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Abstract 
This study considers a reliable location – inventory problem for a supply chain system comprising one 

supplier, multiple distribution centers (DCs), and multiple retailers in which we determine DCs 

location, inventory replenishment decisions and assignment retailers to DCs, simultaneously. Each 

DC is managed through a continuous review (S, Q) inventory policy. For tackling real world 

conditions, we consider the risk of probabilistic distribution center disruptions, and also uncertain 

demand and lead times, which follow Poisson and Exponential distributions, respectively. A new 

mathematical formulation is proposed and we model the proposed problem in two steps, in the first 

step, a queuing system is applied to calculate mean inventory and mean reorder rate of steady-state 

condition for each DC. Next, regarding the results obtained from the first step, we formulate a mixed 

integer nonlinear programming model which minimizes the total expected cost of inventory, location 

and transportation and can be solved efficiently by means of LINGO software. Finally, several test 

problems and sensitivity analysis of key parameters are conducted in order to illustrate the 

effectiveness of the proposed model. 
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1. Introduction 
Supply chain management (SCM) is defined as a set of tactical, operational and strategic 

decision-making functions that optimizes the performance of whole supply chain (Zeng, 

Phan, & Matsui, 2013). Traditionally, researchers have considered the tactical decisions such 

as the inventory control and the strategic decisions such as facility locations separately that 

may lead to sub-optimal decisions (Daskin, Coullard, & Shen, 2002; Diabat, Abdallah, & 

Henschel, 2015; Javid & Azad, 2010; Miranda & Garrido, 2004). By considering these 

decisions at the same time, a significant saving in total cost can be achieved. Therefore, many
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researchers have been interested in joint inventory and location models in order to obtain 

single optimization model for determining both tactical and strategic decisions, 

simultaneously. Baumol and Wolfe (1958) were the first researchers that suggested the idea 

of joint inventory systems and facility locations models. Shen, Coullard, and Daskin (2003) 

presented a joint inventory–location problem and considered an amount of safety stock in 

their models. Their problem was formulated as a set-covering integer programming model. 

An integrated location-distribution–inventory model for three-echelon supply chain under 

demand uncertainty is presented by Miranda and Garrido (2008).They solved the proposed 

problem by an efficient heuristic based on Lagrangian relaxation. Liao, Hsieh, and Lai (2011) 

investigated the effect of distribution, facility location, and inventory issues at the same time 

in a multi-objective location-inventory problem under vendor– management inventory. They 

applied a Non-Dominated Sorting Genetic Algorithm for solving their model. Lin, Yang, and 

Chang (2013) formulated a hub location-inventory model for a strategic design of bicycle 

sharing system. The main objective of their paper was to determine the following joint 

decisions: the number and locations of bicycle stations in the system, the creation of bicycle 

lanes among bicycle stations, the selection of paths of users between origins and destinations, 

and the inventory levels of sharing bicycles to be held at the bicycle stations. The design 

decisions are made with consideration for both total cost and service levels and optimized by 

a heuristic method. Gzara, Nematollahi, and Dasci (2014) developed two mixed-integer 

nonlinear problems for joint inventory and location decisions under part service level 

requirements and part warehouse. Such models are complex due to uncertain demand and 

extremely nonlinear time-based service level restrictions. Since they developed a new method 

for approximating these nonlinearities to a linear formulation which can be solved through 

commercial optimization software. Fontalvo, Maza, and Miranda (2017) presented a strategic 

inventory-location model, multi- item and different with demand periods and developed a 

genetic algorithm for solving model. Then, a case study of a steel company in Colombia was 

discussed to illustrate the proposed model. 

In a supply chain planning decision process, uncertainty is the main factor which can affect 

the effectiveness of supply chain and also its performance (Macchion, Danese, & Vinelli, 

2015). The source of uncertainty is categorized into three groups: manufacturing (process), 

supply, and demand. Recently, the effect of uncertainty in studying joint location- inventory 

problem has drawn more academic attention. For instance, Sadjadi, Makui, Dehghani, and 

Pourmohammad (2016) formulated a stochastic location- inventory problem with uncertain 

lead time and demand which follow Exponential and Poisson distributions, respectively. In 

their problem, shortages are allowed and are fully backlogged. They presented a nonlinear 

integer-programming model to address their stochastic problem and solved it by using 

CPLEX. A novel and practical stochastic inventory- location problem with stochastic demand 

under two different replenishment policies, independent replenishment and join 

replenishment, was proposed by Qu, Wang, and Liu (2015). They designed intelligent 

algorithms to solve their models and found that inventory- location problem with joint 

replenishment outperforms than inventory- location problem with independent replenishment 

while opening distribution center is more than one. Another stochastic location- inventory 

with uncertain demand was addressed by Zhang and Unnikrishnan (2016) for a closed loop 

supply chain. They formulated six different coordination strategies as nonlinear integer 

problems with chance restrictions and transformed to conic quadratic mixed-integer programs 

that can be efficiently solved by CPLEX. 

Production or service inventory systems can be discussed in a context of integrated SCM. In 

these systems, an important objective is to consider the inventory management in response to 

queuing patterns for customers’ demands, which can be explained by queuing systems with 

inventories. Because queuing systems with inventory are more general and practical in
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comparison with traditional inventory models. The first research of queuing systems with 

inventory was done by Sigman and Simchi-Levi (1992). They proposed a light traffic 

heuristic for an M/G/1 - queue with a finite inventory when lead time follows Exponential 

distribution. Liu, Liu, and Yao (2004) suggested a multi-stage inventory queue model, which 

this queuing model incorporates an inventory control mechanism like the base stock level. 

Schwarz and Daduna (2006) analyzed an   M/M/1 queuing system with inventory control, 

allowable shortages, and uncertain lead time under different continuous review such as (r, S), 

(r, Q) , and (0, Q).  Kim (2005) considered an inventory control problem with lost sales in a 

facility that presents a single kind of service for customers. He modeled the proposed 

problem using a queuing system with limited waiting room and on- instantaneous 

replenishment policy. A queuing – inventory system with two groups of customers was 

addressed by Zhao and Lian (2011). They computed the steady-state probability distribution 

by using Bright–Taylor algorithm through formulating their model as a level –dependent 

quasi-birth-and-death method. Saffari and Haji (2009) studied a queuing system with 

inventory control for two – echelon supply chain where demand rate is Poisson distribution 

and the supplier applies a continuous review (r, Q) policy. They suggested that if the supplier 

confronts shortage, the retailer can buy the product from others suppliers with zero lead times 

and an extra cost. An (S,Q) Markovian inventory system with two kinds of customers, 

ordinary and priority customers, and lost sales was analyzed by Isotupa (2006). He assumed 

the demand rate for each kind of customer is Poisson distribution with different and 

independent parameters. Then, their model was developed by Isotupa and Samanta (2013) 

using the concepts of rationing in which a supplier reserve several stocks for priority 

customers. In situations that on –hand inventory drops below a certain level, k, all existing 

inventory reserved for priority customers and all demand of ordinary customers will lose. 

Teimoury, Modarres, Ghasemzadeh, and Fathi (2010) applied a queuing approach to 

production-inventory planning considering two class of customers, continuous review (S. Q) 

and lost sales in a PASHOO Chemical Company. In their model, each type of customer 

arrives according to two independent Poisson distribution with parameters λ1 and λ2 for 

priority customers and ordinary, respectively, and lead times are exponentially distributed 

with parameter μ. They initially developed an algorithm to determine the optimal values 

order quantity, Q, and reorder level, S. Then, a multi-item capacitated lot-sizing problem with 

safety stock and setup times production planning model is formulated for determining the 

production quantity at each period by using optimal reorder level and quantity calculated by 

first algorithm as inputs. RAMEZANI (2014), Krishnamoorthy, Shajin, and Lakshmy (2016), 

Melikov and Shahmaliyev (2017), and  Ghafour, Ramli, and Zaibidi (2017) also developed a 

queuing – inventory system with different assumptions. 

Traditional facility location researches suppose that a facility, once built, will remain 

functioning forever. Although, many facilities may confront disruptions from time to time 

due to labor actions, natural disasters, and power outages which can cause severe damages to 

overall system efficiency and service quality (Chen, Li, & Ouyang, 2011). For tackling real 

world conditions, several researchers considered the risk of probabilistic facility disruptions 

in their models. Chen et al. (2011) were the first researchers that proposed join location-

inventory problem under facility disruption risks. They assumed when a facility fails, its 

customers are allowed to get service from other facilities that are available to serve in order to 

avoid the lost sale cost. Asl-Najafi, Zahiri, Bozorgi-Amiri, and Taheri-Moghaddam (2015) 

addressed a dynamic closed-loop location-inventory problem that optimizes tactical and 

strategic decisions at the same time under facility disruption risks. They developed a hybrid 

meta-heuristic algorithm based on Multi-Objective Particle Swarm Optimization to minimize 

total cost and time simultaneously. Farahani, Shavandi, and Rahmani (2017) investigated the 

effect of disruption risk in a multiple product inventory location problem. They assumed that
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facilities may fail partially in case of disruption and considered substitutable products as a 

strategy to reduce the risk of disruption. Due to NP hard problem, they developed a hybrid 

algorithm including Variable Neighborhood Search and Tabu Search to solve their problem.  

A comparison of mentioned papers is illustrated in Table 1. From the Table, most previous 

papers on inventory -location models have failed to take into account the issue of facility 

disruption and uncertain lead time. Furthermore, papers that considered the risk of disruption, 

have failed to consider uncertain demand and lead time. However, uncertain demand, 

uncertain lead time and facility disruption may exist at the same time. Develop a model 

considering all of these issues are needed. Hence, we propose in this study a mixed integer 

nonlinear programing model (MINLP) to integrate a facility location and inventory system. 

This problem addresses a three levels supply chain with a supplier, multiple distributed 

centers (DCs) and multiple retailers. Demands from retailers arrive according to Poisson 

distribution with parameter λ. Supplier’s lead time is uncertain and follow exponential 

distribution with parameter μ. Each opened distribution center has an (S. Q)inventory policy. 

In order to make the proposed problem more realistic, we consider the risk of probabilistic 

DC disruptions in our model. This study uses a queuing system for calculating the mean 

inventory level and mean reorder rate of steady-state condition. Next, a reliable inventory–

location model is formulated based on the results of queuing theory, which minimizes the 

total expected costs associated with inventory, location, and transportation. Our paper is the 

first one to consider the issues of uncertain demand, uncertain lead time, and the risk of 

facility disruption simultaneously in an integrated location- inventory problem. 

The rest of our research is organized as follows: We first describe the problem in Section 2. 

Section 3 provides notations and model formulation. Then, we solve the proposed model 

using LINGO 9 software and present numerical examples and sensitivity analysis of 

important parameters respect to different numbers of retailers and distribution centers in 

Section 4. Finally, conclusion remarks and future works direction are provided in Section 5. 

 

Table 1. Brief review of mentioned studies. 

Studies  Queuing 

system  

Location Inventory Uncertain Facility disruption 

Lead time Demand  

Daskin et al. (2002)  * *  *  

Schwarz and Daduna (2006) *  * *   

Miranda and Garrido (2008)  * *  *  

Chen et al. (2011)  * *   * 

Lin et al. (2013)  * *  *  

Isotupa and Samanta (2013) *  * * *  

Gzara et al. (2014)  * *  *  

Qu et al. (2015)  * *  *  

Asl-Najafi et al. (2015)  * *  * * 

Sadjadi et al. (2016) * * * * *  

Zhang and Unnikrishnan 

(2016) 
 * *  *  

Krishnamoorthy et al. (2016)  *  *  *  
Fontalvo et al. (2017)  * *   * 

Farahani et al. (2017)  * *    

Ghafour et al. (2017) *  * * *  

Our work * * * * * * 
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2. Problem definition 
This study presents a mathematical programming formulation for a reliable location- 

inventory problem in a three-level supply chain distribution system involving a single 

supplier, multiple distribution centers and multiple retailers. It is assumed that the location of 

retailers and supplier are predetermined. The formulation includes the following decisions: (і) 

locating distribution centers from a set of candidate locations 𝐽 (іі) the best assignment of 

retailers to opened distribution centers (ііі) the inventory policy at each opened distribution 

center. Each opened distribution center orders a single commodity to supplier based on an 

(𝑆. 𝑄) inventory policy that arrives after an exponentially distributed lead time with 

parameter 𝜇. Each retailer is only assigned to one opened distribution center. Retailers’ 

demands arrive according to a Poisson process and the retailers' demands are independent. 

Hence, the demand of each opened distribution center follows Poisson distributed with 

parameter 𝜆.  Inventory management policy at each opened distribution center follows First 

In, Firs Out (FIFO) policy. Each candidate distribution center in set 𝐽 can disrupt 

independently with an equal probability 𝑝. When an opened distribution center fails, it cannot 

prepare any service and its original retailers will be either assigned to other opened 

distribution center (functional) or subject to certain penalty. Regarding Chen et al. (2011), it 

is assumed each retailer can get service from a serial of 𝑅 distribution centers. Under this 

assumption, in normal situations, each retailer will be assigned its Level 1 distribution center, 

called primary distribution center. Whenever, the retailer’s Level 𝑟 (𝑟 < 𝑅 − 1) distribution 

center is disrupted, the retailer is reassigned to its Level (𝑟 + 1) distribution center (backup 

distribution center) . When all of the assigned distribution center to the retailer are failed, the 

retailers give up service and incur a penalty cost. Thereupon, due to independent failures, the 

probability for a retailer to get service from its level-𝑟 facility is (1 − 𝑝)𝑝𝑟−1 and the 

probability for a retailer to suffer penalty is 𝑝𝑅. By considering this assumption, supply chain 

system reliability and overall performance would be significantly improved. So, the main 

objective is to minimize total cost of distribution center location, inventory management, and 

transportation. Figure 1 shows the supply chain described in this study. 

 

DC 1

DC 4

DC 2

DC 3

supplier

Retailer 1

Retailer 2

 

                   Figure 1. An illustration example for the supply chain structure 
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3. Model formulation 

In (S, Q) inventory policy, as soon as the stock on - hand drops the safety level, S,  a batch of 

𝑄(𝑄 > 𝑆) units is placed. So, the maximum level is 𝑄 + 𝑆. The constraint 𝑄 > 𝑆 guarantees 

that there exist no perpetual shortages. If 𝑄 ≤ 𝑆 and inventory level drops to zero then the 

system will be in shortage forever. As above mentioned, supplier’s lead time follows 

exponential distribution with parameter 𝜇 and, the demand of each opened distribution center 

is Poisson distributed with parameter𝜆. In this section a queuing system is applied to calculate 

mean inventory and the mean reorder rate in each opened distribution center. 

We define 𝐼𝑗(𝑡) as the inventory level in opened distribution center 𝑗 at time 𝑡. As 

regards 𝑄𝑗 > 𝑆𝑗, at any given point of time there exist at most one order pending. So, 

inventory level process {𝐼𝑗(𝑡); 𝑡 ≥ 0} with state space as 𝐸𝑗 = {0.1.2 … . 𝑄𝑗 + 𝑆𝑗} is a Markov 

process that the rate diagram of it is shown in Figure 2. So, the steady-state probabilities of 

the inventory system are calculated by following equations: 

𝑃𝑗(𝑖. 𝑘. 𝑡) = 𝑝𝑟 [𝐼𝑗(𝑡) = 𝑘|𝐼𝑗(0) = 𝑖] 𝑖. 𝑘 𝜖 𝐸𝑗 (1) 

𝑃𝑗(𝑘) = 𝑙𝑖𝑚
𝑡→∞

𝑃𝑗(𝑖. 𝑘. 𝑡).    (2) 

 

0 1 k k+1 S S+1 K-1 k K+1 Q K+1kK-1K-Q S+Q

λ 

λ 

λ λ λ λ λ 
λ λ 

λ 

λ λ λ λ 

μ 

μ 

μ 

... ... ... ... ... ... ...

 
Figure 2. Rate diagram for (S, Q) inventory policy 

According to Figure 2 and Markov process properties, the balance equations for the system 

are given as follows: 

𝜆𝑗𝑃𝑗(𝑆𝑗 + 𝑄𝑗) = 𝜇𝑃𝑗(𝑆𝑗)   

𝜆𝑗𝑃𝑗(𝑘) = 𝜆𝑗𝑃𝑗(𝑘 + 1) + 𝜇𝑃𝑗(𝑘 − 𝑄𝑗) 𝑄𝑗 ≤ 𝑘 ≤ 𝑄𝑗 + 𝑆𝑗 − 1  

𝜆𝑗𝑃𝑗(𝑘) = 𝜆𝑗𝑃𝑗(𝑘 + 1) 𝑆𝑗 + 1 ≤ 𝑘 ≤ 𝑄𝑗 − 1  

(𝜆𝑗 + 𝜇)𝑃𝑗(𝑆𝑗) = 𝜆𝑗𝑃𝑗(𝑆𝑗 + 1)    (3) 

(𝜆𝑗 + 𝜇)𝑃𝑗(𝑘) = 𝜆𝑗𝑃𝑗(𝑘 + 1) 1 ≤ 𝑘 ≤ 𝑆𝑗 − 1  

𝜇𝑃𝑗(0) = 𝜆𝑗𝑃𝑗(1)   

By solving the above equations recursively, as a result: 

𝑃𝑗(𝑘) = (1 +
𝜇

𝜆𝑗
)

𝑘−1
𝜇

𝜆𝑗
𝑃𝑗(0) 1 ≤ 𝑘 ≤ 𝑆𝑗 (4) 

𝑃𝑗(𝑘) = (1 +
𝜇

𝜆𝑗
)

𝑆𝑗 𝜇

𝜆𝑗
𝑃𝑗(0) 𝑆𝑗 ≤ 𝑘 ≤ 𝑄𝑗 (5) 

𝑃𝑗(𝑘) = ((1 +
𝜇

𝜆𝑗
)

𝑆𝑗

− (1 +
𝜇

𝜆𝑗
)

𝑘−𝑄𝑗−1

)
𝜇

𝜆𝑗
𝑃𝑗(0) 𝑄𝑗 + 1 ≤ 𝑘 ≤ 𝑄𝑗 + 𝑆𝑗 (6) 
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Since ∑ 𝑃𝑗(𝑘) = 1
𝑄𝑗+𝑆𝑗

𝑘=0  from equations (4) to (6), we have: 

𝑃𝑗(0) =
𝜆𝑗

𝜆𝑗 + 𝜇𝑄𝑗 (1 +
𝜇

𝜆𝑗
)

𝑆𝑗
 

(7) 

Now, we can calculate the mean reorder, 𝑅𝑗, rate and mean inventory level, 𝐼𝑗̅, in the steady-

state condition as below. 

 The mean reorder rate in each distribution center (𝑅𝑗) 

𝑅𝑗 = 𝜆𝑗𝑃𝑗(𝑆𝑗 + 1) = 𝜇 (1 +
𝜇

𝜆𝑗
)

𝑆𝑗

𝑃𝑗(0)     (8) 

 The mean inventory level in each distribution center (𝐼𝑗̅) 

𝐼𝑗̅ = ∑ 𝑘 ×

𝑘∈𝐸𝑗

𝑃𝑗(𝑘) = (1 +
𝜇

𝜆𝑗
)

𝑆𝑗

((𝑄𝑗
2 + 𝑄𝑗 + 2𝑄𝑗𝑆𝑗)

𝜇

2𝜆𝑗
+ 𝑆𝑗 + 1) 𝑃𝑗(0) 

 
− (1 +

𝜇

𝜆𝑗
)

𝑆𝑗+1

(𝑄𝑗 + 𝑆𝑗 + 1)𝑃𝑗(0) + (𝑄𝑗 + 2)𝑃𝑗(0) (9) 

 

The sets, parameters and variables used in the proposed location-inventory problem are 

defined in Table 2. In next section, we first introduce component of the total cost function, 

then formulate the problem as a nonlinear mixed-integer model. 

 
Table 2. Notations 

Notation Definition 

Sets:  

𝐽 Set of opened distribution centers; 𝑗𝜖{1.2 … . 𝐽} 

𝐼 Set of retailers; 𝑖𝜖{1.2 … . 𝐼} 

𝑅 Set of service level ; 𝑟𝜖{1.2 … . 𝑅} 

Parameters:  

𝐴𝑗 Fixed order cost in opened distribution center 𝑗 ;∀ 𝑗𝜖𝐽 

ℎ𝑗 Holding cost in opened distribution center 𝑗 ;∀ 𝑗𝜖𝐽 

𝑓𝑗 Fixed establish cost  of  distribution center 𝑗 ;∀ 𝑗𝜖𝐽 

𝑡r𝑖𝑗 The transportation cost from distribution center 𝑗 to retailer 𝑖 ;∀ 𝑖𝜖𝐼 and ∀ 𝑗𝜖𝐽 

𝜋 Penalty cost for lost order  

𝑐𝑗 The purchasing cost of  distribution center 𝑗 ;∀ 𝑗𝜖𝐽 

𝜆𝑖 Demand rate of retailer 𝑖 (Poisson)  ∀ 𝑖𝜖𝐼 

𝜇 Lead time (Exponential) 

𝑝 The disruption probability 

Decision variables:  

𝑌𝑗 1 if a distribution center is established in 𝑗, 0 otherwise ; ∀ 𝑗𝜖𝐽 

𝑍𝑖𝑗𝑟 1 if retailer 𝑖 is assigned to opened distribution center 𝑗 in level 𝑟, 0 

otherwise;∀ 𝑖𝜖𝐼 , ∀ 𝑗𝜖𝐽 and  ∀ 𝑟𝜖𝑅 

𝜆𝑗 Demand rate of opened distribution center 𝑗;∀ 𝑗𝜖𝐽 

𝑄𝑗 The order quantity in opened distribution center 𝑗;∀ 𝑗𝜖𝐽 

𝑆𝑗 Base stock level maintained at distribution center 𝑗;∀ 𝑗𝜖𝐽 
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3.1. Components of objective function 

The objective of this reliable location-inventory problem is to minimize the following costs 

under the risk of probabilistic distribution center disruptions. 

 The total of locating opened distribution centers 

∑ 𝑓𝑗

𝑗∈𝐽

𝑌𝑗 (10) 

 

 The total expected penalty cost 

𝜋 ∑ 𝜆𝑖𝑝
𝑅

𝑗∈𝐽

 (11) 

 The total shipment cost from the opened distribution center 𝑗 to retailer 𝑖 

∑ ∑ ∑ 𝜆𝑖𝑡𝑟𝑖𝑗𝑍𝑖𝑗𝑟(1 − 𝑝)𝑝𝑟−1

𝑅

𝑟=1𝑗∈𝐽𝑖∈𝐼

 (12) 

 

 The inventory costs consist of holding, ordering and purchase costs 

∑(ℎ𝑗𝐼𝑗̅ + 𝐴𝑗𝑅𝑗 + 𝐶𝑗𝑄𝑗𝑅𝑗)𝑌𝑗

𝑗𝜖𝐽

 (13) 

 

The annual demand of each opened distribution center equals the sum of demand(s) of its 

assigned retailer(s) as follows 

𝜆𝑗 = ∑ ∑ 𝜆𝑖𝑍𝑖𝑗𝑟(1 − 𝑝)𝑝𝑟−1

𝑅

𝑟=1𝑗∈𝐽

 (14) 

 

  Summarizing the above, the reliable location-inventory can be formulated as a mixed 

integer nonlinear programing model by using the queuing approach as follows: 

 

𝑀𝑖𝑛 𝑍 = ∑ 𝑓𝑗

𝑗∈𝐽

𝑌𝑗 + ∑ ∑ ∑ 𝜆𝑖𝑡𝑟𝑖𝑗𝑍𝑖𝑗𝑟(1 − 𝑝)𝑝𝑟−1

𝑅

𝑟=1𝑗∈𝐽𝑖∈𝐼

+ ∑ 𝜇 (1 +
𝜇

𝜆𝑗
)

𝑆𝑗

𝑃𝑗(0)𝐴𝑗

𝑗∈𝐽

𝑌𝑗 

 
+ ∑ 𝜇 (1 +

𝜇

𝜆𝑗
)

𝑆𝑗

𝑃𝑗(0)𝐶𝑗𝑄𝑗

𝑗∈𝐽

𝑌𝑗 − ∑ ℎ𝑗

𝑗∈𝐽

(1 +
𝜇

𝜆𝑗
)

𝑆𝑗+1

(𝑄𝑗 + 𝑆𝑗 + 1)𝑃𝑗(0)𝑌𝑗 

 
+ ∑ ℎ𝑗

𝑗∈𝐽

𝑌𝑗 (1 +
𝜇

𝜆𝑗
)

𝑆𝑗

((𝑄𝑗
2 + 𝑄𝑗 + 2𝑄𝑗𝑆𝑗)

𝜇

2𝜆𝑗
+ 𝑆𝑗 + 1) 𝑃𝑗(0) 

 + ∑ ℎ𝑗(𝑄𝑗 + 2)𝑃𝑗(0)𝑌𝑗

𝑗∈𝐽

 (15a) 

Subject to  

 

∑ ∑ 𝜆𝑖𝑋𝑖𝑗𝑟(1 − 𝑝)𝑝𝑟−1

𝑅

𝑟=1

= 𝜆𝑗        

 𝑖𝜖𝐼

 ∀ 𝑗𝜖𝐽 (15b) 

 

∑ 𝑋𝑖𝑗𝑟

 𝑅

𝑟=1

≤ 𝑌𝑗 ∀ 𝑖𝜖𝐼. 𝑗𝜖𝐽 (15c) 
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 ∑ 𝑋𝑖𝑗𝑟  = 1   

𝑗𝜖𝐽

 ∀ 𝑖𝜖𝐼. 𝑟𝜖𝑅 (15d) 

 
  𝜆𝑗 ≤  𝜇 ∀ 𝑗𝜖𝐽 (15e) 

 
𝑄𝑗 > 𝑆𝑗 ∀ 𝑗𝜖𝐽 (15f) 

 
𝑌𝑗𝜖{0.1} ∀ 𝑗𝜖𝐽 (15g ) 

 
𝑍𝑖𝑗𝑟  𝜖{0.1} ∀ 𝑖𝜖𝐼. 𝑟𝜖𝑅. 𝑗𝜖𝐽 (15h) 

 

Due to the total expected penalty cost, 𝜋 ∑ 𝜆𝑖𝑖𝜖𝐼 𝑝𝑅 . is a constant, we omit from the objective 

function. So, Constraint (15a) minimizes the total costs without the fixed penalty cost. 

Constraint (15b) shows that the demand of each opened distribution center equals the sum of 

demand(s) of its allocated retailer(s). Constraint (15c) guarantees that a retailer can only go to 

a location with an opened distribution center, and that no retailer goes to the similar 

distribution center at two or more levels. Constraint (15d) postulate that each retailer is only 

assigned to one distribution center at each assignment level. Constraint (15e) ensures stability 

inventory system in each opened distribution center. Constraint (15f) that there exist no 

perpetual shortages. Constraints (15g) and (15h) define binary variables. 

 

4. Numerical experiments 
This section presents the computational results in order to test the proposed MINLP model. 

So, this model is coded in LINGO 9.0 software and implemented on an Intel Core i5 PC with 

CPU of 1.4 GHz and 4.00 GB RAM. Several test problems have been designed considering 

different numbers of distribution centers and retailers. The parameters in all of test problems 

are generated by using the Uniform distributions that are shown in Table 3. The disruption 

probability in all test problems is constant and equals 0.1. The computational results have 

been reported in Table 4. 

 
Table 3. Distribution of parameters 

 

 

 

 

 

 

 

 
 

parameters Uniform distribution 

𝐴𝑗 (34,44) 

ℎ𝑗 (25,45) 

𝑓𝑗 (4400,6800) 

𝑡𝑟𝑖𝑗  (45,60) 

𝐶𝑗 (33,70) 

𝜆𝑖 (440,800) 
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Table 4. The obtained results for test problems 

  R = 2   R= 3 

retailer*DC Best cost Execution time  Best cost Execution time 

4*3 64770.96 2  73953.61 3 

6*4 194616.8 2  119332.1 3 

9*4 285098.0 3  177395.0 3 

9*5 322397.5 2  194649.7 3 

9*6 288260.0 3  175944.6 3 

9*7 283836.6 2  170316.0 3 

13*5 411409.2 4  307518.7 3 

13*6 406609.2 3  295460.2 3 

13*7 413076.4 3  305239.6 5 

15*5 470391.7 3  357799.2 3 

20*7 718638.0 4  517219.16 4 

13*13 511932.4 4  318573.1 3 

 

4.1. Sensitivity analysis 

In this section, in order to illustrate the impact of some key parameters on objective function 

and number of distribution centers, sensitivity analysis is performed. For this work, the 

parameters 𝜆. 𝜇. 𝑝 and 𝑅 are changed in several levels for problems with 5 retailers and 5 

distribution centers and with 6 retailers and 6 distribution centers. Tables 5 and 6 show the 

result of the change the value of 𝜇 for problems with 5 retailers and 5 distribution centers and 

with 6 retailers and 6 distribution centers, respectively. Sensitivity analyses of total costs with 

changing the value of 𝜇 are depicted in Figures 3 and 4 for problems with 5 retailers and 5 

distribution centers and with 6 retailers and 6 distribution centers, respectively. Tables 7 and 

8 show the result of the change the value of 𝜆 for problems with 5 retailers and 5 distribution 

centers and with 6 retailers and 6 distribution centers, respectively. Sensitivity analyses of 

total costs with changing the value of 𝜆 are depicted in Figures 6 and 7.  Figures 5 and 8 

summarize the sensitivity analyses of total costs for two problem sizes by changing the values 

of 𝜇 and 𝜆, respectively. Table 9 shows the results of change the value of 𝑝 and 𝑅 for 

problem with 5 retailers and 5 distribution centers. 

 

Table 5. The obtained results for a problem with 5 DCs and 5 retailers 

  𝑹 = 𝟐  𝑹 = 𝟑 

𝝆 μ Total cost No. of DCs  Total cost No. of DCs 

0.986 350 121077.8 3  119169 5 

0.862 400 119946.5 3  117025 5 

0.69 500 116312.4 3  113958 5 

0.493 700 114945.41 2  110765 5 

0.345 1000 109125.2 2  104709 5 

0.23 1500 99713.1 3  86526 4 

0.15 2300 89124.2 2  84296.7 4 

0.076 4500 88857.6 3  82415.2 3 

0.0575 6000 87812.3 2  81643.3 3 
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           Figure 3. Sensitivity analysis of costs with changing the value of μ for a problem with 5 DCs and 5 

retailers 

 

Table 6. The obtained results for a problem with 6 DCs and 6 retailers 

  𝑹 = 𝟐  𝑹 = 𝟑 

𝝆 μ Total cost No. of DCs  Total cost No. of DCs 

0.986 350 138423.5 3  135479.2 5 

0.862 400 136383.4 3  133593 5 

0.69 500 133215.1 3  130693 5 

0.493 700 130248 2  127125.2 5 

0.345 1000 124159.9 2  120451 5 

0.23 1500 107636.7 3  103452 4 

0.15 2300 106624.6 2  101125 4 

0.076 4500 106563.9 3  100985 4 

0.0575 6000 106422.1 2  100124.8 4 
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            Figure 4. Sensitivity analysis of costs with changing the value of μ for a problem with 5 DCs and 5 

retailers 

 

        Figure 5. Summary on sensitivity analyses of costs with changing the value of μ for two problem sizes 
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Table 7. The obtained results for a problem with 5 DCs and 5 retailers 

  𝑹 = 𝟐  𝑹 = 𝟑 

𝝆 𝝀 Total cost No. of DCs  Total cost No. of DCs 

0.015 30 122427 2  89831.054 4 

0.055 110 137275 2  96512.88 4 

0.1 200 164312.06 2  110731.07 4 

0.15 300 184125.15 2  124608.7 4 

0.25 500 230145.85 3  150245.15 4 

0.4 800 270780 3  220336.4 4 

0.42 840 277799 3  255336.4 4 

0.45 900 311512 3  295150 4 

 

 

          Figure 6. Sensitivity analysis of costs with changing the value of λ for a problem with 5 DCs and 5 

retailers. 

 

Table 8. The obtained results for a problem with 6 DCs and 6 retailers. 

  𝑹 = 𝟐  𝑹 = 𝟑 

𝝆  𝝀 Total cost No. of DCs  Total cost No. of DCs 

0.015 30 125541 2  110820.47 3 

0.055 110 138541 2  124567.82 3 

0.1 200 175887 2  138464.61 3 

0.15 300 211429 2  190348 3 

0.25 500 251512 2  210964.89 4 

0.4 800 284159 2  248803 4 

0.42 840 291560 3  268761 5 

0.45 900 323125 3  301237 4 
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                Figure 7. Sensitivity analysis of costs with changing the value of λ for a problem with 5 DCs and 

5 retailers. 

 

  Figure 8. Summary on sensitivity analyses of costs with changing the value of 𝝀 for two problem sizes.  
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Table 9. The obtained results for a problem with 5 DCs and 5 retailers. 

𝑹 𝒑 Total cost No. of DCs 

1 0.1 27350 1 

1 0.2 23230.00 1 

1 0.3 20710 1 

2 0.1 30709.00 2 

2 0.2 30127.00 2 

2 0.3 29530.00 2 

3 0.1 458542.158 3 

3 0.2 67856.86 3 

3 0.3 466481.364 4 

4 0.1 489620.018 4 

4 0.2 494282.704 5 

4 0.3 492273.419 5 

 

According to performed sensitivity analysis, we can extract the following conclusions as 

well: 

 By increasing the value of 𝜇, the total costs and the optimal number of DCs decrease. 

When the value of  𝜇 increases, expected lead time reduces and so the probability of 

facing shortages in each opened DC decreases. So, the mean inventory level decreases. 

Besides, from Constraint (15e), as the value of 𝜇 increases, the number of DCs 

decreases. As a result, the cost of establishing new DCs and inventory decrease. 

 By increasing the value of 𝜆, the total costs and the optimal number of DCs increase. 

This is because when the value of 𝜆 increases, the costs of inventory and transportation 

will increase. Furthermore, there may be a need to establish more DCs to satisfy the 

retailers’ demands. Thereupon, the costs of establishing new DCs will increase. 

 When 𝑅 = 1, by increasing 𝑝, the total costs increases and the optimal number of DCs 

decreases. 

 When 𝑅 > 1, by increasing 𝑝, the total costs and the optimal number of DCs increase. 

That shows at a higher 𝑝, additional DCs can supply better redundancy for reliable 

service quality against DC failures. In fact, when retailers can be reassigned to more 

back-up DCs, the marginal penalty cost saving from one extra DC can better 

compensate the additional infrastructure investment, so making redundancy preferable. 

 By increasing 𝑅, the total costs and the optimal number of DCs increase. 

 

5. Conclusions  
This study has investigated a stochastic location-inventory problem under the risk of 

probabilistic facility disruptions in an integrated supply chain network. The proposed model 

determined the optimal number of distribution centers and their locations, the corresponding 

retailer assignments, and the inventory management policy at each opened distribution center. 

In order to make the problem more realistic, we have considered uncertain demand and lead-
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times and also the risk of facility disruptions simultaneously in our model. The demand rate 

of each DC followed Poisson distribution and supplier’s lead –times was exponentially 

distributed. Therefore, a queuing system has been applied for calculating the mean inventory 

level and mean reorder rate of the steady-state condition. Then, the stochastic location- 

inventory problem has been formulated as a mixed integer nonlinear programming model 

based on the results from the queuing theory, which minimized the total expected costs of 

inventory, location, and transportation under all possible facility disruption scenarios. 

Managerial insights about model are drawn based on sensitivity analysis and numerical 

results. For example, when the amount of 𝜇 increases, the total costs and the optimal number 

of DCs will decrease, while the total costs and the optimal number of DCs increase as the 

value of 𝜆 increases. 

For future study, the model can be developed in several directions such as, considering multi 

products, multi suppliers, waiting time of demand in queue and backorders. Considering 

facility failure probabilities as site dependence and spatial correlation. 
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