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Abstract 
In this paper, it was an attempt to be present a practical perishability inventory model. The proposed model 
adds using spoilage of products and variable prices within a time period to a recently published location-
inventory-routing model in order to make it more realistic. Aforementioned model by integration of 
strategic, tactical and operational level decisions produces better results for supply chains. Due to the NP-

hard nature of this model, a genetic algorithm with unique chromosome representation is used to achieve 
the optimal solution and reasonable time. Finally, the analysis is carried out to verify the effectiveness of 
the algorithm with and without considering the cost of spoiled products. 
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1. Introduction 
Given today's competitive environment, supply chain management is essential in order to reduce 

costs, improve customer service and achieve a balance between costs and services, and thereby to 

give a competitive advantage to a company. 

Facility location and allocation, vehicle routing and inventory management are three essential 

strategic, tactical and operational decisions that are related to supply chain and logistics systems 

design. Regularly, these decisions would be made separately. Because of the difficulty of solving 

these problems, they are modeled and optimized independently. Review of the related literature 

about the described models of essential decisions by Rayata et al. (2017), Hiassat et al. (2017) and 

Schuster Puga and Tancrez (2017) shows combination of two supply chain decisions in one single 

model. These models are location-inventory, location-routing, and inventory-routing models and 

there are a few models that integrate all three different decisions and solve them simultaneously. 

For instances, Liu and Lee (2003), Liu and Lin (2005), Shen and Qi (2007) and Ahmadi-Javid and 

Azad (2010) have used the integrated 
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method. In other words, location-inventory-routing models have not been studied extensively. 

As Schuster Puga and Tancrez (2017) points out, experts suggest that as much as 80% of the 

costs of the supply chain is locked in to the location of the facilities and the determination of 

optimal flows of products between them. Moreover several research has been shown that 

integrating three level of decisions in the single model could be considerably minimized the 

total cost. This saving cost plays strategic role in the perishable products. Products with finite 

lifetime that are subject to perishability are important and force companies to manage 

carefully. 

Duong et al., (2015) suggest this problem is significant in food or healthcare industry where 

the products easily lose their value during manufacturing, storage or distribution, e.g., one 

third of food products for human is lost. Particularly, good inventory management for 

perishable products helps to save the wastage and increases the opportunities to deliver the 

products to more people. Considering the importance of perishable inventory management, 

researchers have paid attention to find the inventory policy, which optimizes the performance 

of inventory management. 

Shaabani and Kamalabadi (2016) point out product deterioration would be divided into two 

groups. Items such as fresh foodstuffs, human blood, cut flowers etc. have a maximum shelf 

life and are called perishable products with a fixed lifetime, while products such as alcohol, 

gasoline, etc. having a demonstrably more random Shelf-life are called decaying products.  

In this paper, in addition to focusing on three supply chain levels of location, inventory and 

routing, perishability of the products is incorporated with the LIRP, where the items stocked 

at the warehouses are spoiled due to the nature of the products and the environmental issues. 

For this purpose, it would be proposed a mathematical model of the location-inventory- 

routing problem for transhipment of perishable products with the goal of minimizing the total 

cost, in which the supplier should decide on the number of products that should be transferred 

to each customer over the planning horizon knowing the fact that a moderate size mixed-

integer program(MIP) can have tens of thousands of variables, it is challenging and perhaps 

impossible to find a global optimal solution in reasonable time with readily available 

computing resources. 

Given that the Genetic Algorithm is a stochastic optimization technique that has been 

successfully adapted in many areas to solve a large number of optimization problems, 

including scheduling and transportation problems thus this algorithm would be used to find 

an approximately optimal solution in a reasonable time that would be sufficient for the 

problem at hand.  

The starting point being the single-product model proposed by Hiassat et al. (2017) then the 

inventory model in the previous study modified in order to be effective and realistic. 

The rest of the paper is organized as follows. In section 2, a literature review of location-

inventory-routing problems (LIRP( and the research related to our subject is presented.  

Section 3 then details the problem definition, assumptions, notations employed and overview 

model formulation. The genetic algorithm used to solve this model is presented in section 4, 

with solution methods being described in this section. The results analyzes are set out in 

section 5. Section 6 describes the conclusions and the proposed future work. 

 

2. Literature review 
In this section, it is reviewed the literature related to the previous inventory management and 

vehicle routing problems with regards to perishable goods. In fact, due to the importance of 

integrating all three components of the supply chain: location, inventory and routing in to 

single model, researchers have studied a variety of these models. 
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Brodheim, Derman, and Prastacos (1975) were among the first to work on inventory and 

distribution decisions for perishable products; specifically they considered blood as a 

perishable product, and they also used Markov chain in order to model these policies. 

Bell et al. (1983) were among the first to work on routing and inventory decisions 

simultaneously which used a Lagrangian relaxation algorithm to solve large scale mixed 

integer programs. Tarantilis and Kiranoudis (2002) investigated an open multi-depot vehicle 

routing problem for distributing fresh meat from depots to their customers located in an area 

of the city of Athens by using a meta-heuristic algorithm to solve the problem. 

Zanoni and Zavanella (2007) considered inventory transport system for shipping a set of 

perishable products in a one-to-one structure. Their objective was to minimize the total costs. 

Le, Diabat et al. (2013) developed a column generation approach to solving perishable 

perishable inventory-routing problems (IRP).In their study, perishable products will never be 

wasted, since they envisage that a retailer never has an inventory level which is greater than 

the total demand in each successive planning period. One of the first attempts has been made 

to integrate three problems of location, inventory and routing problems (LIRP) introduced in 

2003 by Liu and Lee who investigated the location-routing-inventory modeling. They 

considered only two levels of customers and depots in their supply chain. The objective of the 

study was to determine the location of depots from several selected points and to obtain the 

optimum collection of schedule of transportation vehicle and routes based on the shortest 

distance to travel. 

Liu and Lin (2005) developed an innovative method based on Tabu search and simulated 

annealing to solve the model which was proposed by Liu and Li. Their method was tested and 

evaluated by applying simulation and was found efficient. Shen and Qi (2007) investigated a 

single product supply chain with three levels including supplier, distribution centers and 

customers. They considered the nonlinear inventory cost and an approximate routing cost in 

their model. They formulated the problem as a nonlinear integer programming model and 

applied Lagrangian relaxation algorithm in order to solve the model.  

Ahmadi-Javid and Azad (2010) proposed a model which incorporated decisions of location, 

allocation, capacity, inventory simultaneously. They proposed simulated annealing is to solve 

the problem in large scales. Customers demand was assumed to be probabilistic and follow 

normal distribution. Some researchers investigated LIRP models considering multi-echelon 

networks. Sajjadi and Cheraghi (2011) considered a distribution network with three levels 

consisting factories, warehouses and customers. It was assumed that requiring additional 

space due to the shortage of limited capacity would be supported by a third party logistics 

company. Simulated annealing algorithm was applied to solve the problem. 

Ahmadi-Javid and Seddighi (2012) developed the LIRP model in a multisource distribution 

logistics network. They proposed a mixed-integer programming model with the objective of 

minimizing the total cost of location, routing and inventory. 

A multi-echelon supply chain by considering the risk-pooling under the demand uncertainty 

was proposed by Tavakkoli-Moghaddam and Forouzanfar (2012). To solve the problem, they 

applied a heuristic based on the Genetic Algorithm. 

Fakhrzad and Moobed (2014) applied two meta-heuristic algorithms based on Tabu search 

(TS) algorithm and variable neighborhood search (VNS) in the particular type of VRP, called 

VRP cross-docking with time window (VRPCDTW) that could be effective to solve real-

world cases of perishable products. They indicated that the proposed TS algorithm performed 

better than VNS algorithm in both aspects of the total cost and computation time. 

Zhang et al. (2014) developed a supply chain which contains multiple depots and customers 

with a different direction and variable demand over a discrete planning horizon.
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The objective of the study was to determine a set of depots to open, the delivery quantities to 

customers per period and the sequence in which they are replenished by a vehicle fleet such 

that the total system cost is minimized. Liu et al. (2015) considered a three levels supply chain 

containing one supplier, a set of retailers, and a single type of product following continuous 

review inventory policy. They formulated a stochastic location-inventory-routing problem 

(LIRP) model considering no return due to quality defects. They proposed a parallel genetic 

algorithm integrating simulated annealing to solve the problem.  

Shaabani and Kamalabadi (2016) presented a multi-period multi-product (IRP) in two-level 

supply chains involving perishable products with a fixed lifetime and also without perishing. 

They proposed a population-based simulated annealing (PBSA) algorithm to solve the model.   

Song and Ko (2016) developed a vehicle routing problem that encompassed both refrigerated- 

and general-type of vehicles for multi-commodity perishable products delivery. They 

formulated the problem as a nonlinear mathematical model and applied a heuristic algorithm 

to generate efficient vehicle routings with the objective of maximizing the total level of the 

customer satisfaction which was dependent on the freshness of delivered perishable products.  

Mirzaeia, and Seifib (2015) presented a mathematical model of the inventory routing problem 

(IRP) for perishable goods. 

In their model was assumed that the demand for perishable goods to be a function of the 

inventory age. They applied Simulated Annealing (SA) and Tabu Search (TS) to solve the 

problem. 

In this study, the realistic perishability inventory model is proposed. It is attempt to combine 

three essential supply chain decisions called location, inventory and routing in single model. 

In order to formulation of constraints in this model, it is defined inventory constraint based on 

physical capacity instead of perishability constraint in the inventory model of Hiassat and his 

colleagues as a starting point of this study. We consider variable price per each time period 

for controlling demand depending on the age of the inventory. For solving model in reasonable 

time and the near optimal solution, we hybridize Genetic Algorithm to practical perishable 

inventory model.  

 

3. Problem definition 
The foundation of this model is based on the single-product model proposed by Hiassat et al. 

(2017). Then the inventory model in the previous study modified in order to be effective and 

realistic. This model investigates the distribution of a single perishable product (i.e. have a 

specific shelf-life) from a single manufacturer to a set of retailers as customers, I, through a 

set of warehouses that can be located at various predetermined sites, W. The retailers have 

deterministic demand but these demands may vary from one time period to the next. A 

homogeneous fleet of vehicles with identical capacity have been considered to distribute the 

product. It is assumed that out-of-stock situations never occur. Also the shelf-life is measured 

by the number of time periods. Moreover, inventory holding costs are supposed to change 

slightly across time. Since the inventory holding cost for warehouses is assumed to be the 

same for all warehouses and therefore can be neglected.  

Since the spoiled product was not considered in the inventory model of Hiassat and his 

colleagues then the inventory levels at the retailers were limited by two constraints, namely: 

physical capacity at retailer sites and the shelf-life of products to avoid spoilage of the 

products. In their study, to define retailer's inventory constraints and their upper bound 

inventory level, it was assumed that perishability dominates the physical capacity. However, 

in our proposed inventory model, the spoiled product is considered and therefore previous 

perishability constraint is replaced with physical capacity's constraint. Due to considering the 

spoilage product and imposing the cost on the system, one of the effective ways that plays a 
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key role to diminish this effect would be declining the sale price per each time period. In such 

way, the sales could be increased.   

A defined feasible route begins at a candidate warehouse, visits a number of retailers, and 

returns to the same warehouse. Consequently, the number of possible feasible routes will be 

2*W · I, where W and I are the number of warehouses and retailers, respectively. Feasible 

routes and the associated parameters (as shown later) are required as inputs to the model and, 

therefore, are generated prior to solving the model. The vehicle capacity is larger than the 

maximum retailer demand at any time period. Moreover, in any time period, each vehicle 

travels on at most one route, and each customer is visited at most once. Four major cost 

components are considered in the objective function of the model. They are as follows: 

Warehouse fixed-location cost: the cost of establishing and operating a warehouse; 

Retailer unit-inventory holding cost: the cost of storing products at a retailer;  

Routing cost: the cost associated with delivering the goods from a warehouse to retailers; and  

(iv) spoiled product cost: the cost related to deteriorated products that are spoiled due to the 

nature of the products and the environmental issues 

 

3.1. Nomenclature 

The notation used in the current formulation is illustrated in the current section. 
 

3.1.1. Sets 

 
W ≜ Set of Candidate Warehouse, W = 0, … . , |w| 
I ≜ Set of Retailores                       , I = 0, … . , |I| 
V ≜ Set of Nodes                               , V = W ∪ I 
T ≜ Set of Time Periodes                , T = 0, … . , |T| 
R ≜ Set of all feasible routes              
K ≜ Set of homogenous vehicle               , K = 0, … . , |K| 
 
 

3.1.2. Parameters 
 
𝑓𝑤 ≜ Fixed cost of opening and operating warehouse a candidate location  
𝐶 ≜ Vehicle capacity 
𝜏𝑚𝑎𝑥 ≜ Maximum shelf − life 
𝑑𝑖𝑡 ≜ Demand of customer i ∈  I in time period    , t =  1, … . . , t =  1, … . , T, … , T + 𝜏𝑚𝑎𝑥 − 1  
𝐶𝑖 ≜ Inventory holding capacity of each customer  

𝑎𝑖𝑟 = {
1, if route r ∈  R visits customer i ∈ I 

0, Otherwise
 

𝛽𝑟𝑤 = {
1, if route r ∈   R visits customer 𝑤 ∈ W 

0, Otherwise
 

pt1  Sale price of product at the beginning of each time period T                  
pt2  Sale price of product at the terminal of each time period 𝑇                   
Spi            is the rate of deterioration of  products of each period 

 
3.1.3. Decision Variables 
𝐼𝑖𝑡 ≜  Inventory level at customer i ∈  I at the end of time period t ∈ T  
𝑎𝑖𝑟𝑡 ≜  Quantity to deliver to customer i ∈  I using route r ∈  R at time t ∈  T  

𝜃𝑟𝑡 = {
1, if route r ∈  R is selected at time t 

0, Otherwise
 

𝑚𝑤 = {
1, if Warehouse is opened at location w

0, Otherwise
 

 

3.2. Model formulation 

In our study, it is assumed that growth of metabolic as well as environmental issues lead to 

spoilage of products at the warehouse and the retailers as time passes. Let denote 𝑆𝑝𝑖  as the



A realistic perishability inventory management for location-inventory-routing problem… 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol.5, No.1                    Page 111 

probability that the product spoils with the following linear distribution in each time period of 

the planning horizon. Then, the spoilage of each period at the customer’s location can be 

estimated as follows: 
 𝑺𝒑𝒊(𝒕) =  𝑆𝑝𝑖 . 𝐼𝑖(𝑡) 

Where 𝑆𝑝𝑖  is the spoilage rate of the product, and 𝑺𝒑𝒊(t) denotes the number of products 

spoiled at the supplier or customer location during the time period t. The overall cost is 

formulated as: 
    

 
S.t 

∑ 𝑎𝑖𝑟𝜃𝑟𝑡 ≤ 1                                        ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇                                                        (2)

𝑟∈𝑅

 

∑ 𝑎𝑖𝑟𝑡 ≤ 𝑐𝜃𝑟𝑡                                   ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇                                                           (3)

𝑖∈𝐼

 

𝑆𝑝𝑖(𝑡) =  𝑆𝑝𝑖 . 𝐼𝑖(𝑡)                                                                                                                            (4)  

 
   

𝐼𝑖𝑡−1 + ∑ 𝑎𝑖𝑟𝑎𝑖𝑟𝑡 = 𝑑𝑖𝑡 + 𝐼𝑖𝑡 − 𝑆𝑝𝑖(𝑡)𝑟∈𝑅   ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇                                                           (5)  

 
𝐼𝑖𝑡 ≤ 𝐶𝑖                                                   ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇                                                          (6)  

𝜃𝑟𝑡 ≤ ∑ 𝛽𝑟𝑤𝑚𝑤                                ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇                                                        (7) 

𝑤∈𝑊

      

∑ 𝜃𝑟𝑡

𝑟∈𝑅

≤  |𝐾|                                                 ∀𝑡 ∈ 𝑇                                                           (8)  

𝜃𝑟𝑡 ∈ {0,1}                                             ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇                                                        (9)      
𝑚𝑤 ∈ {0,1}                                               ∀𝑤 ∈ 𝑊                                                            (10)    
𝑎𝑖𝑟𝑡 , 𝐼𝑖𝑡 ≥ 0                                       ∀𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇                                                 (11)     

 

 

4. Genetic algorithm 
Genetic algorithms (GAs) are a sub-set of evolutionary algorithms and based on Darwinian 

theories of evolution, which was first introduced by Holland (1975). The GAs has gained 

increasing popularity in solving complex optimization problems in the last decades.  

The location-inventory-routing problem (LIRP) is one of such problems. The basic of this 

problem consists of a number of retailers, each requiring a specified weight of perishable 

products and the vehicles dispatched from warehouses must deliver the perishable products 

required and then return to the depots. The Genetic algorithm must contain a practical genetic 

representation of the problem in order to work efficiently. Moreover initial population as the 

generator of the following solutions, appropriate fitness function, genetic operators such as 

crossover and mutation and a procedure for tuning the genetic parameters such as crossover 

rate and mutation rate are the other essential characteristics of effective heuristic search. The 

general procedure of the proposed GA in this study has been shown in Figure 1 and the 

features of the proposed algorithm are explained in the following.
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Figure 1. GA Flowchart 

 

4.1. Chromosome representation and encoding  
The chromosome representation and encoding of a solution is the first task when utilizing a 

genetic algorithm. Each chromosome must contain information about warehouse location, 

retailers’ allocation to warehouses, and routing on each time period. Figure 2 shows a sample 

of the encoding procedure used in this paper.  

 

 
Figure 2. Chromosome representation 
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As the figure 2 shown, a chromosome constitutes of 2 warehouses (A and B) and 6 retailers, 

operating in 2 time periods are considered. Each chromosome is divided into two parts. The 

first part illustrates the warehouse location and allocation decisions. This part consists of W · 
T genes. Each W.T genes correspond to a respective time period. The location of the gene is 

an index corresponding to a candidate warehouse.  

The value of that gene is the number of retailers assigned to the warehouse in that particular 

time period. Warehouse A is open and is serving 4 retailers in time period 1. Also, two retailers 

are assigned to warehouse B in the same time period. A value of zero means that no retailer is 

assigned to this warehouse at this time period. In the second time period, warehouse A serves 

all 6 retailers and no retailers are assigned to warehouse B. However, warehouse B is not 

closed. Only if all gene values which correspond to the same warehouse across all time periods 

are zero, is the warehouse assumed closed and no cost of opening and operating of that 

warehouse is considered.  

The second part of the chromosome contains I · T genes. The value of the gene represents the 

retailer number. The location, however, is related to the assignment to the warehouses as well 

as to the routing priority. The preference of vehicles for delivering perishable products in the 

first time periods from warehouse A would be A-3-2-4-6-A. However, vehicle capacity should 

be considered.  

Moreover if the capacity of the vehicle is filled only by the shipment of the requested product 

of retailers 3 and 2 then totally two or three vehicle would be needed with routing address: A-

2-3-A and A-4-6-A or A-2-3-A, A-4-A and A-6-A.  

In the second time period, all retailers are served by warehouse A. As the previous time period, 

the number of vehicles is decided by the amount delivering products and by the vehicle 

capacity. 
 

4.2. Initial population construction 
As Fogue et al. (2016) point out the population in genetic algorithms usually contains a fixed 

number of individuals as well as population includes the candidate individuals corresponding 

with solutions during a generation. As the initial solutions, a population with the desired 

number of individuals is randomly generated to start the exploration of near optimum solution.  

The size of the population affects the speed of the algorithm, since small populations allow 

higher speeds but make premature convergence of the solutions. 

The initial population is generated in two stages. In the first part, chromosome is generated by 

randomly a number between 0 and I to the first warehouse, and then iteratively generating a 

random number between 0 and the remaining of the I and assigned to the next warehouse. 

This pattern continues for the remaining time periods. For the second part, two methods were 

presented based on random assignments and distance dependent assignments. However the 

first method is ignored because of the probability of the duplication of the retailer numbers.  

The second method is based on the distance between warehouses and retailers that proposed 

by Hiassat and Diabat (2011). In this procedure, each retailer is assigned to the nearest 

available warehouse. Meanwhile a counter representing the needed assignments for this 

warehouse is decreased by one. Once the counter reaches zero, the warehouse is removed 

from the available warehouse list. In generating the initial population, all individuals 

generated were designed to be feasible. Hence, a mechanism to repair infeasible chromosomes 

was not needed and, thus, was not implemented.  
4.3. Optimal inventory 
As briefly mentioned above about the general procedure of the proposed GA, optimal location 

and routing decisions have been seen in the steps of the GA procedure. In order to optimal 

inventory decision, the proposed GA is hybridized with a linear inventory program (LP) to 

optimality solve the inventory problem as the following model. The general Algorithm starts 
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with solving an inventory model to optimality. The values of amounts shipped and total 

inventory cost is taken as inputs to the genetic algorithm. The solution of this inventory model 

determines the quantities, to be shipped to retailers in each time period.  
 

Inventory Cost = ∑ ∑ hitIit

𝑖∈𝐼

+ ∑ ∑ 𝑝𝑡 . 𝑆𝑝𝑖

𝑖∈𝐼

. 𝐼𝑖(𝑡)

𝑡∈𝑇𝑡∈𝑇

 

 

                     S.t 
                      𝑆𝑝𝑖 (𝑡) =  𝑆𝑝𝑖 . 𝐼𝑖(𝑡)                    ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇                 (2)                                   
   𝐼𝑖𝑡−1 + 𝑎𝑖𝑟𝑡 = 𝑑𝑖𝑡 + 𝐼𝑖𝑡 − 𝑆𝑝𝑖(𝑡)    ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇         (3) 
                      𝐼𝑖𝑡 ≤ 𝐶𝑖                                                 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇         (4) 
                      ait, Iit ≥ 0                                          ∀i ∈ I, t ∈ T             (5)                                              
 

4.4. Improvement 

To evaluate the procedure in the generations of Genetic Algorithm, operators are employed to 

create a better solution and replace them with those existed. Generally, genetic operators are 

categorized as selection, crossover and mutation. The initial population and offspring 

generated by the genetic operations. In addition to these general operators, other methods in 

each generation could be used that improve chromosomes. Iterated Swap Procedure (ISP) is 

one of them which was originally developed by Ho. The ISP was employed in developed GA 

by Hiassat et al. (2011) that is shown in Fig. 3 below.  

The ISP procedure operates on the retailers’ part of the chromosome as follows .Step 1: start 

from the first time period, and select two genes in the retailers’ side. Step 2: exchange the 

positions of these two genes to form one offspring. Step 3: swap these two genes with their 

neighbours to form four additional off spring. Step 4: randomly select two genes from the next 

time period and go back to Step 2.Step 5: evaluate all generated offspring and compare to 

parent. After the above mentioned procedure the best chromosome is taken, and the rest are 

rejected. The ISP may exchange genes between retailers assigned to the same warehouse or 

between different warehouses (intra- or inter-warehouse improvement). Also, the ISP may 

exchange between retailers within the same route or in two different routes (intra - or inter-

route improvement). This interchange, and deciding which of these changes should occur, is 

governed by the choice of the two genes at the start of the operation. 
                  

 
Figure 3. The Iterated Swap Procedure
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4.5. Chromosome decoding  

In this section, the variable 𝑋ℎis defined representing a chromosome related to a given 

individual of the population of period t contained 𝑖 + 𝑤 genes in the decoding process. The 

value of decision variable 𝑋ℎ is obtained from permutation numbers of the chromosome 

encoded in the last row as follows.  
All cost components involved in the model. This contains the cost of opening and operating a 

warehouse, known as the fixed cost (FC), the cost of shipping products in terms of cost of 

routes followed, or routing cost (RC), and the cost of holding products and spoilage products 

in inventory (HC), known as inventory cost. The cost of warehouse routing is the sum of the 

cost of all routes for a given warehouse. The sum of such costs over all warehouses constitutes 

the total routing cost of the chromosome. Let RCh(w)be the total delivery cost needed for 

warehouse w in chromosome h. If mc is the number of customers in route r and mr is the 

number of routes in warehouse w, then 

𝑅𝐶ℎ(𝑤) = ∑ {𝑐[𝑣(𝑚𝑐), 𝑣(0)] + ∑ 𝑐[𝑣(𝑖 − 1), 𝑣(𝑖)]

𝑚𝑐

𝑖=1

}

𝑚𝑟

𝑟=1

 

 

Where v(i)is the location of retailer i, v(0)is the location of the warehouse w,(w = 1, 2, . . ., 

W), and 

 

𝑐(𝑎, 𝑏) = 𝑝(√(𝑋𝑎 − 𝑋𝑏)2 + (𝑌𝑎 − 𝑌𝑏)2 
 

is the cost of traveling from point a to point b, where p is a cost factor per unit distance. 

Therefore, the total routing cost for chromosome h is 
 

𝑅𝐶ℎ = ∑ 𝑅𝐶ℎ(𝑤)

𝑤∈𝑊

 

 

And the total cost of all components is 
 

𝑋ℎ = 𝐹𝐶ℎ + 𝐻𝐶ℎ + 𝑅𝐶ℎ 
 

4.6. Fitness function 

In GAs, the fitness function estimates how close a candidate is to be a solution.  Generally, 

the fitness function should be consistent with better performance.   

In our study the fitness function regarding the goal of our problem is inversely related to the 

summation of all cost components involved in the model for each chromosome. These 

include the cost of opening and operating a warehouse, known as the fixed cost (FC), the 

cost of shipping products in terms of cost of routes followed, or routing cost (RC), and the 

cost of holding products and spoiled products in inventory (HC), known as inventory cost. 

As following proposed formulation the lower costs mean higher fitness function: 
 

𝐹𝑖𝑡𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 1/𝑋ℎ 
 

4.7. Selection 

In GAs roulette wheel is one of the most common selection operation. Chromosomes in the 

roulette wheel procedure are selected based on a probability which is proportional to their 

fitness values for genetic operations. The fitness of the chromosome is directly related to the 

probability of selection. An important point that needs to be stressed here is that fitter 

chromosomes have lower cost values. 
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Hence, lower costs mean higher probability to be selected. The procedure of selection 

commences with the calculation of the total fitness F of a population of size pop size as 

follows: 
 

𝑭 = ∑ 𝑋ℎ

𝑝𝑜𝑝𝑠𝑖𝑧𝑒

ℎ=1

 

The selection probability 𝒑𝒉 for each chromosome h is: 

 
 

𝒑𝒉 =
𝐹 − 𝑋ℎ

𝐹 × (𝑝𝑜𝑝𝑠𝑖𝑧𝑒 − 1)
 

 

Then, a random number r is generated in the range (0,1].  If  𝑟 ≤  𝒒𝒉, then chromosome h is 

selected. 
 

4.8. Maintaining feasibility 

To impose the necessity of satisfaction of the constraints on a problem by evolutionary 

algorithms, several approaches can be employed. A first approach consists in calculating the 

fitness function only in the feasible region of function (F). Also the individuals in the 

infeasible region are neglected. While plenty of studies shown that many feasible global 

optima are on the boundary of F. Having solution instances on both sides of this boundary 

can help much to discover these optima. This is more useful when problems have 

disconnected feasible regions or the optimal solution is at the boundary of the feasible region. 

However, the final solution must be feasible. As such, various techniques for controlling 

infeasible chromosomes must be employed. However, in the first approach algorithms 

maintain only feasible populations all the time. This is accomplished by careful initial 

population construction, as well as choosing the right main operators.  

In this study as previous one, only feasible chromosomes are generated and kept throughout 

the generations. Due to adopting this approach genetic operations were carefully designed 

to maintain feasibility of chromosomes. 

 

4.9. Genetic operations  

According to some of the studies about genetic operations such as McCal (2005) and 

Fakhrzad and Moobed (2010), Genetic operators are employed to create a better solution and 

replace them with those existed in the initial population in order to obtain a near optimum 

solution. Generally, genetic operators are categorized as selection, crossover and mutation.  

The search progress is accomplished by crossover and mutation. Both operations constitute 

the exploitation and exploration part of the search. Because of the type of chromosome 

structure (warehouse-retailer assignment) in this study repetition of a given time period of a 

value is not allowed in the second part. As such, genetic operations were carefully designed 

to create feasible solutions. 

 
4.9.1. Crossover 

As mentioned above crossover is one of the main genetic operators which two chromosomes 

partially contribute characteristics to a new chromosome. The type of crossover used here is 

a single-point crossover as previous study. The child inherits all genes from one parent up 

to the crossover point, and the remaining genes from the other parent. The crossover points 

are selected amongst boundary points between each time period both in the parts of ware-

houses and retailers.
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This method keeps the offspring feasible. Figure 4 below illustrates an instance of an illegal 

and legal crossover. 
 

 
Figure 4. Crossover Operation: (a) Illegal cross over (b) Legal cross over 

 
4.9.2. Mutation  

The other genetic operator is a mutation. The mutation operator is traditionally defined as 

the change probability for a single gene and introduces diversity in the population. The key 

role of this operator in GA is to avoid local optimization by randomly changing individual 

genes and expanding the search space. 

Also it is employed to explore new solutions in the solution space. Many kinds of mutation 

operations exist. One of them that used here was Swap mutation, as presented below: 

4.9.2.1. Swap mutation 

In this process two genes are randomly selected in a time period and they are swapped (by 

value) in all time periods. For example, if retailers 3 and 5 are selected, then their positions 

are swapped in all time periods.  

 

5. Results analysis 
In this section, a number of randomly generated instances were tested in order to show the 

performance of the proposed algorithm with considering spoiled product and without spoiled 

product. To improve the effect of product spoilage as well as approaching the inventory 

model to the real model, the variable of sale price per each period time was defined. In order 

to improve the efficiency of product spoilage and approaching inventory model to the real 

model variable sale price per each period time, was be defined. Particularly, the data was 

generated as follows: Number of retailers: 4 with 2 warehouses, 6 with 2 warehouses, 8 with 

3 warehouses. Location of retailers and warehouses expressed as (𝑿𝒗, 𝒀𝒗) coordinates for 

node v: random integer in the interval [0,500] Demand of each retailer per time period: 

random integer in the interval [10,100] Inventory holding cost per time period: random 

integer in the interval [4.5, 5] Capacity of fleet of vehicles: 110% of total demand of retailers 

Number of vehicles: 
 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 =
1.1

𝑐
{∑ ∑ 𝑑𝑖𝑡

𝑡∈𝑇𝑖∈𝐼

}  
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Initial inventory Ii0: random integer in the interval [0, di1+ di2] 

Number of time periods: 5 

Vehicle capacity: 1.5 dmax 

Rate of Spoilage of products: %10   
Price of products at the beginning of time periods (𝑝𝑡1): 10 

Price of products at the end of time periods ( 𝑝𝑡2): 8 

As above mentioned, developed model here is NP-hard, therefore GAs as one of the meta-

heuristic algorithms could be proposed to solve it. To test its effectiveness, the GA developed 

here is evaluated with instances of different sizes. Table 1 summarizes the GA parameter set 

for the genetic algorithm used for testing. The benefit of using the GA is depicted in Figure 

5. 
 

Table 1. GA parameters for testing of different sizes 

 
 

 

As Figure 5 shown, the graph consists of two lines. The first line is related to the time of 

running the genetic algorithm on different sized instances. Also the other line associated to 

the time of running the CPLEX solver in GAMS. In term of difference between two graphs, 

the running time of instances depicts considerable different between GAMS and GA in the 

medium- and large-sized instances. Consequently a major advantage of GAs would be the 

ability to solve medium- and large-sized instances in reasonable time.  

 

 
Figure 5. Comparison between running times for CPLEX and proposed GA, for various problem sizes 
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However, the genetic algorithm is not very efficient in finding the solution for small instances.  

A summary result of testing models with considering spoiled product and without considering 

it is shown in Table 2.  

The first row represents the result of applying Model 3.3 in GAMS. The second results when 

restricting the inventory values to be optimal, i.e. setting the variables I it to certain values 

which correspond to the values found when solving the inventory sub-model 4.3.2. The last 

value is the average of 30 runs of the GA described earlier.  

It is possible to observe that the gap is high for small instances. With medium-sized instances, 

the gap decreases. This is due to optimizing the inventory in the GA procedure. With larger 

instances, the effect is suppressed due to other high costs. 

 
Table 2. Comparison of GA solution to other solvers with and without considering products 

 
 

However, the gap is expected to increase again with large-sized instances as a result of the 

inevitable existence of many local optima in such large solution spaces. On the other hand, 

the total cost of the model with considering   the cost of the spoiled product and without the 

cost of the spoiled product is compared. Generally the total cost of the model in the GA is 

lower than GAMS. As the realistic cost of system was our target, thereby, the total cost of 

inventory model with deteriorated products is bigger than the others.    
 

6. Conclusion 
Generally, the model of location-inventory-routing (LIR) proved substantial cost savings 

compare to the inventory routing model (IR) which is without the important parameter of the 

location. Besides, the proposed model in our study showed increase in cost of inventory 

compare to the previous model that has been recently published. The reason is because of the 

cost of spoiled products in the model and improving inventory model which would be more 

realistic than the previous one with only holding inventory costs. Characteristics of this study 

in comparison with previous studies in this field are presented in Table 2.  Proposed future 

work include using multiple products and accounting for the cost of carbon emissions.  
The other potential work would be formulating models in all aspects of perishability inventory 

models that could be categorized in the normal state and critical state such as disaster reliefs 

with comparing each other. Additionally using the other meta-heuristic search and 

hybridization with a genetic algorithm such as Taguchi design method or using it lonely such 

as modified Particle Swarm could be the other future solution methods.  
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