to PY  

                      8) Ynew  Function Yold ,Znew  Function Ynew ,S   
                      9) Calculate the Metropolis probability P  according to Equation 8 .  
                     10) Generate a random value drawn from standard uniform distribution 0,1 .  
                      If rand 1   p , Ynew  is then accepted and saved. Otherwise it is rejected. 

            11) End 
            %% Optimizing S 
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            12) For k  1 to PS  

                     13) Snew  Function Sold ,Znew  Function Y ,Snew  
                     14) Calculate the Metropolis probability P  according to Equation 8 .  
                     15) Generate a random value drawn from standard uniform distribution 0,1 .  
                      If rand 1   p , Snew  is then accepted and saved. Otherwise it is rejected. 

            16) End 
     17) Recalculate PY  and PS  according to Equation 9  and Equation 10 , respectively. 

    18) End 
19) Return the incumbent solution Y ,S  and its objective function value. 

End 

Figure 1. The SABPO algorithm proposed by Xiao et al. [8] 

4.4 Solution representation, functions, and operators 

Table 3 displays one possible solution for a problem with ten orders n  10  . It consists of two 

rows of numbers, the first one refers to the acceptance or rejection of the orders, and the second 
one denotes the processing sequence of orders through the stages; that is, orders 3, 6, and 7 are 
rejected, and orders 8 and 9, among others are the first two ones processed through the stages, 
respectively: 

Table 3: Solution representation of a problem with ten orders n  10   

yi  1 1 0 1 1 0 0 1 1 1 
si  8 9 2 10 3 7 4 1 5 6 

Three main functions being described in Figure 1 are as the following: 
 Ynew  Function Yold  : This function randomly generates an integer between 1 and n , which 

specifies the corresponding gene of the Yold  chromosome to be changed. The content will 
become 1 if it is 0 , and vice versa.  

 Snew  Function Sold : Three different operators are defined to generate a new order 

sequence Snew . The swap operator randomly generates two integers between 1 and n , 

which specify the corresponding genes of the Sold  chromosome to be changed. The genes 
will be mutually exchanged. Table 4 illustrates the procedure for getting a new order 
sequence by swap operator. The insert operator randomly generates two integers between 1 
and n , which specify the corresponding genes of the Sold  chromosome to be changed. One 
gene will be inserted into another gene; it is placed before that gene. Table 5 illustrates the 
procedure for getting a new order sequence by insert operator. The reverse operator 
randomly generates four integers between 1 and n , which specify the corresponding genes 
of the Sold  chromosome to be changed. Each pair genes will be mutually exchanged. Table 7 
illustrates the procedure for getting a new order sequence by reverse operator. 

Table 4: Swap operator 

6 3 7 8 5 1 2 4 9 10 

i1 2 & i2  9  

6 9 7 8 5 1 2 4 3 10 

Table 5: Insert operator 
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4 10 3 7 9 8 1 5 6 2 

i1 1 & i2  8  

5 4 10 3 7 9 8 1 6 2 
 

Table 6: Reverse operator 

6 1 4 8 7 3 9 10 2 5 

i1 1, ii1 3, ii2  7, i2  10  

5 1 9 8 7 3 4 10 2 6 

 Znew  Function Ynew,Snew  : This function computes the objective function of the IP model, 

denoted in the mathematical model, according to the constraints and is elaborated in Figure 
2: 

Inputs: Y ,S  
Outputs: Total Net Profit 
Begin 
1) Sets S  si   and O  ok  are calculated according to Equation 7  . 

%% Constraints pertinent to Stage 1 

2) t11  yiai1, i  o1  

     3) For k  2 to n  

                 4) tk1  tk1,1  yia1i , i  ok  

     5) End 
%% Constraints pertinent to Stages 2 to m 

     6) For j  2 to m  

                 7) t1 j  ci, j1  yiaij , i  o1  

                 8) For k  2 to n   

                             9) tkj  yiakj max yici , j1,tk1, j , i  ok  

               10) End 
    11) End 

    12) For j  1 to m  

               13) For k 1 to n      

                      14) cij  tkj , i  ok  

               15) End 
    16) End 
17) Calculate total net profit according to Equation 1 . 
18) Return the total net profit. 
End 

Figure 2: Function for calculating total net profit 
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4.5 Basic concepts of cloud theory 

The cloud theory utilizes natural language to transfer uncertainty between quality concept and 
quantity data representation. The randomly changing nature of the annealing temperature 
diversifies and expedites searching of the neighborhood as well as avoids being trapped in the 
local optimum (Deyi et al. 1995). Cloud theory is an expansion of membership function in fuzzy 
theory, which guarantees both characteristics of randomness and stability (Deyi & Yi 2005). It 
has many applications in such areas as intelligence control (Deyi et al. (1998) and Feizhou et al. 
(1999)), knowledge representation (Cheng et al. (2005) and Deyi et al. (2000)), and data mining 
(Kaichang et al. (1999), Kaichang et al. (1998), Shuliang et al. (2003), and Yingjun and 
Zhongying (2004)), among others. 
Let F  be the language value of domain d  and mapping CF X   as the following: 

CF X  :d  0,1 , x d, xCF X  (11) 

 
If the distribution of CF X   is normal, it is called a normal cloud model. This map generates a 

group of random numbers, reflecting quantitative characteristics of CF X  , that are 

distinguished by the following elements: [30] 
 Expectation Ex : determines the center of the cloud. 

 Entropy En  : specifies the range of the cloud. 

 Super entropy He : determines the degree of the dispersion of the cloud drops. 

Figure 3 depicts the procedure of generating a cloud drop drop xi ,d0   using Ex,En, He 
(Deyi & Yi 2005): 

Inputs: Ex,En, He ,n,d0  

Outputs:  x1,d0 , x2,d0 ,, xn ,d0   

Begin 

1) For i  1 to n  

            2) E n  randn En, He   
            3) xi  Ex  E n 2  ln d0   

4) End 
End 

Figure 3. Generating a cloud drop 

4.6 Proposed Cloud-based Simulated Annealing (CSA) algorithm 

All the required parameters for introducing our proposed CSA algorithm have been previously 
defined in Table 2. A suffix ‘cloud’ is added to roughly all variables and parameters to 
differentiate this algorithm from SABPO. Our proposed CSA algorithm is elaborated in Figure 4. 
At high temperatures, drop dispersion increases, and the range of the annealing temperature 
widens; hence, it ensures the randomness of annealing process. However, the opposite is the case 
at low temperatures (drop dispersion decreases, and the range of the annealing temperature 
narrows), which ensures the stable tendency of annealing process (Torabzadeh & Zandieh, 
2010). In this paper, when it comes to using PY  and PS  to compare the efficiency of CSA 
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algorithm to the one of SABPO, these parameters are fixed at 0.05  N , unlike the Equation 9  
and Equation 10  proposed by Xiao et al. (2012). It will not make the results invalid inasmuch 

as the same condition is used for comparison. Besides, the procedure to use swap, insert, and 
reverse operators is different from the one offered by Xiao et al. (2012). All functions are 
calculated according to the rules described in section 4.4. The following show the mechanism for 
selecting the right operator for both algorithms, which will not question the validity of the 
comparison: 
 Generate a random value b   from standard uniform distribution 0,1 .  

  The selection mechanism is: 

if 0  b  0.33 SWAP

if 0.33  b  0.66 INSERT

if 0.66  b 1 REVERSE

















 

Inputs: ,EndTcloud , N  
Outputs: Optimal Ycloud ,Scloud  
Begin 

1) Randomly generate decision variables; Ycloud
0  randi 0,1 ,1,n ,Scloud

0  randsample n,n   

2) Set Ycloud
0 ,Scloud

0  as the incumbent solution; Y  Ycloud
0 ,S  Scloud

0

 

3) Randomly change Y  and S  for N  times. Set the Maximum Deviation of the Objective 
Function as the initial temperature Tcloud

0 . 
4) Tcloud  Tcloud

0 ,PY  0.05  N ,PS  0.05  N  

5) Ex 0   Tcloud
0 , En 0   0.1Tcloud

0  

%% Main loop of CSA algorithm 

     6) While Tcloud  EndTcloud   
     %% Dropping the mean and the variance of the temperature 
     7) Ex    Ex 0    

     8) En    En 0    

             %% Optimizing Y 

                9) For k  1 to PY  

                    10) Ycloud
new  Function Ycloud

old ,Zcloud
new  Function Ycloud

new ,Scloud   
             %% Generating a cloud drop 

                    11)  

                    12) Calculate the Metropolis probability P  according to Equation 8 . 
                    Use Tk  instead of T as denominator.  

                    13) Generate a random value drawn from standard uniform distribution 0,1 .  
                    If rand 1   p , Ycloud

new

 is then accepted and saved. Otherwise it is rejected. 

              14) End 
            %% Optimizing S 
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              15) For k  1 to PS  

                     16) Scloud
new  Function Scloud

old ,Zcloud
new  Function Ycloud ,Scloud

new   
                     17) Use the step 11 to generate a cloud drop.                   
                     18) Calculate the Metropolis probability P  according to Equation 8 .  
                     Use Tk  instead of T as denominator. 

                     19) Generate a random value drawn from standard uniform distribution 0,1 .  
                      If rand 1   p , Scloud

new

 is then accepted and saved. Otherwise it is rejected. 

              20) End 

    21) Recalculate PY  and PS  according to Equation 9  and Equation 10 , respectively. 

    22) Tcloud  Tcloud
0  

 
    23) End 
24) Return the incumbent solution Y ,S  and its objective function value. 

End 

Figure 4: The proposed CSA algorithm 

5 Computational study and experimental results 
In this section, we carry out computational experiments to compare the efficiency of our 
proposed CSA algorithm to the one of SA algorithm formerly suggested by Xiao et al. [8] for 
order acceptance problem with weighted tardiness penalties in permutation flow shop 
scheduling. 

5.1 Data settings 

Based on the number of candidate orders a firm receives, fifteen different problems are 
generated. Each problem is regarded as an experiment and run five times. The number of stages 

m  is fixed at 10. Other values are generated according to the rules introduced by Xiao et al. 

(2012), which are given in Table 7. 

Table 7: Values for the parameters of both algorithms 

Data values 
n  25,50,75,90,100,110,125,140,150,160,175,190,200,225,250  

m 10  
Experiments: I , II , III , IV ,V  
    0.99  
EndT  EndTcloud  0.1

N  100  n  
PY  PS  0.05  N  

Orders’ revenues: random integer on 1,500  
Orders’ due dates: random integer on 1,n  m  40  
Orders’ weights: random value on 0.5,1.5  
Orders’ process times at different stages: random integer on 1,100  
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5.2 Experimental results and comparisons 

We perform computational experiments on a laptop with a 2.9GHz Dual Core i7 (Turbo Boost 
up to 3.6GHz) and 8GB of RAM. Both SABPO and CSA algorithms are coded in MATLAB and 
run on Macintosh Operating System. The results are shown in Table 8. A number of observations 
are emerged from the results: 
 In 60% of the experiments, CSA algorithm yields higher average optimal solution (OS) 

values than those of SABPO algorithm. In 33.3% of the experiments, both algorithms 
produce the same average OS values. Only for n  225(6.7% of the experiments), CSA 
algorithm yields a lower average OS value than that of SABPO algorithm. 

 In 68% of the experiments, CSA algorithm gains the best solution sooner than the time of 
SABPO algorithm. In 32% of the experiments, SABPO algorithm reaches to the best 
solution in a shorter time in comparison to that of CSA algorithm. 

Figure 5 shows how two algorithms reach the best solution for n 175, I . It is crystal clear that 
CSA algorithm is superior to SABPO algorithm; the final best solution of CSA algorithm is 
considerably higher than that of SABPO algorithm. 
 OS: Optimal Solution 
 TGBS : Time to Get the Best Solution (in second) 
 TTRA : Total Time of Running the Algorithm (in second) 
 NRO : Number of Rejected Orders 

Table 8: Experimental results 

n  25 
SABPO CSA 
I  II  III  IV V I II III IV  V

OS 7657.4 7657.4 7657.4 7657.4 7657.4 7657.4 7657.4 7657.4 7657.4 7657.4 

TGBS 8 12 7 8 3 6 6 1 1 2 

TTRA 116 117 114 115 114 152 153 154 153 155 

NRO 1 1 1 1 1 1 1 1 1 1 

n  50 
SABPO CSA 
I  II  III  IV V I II III IV  V

OS 11815 11815 11815 11814 11815 11815 11815 11815 11815 11815 

TGBS 113 122 116 300 34 76 33 47 40 63 

TTRA 424 418 418 417 417 544 499 501 499 497 

NRO 0 0 0 1 0 0 0 0 0 0 

n  75 
SABPO CSA 
I  II  III  IV V I II III IV  V

OS 17679 17679 17679 17679 17679 17679 17679 17679 17679 17679 

TGBS 154 74 99 230 109 115 71 55 90 89 

TTRA 883 936 945 881 948 995 1058 1066 1005 1049 

NRO 2 2 2 2 2 2 2 2 2 2 

n  90 
SABPO CSA 
I  II  III  IV V I II III IV  V

OS 23991 23932 23991 23991 23991 23991 23991 23991 23991 23991 

TGBS 566 97 1321 647 317 237 221 871 191 300 

TTRA 1378 1332 1345 1429 1325 1514 1486 1538 1545 1500 

NRO 1 2 1 1 1 1 1 1 1 1 

n  100  
SABPO CSA
I  II  III  IV V I II III IV  V

OS 26500 26500 26500 26500 26500 26500 26500 26500 26500 26500 
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TGBS 240 319 304 355 177 153 140 182 133 99 

TTRA 1603 1593 1661 1584 1598 1752 1747 1856 1756 1743 

NRO 0 0 0 0 0 0 0 0 0 0 

n  110  
SABPO CSA 
I  II  III  IV V I II III IV  V

OS 28721 28721 28672 28721 28721 28721 28721 28721 28721 28721 

TGBS 6 218 204 1022 505 403 207 469 408 257 

TTRA 2231 2010 2019 2066 1990 2225 2190 2222 2243 2157 

NRO 0 0 1 0 0 0 0 0 0 0 

n  125  
SABPO CSA 
I  II  III  IV V I II III IV  V

OS 33189 33189 33189 33175 33175 33189 33189 33189 33189 33189 

TGBS 764 744 857 395 860 700 1612 897 680 480 

TTRA 2769 2743 2761 2755 2794 2921 2974 3034 3031 2995 

NRO 3 3 3 3 3 3 3 3 3 3 

n  140  
SABPO CSA 
I  II  III  IV V I II III IV  V

OS 34259 34259 34259 34259 34259 34259 34259 34259 34259 34259 

TGBS 909 499 1160 411 531 437 474 414 1075 773 

TTRA 3221 3281 3339 3292 3215 3483 3586 3506 3477 3438 

NRO 0 0 0 0 0 0 0 0 0 0 

n  150  
SABPO CSA 
I  II  III  IV V I II III IV  V

OS 39464 39456 39464 39456 39464 39464 39464 39464 39464 39464 

TGBS 1442 3846 2826 1743 2228 853 2276 1269 1620 2143 

TTRA 3874 3908 3882 3924 4107 4106 4162 4343 4273 4257 

NRO 1 2 1 2 1 1 1 1 1 1 

n  160  
SABPO CSA 
I  II  III  IV V I II III IV  V

OS 39085 39196 39085 39145 39085 39085 39196 39196 39085 39196 

TGBS 849 798 983 1330 240 624 880 521 754 1137 

TTRA 4301 4305 4325 4340 4332 4638 4573 4658 4631 4740 

NRO 1 0 1 0 1 1 0 0 1 0 

n  175  
SABPO CSA 
I  II  III  IV V I II III IV  V

OS 42938 43317 43321 43321 43321 43321 43301 43277 43321 43321 

TGBS 3159 4666 950 2198 3068 1240 5565 1986 2321 2398 

TTRA 5580 5573 5650 5494 5478 5807 5987 5903 5750 5780 

NRO 3 2 1 1 1 1 2 2 1 1 

n  190  
SABPO CSA 
I  II  III  IV V I II III IV  V

OS 42920 42926 42934 42934 42934 42934 42934 42934 42934 42920 

TGBS 5300 2721 4347 3241 4624 1643 1814 1187 1448 5300 

TTRA 6268 6516 6315 6248 6413 6584 6669 6565 6597 6268 

NRO 2 2 1 1 1 1 1 1 1 2 

n  200 
SABPO CSA 
I  II  III  IV V I II III IV  V

OS 49419 49420 49422 49420 49418 49422 49422 49422 49422 49422 
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function (OF) values and computational times) is carried out according to Equation 13   and 

Equation 14  : 
H 0 : OF SABPO   OF CSA 
H1 : OF SABPO   OF CSA 






                                                                            13 

H0 : ComputationalTime SABPO   ComputationalTime CSA 
H1 : ComputationalTime SABPO   ComputationalTime CSA 






                                             14   

 
This hypothesis testing is carried out by SPSS. Table 9 and Table 10 indicate the results of 

hypothesis testing for OF values. Since significance level  0.01 0.05 , the null hypothesis is 

rejected; in other words, the difference between two population means is significant and 

OF SABPO   OF CSA  . Inasmuch as CSA’s average RPD RPDCSA  0.018688   is lower 

than that of SABPO’s RPDSABPO  0.083373 , the CSA algorithm produces higher OF values 

than that of SABPO algorithm. Table 11 and Table 12 indicate the results of hypothesis testing 

for computational times. Since significance level  0.061  0.05 , we fail to reject the null 

hypothesis; that is, there is insufficient evidence to make a conclusion about the inequality of 
two population means and ComputationalTime SABPO   ComputationalTime CSA . Hence, we conclude 

that the CSA algorithm is not superior to SABPO algorithm when it comes to comparing the 
time to get the best solution. Figure 6 and Figure 7, showing 95% confidence interval plots for 
SABPO’s and CSA’s OF values and computational times, testify to the conclusions made based 
on SPSS outputs. 

Table 9: Hypothesis testing for OF values 

 N Mean 
Std. 
Deviation 

Std. Error 
95% Confidence Interval for Mean 
Lower Bound Upper Bound 

SABPO 75 .0834 .2058 .0238 .0360 .1307 
CSA 75 .0187 .0592 .0068 .0051 .0323 
Total 150 .0510 .1544 .01260 .0261 .0759 

Table 10: Analysis of Variance (ANOVA) for OF values 

 Sum of Squares Degree of freedom Mean Square F Sig. 
Between Groups .157 1 .157 

6.842 .010 Within Groups 3.394 148 .023 
Total 3.551 149  

Table 11: Hypothesis testing for computational times 

 N Mean Std. Deviation Std. Error 
95% Confidence Interval for Mean 
Lower Bound Upper Bound 

SABPO 75 566.4412 2204.2086 254.5201 59.2989 1073.5836 
CSA 75 86.1645 114.4874 13.2199 59.8234 112.5057 
Total 150 326.3029 1574.0162 128.5179 72.3498 580.2559 

Table 12: ANOVA for computational times 

 Sum of Squares DF Mean Square F Sig. 
Between Groups 8649964.263 1 8649964.263 

3.551 .061 
Within Groups 360501574.313 148 2435821.448 
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algorithm is developed to solve the problem. Computational study, which consists of generating 
fifteen different problems based on the number of candidate orders a firm receives, is carried out 
to evaluate the efficiency of the proposed algorithm. The results denote that our proposed CSA 
algorithm outweigh the formerly SABPO algorithm suggested by Xiao et al. (2012) in terms of 
producing better objective function values. Future studies may include developing a more 
efficient and effective algorithm for the problem or formulating the problem in a non-
permutation flow-shop environment. 
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