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Abstract 
In this paper, we consider a newsvendor who is going to invest on dedicated or flexible capacity, our 
goal is to find the optimal investment policy to maximize total profit while the newsvendor faces 

uncertainty in lead-time and demand simultaneously. As highlighted in literature, demand is stochastic, 

while lead-time is constant. However, in reality lead-time uncertainty decreases newsvendor's 
performance and increases purchasing cost. Analytical results suggest an approach for decision makers 

to decide which situation is optimal to invest in flexible capacity. Furthermore, we derive a closed-form 

solution for optimal production and capacity under dedicated and flexible policy when demand and 

lead-time follow uniform and normal distribution. An approximation method introduced in this paper 
to find the optimal production quantity and investment policy results show that this approximation is 

useful when the coefficient of variation is low under uniform distribution, and it is useful when the 

coefficient of variation is high under normal distribution. Finally, we show a threshold, considering the 
fact that it is optimal for the newsvendor to invest on flexible capacity when flexible capacity cost is 

less than the threshold. To sum up, we measure the effect of lead-time variability on optimal solution. 
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1. Introduction 
 

Supply chain consists of all the stages in fulfilling a customer request. These stages include 

supply, manufacturing, transporting, warehousing and distributing. Each product should pass 

all these stages to be available for the customer on time. On the other hand, the competitive 

and uncertain environment of the modern economy has forced the newsvendor to respond to a 

wide range of future demands. This has led the newsvendor to invest in flexible capacity, which 

incur more cost in comparison with dedicated capacity; consequently, the decision about 

flexible and dedicated capacity in uncertain environment is a big challenge for decision makers.
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On the other hand, dealing with lead-time issues, especially for long lead-time industries, 

makes the problem even more complicated, as lead-time may be higher than the length of 

selling season. Nowadays, many U.S. wholesalers are sourced from Chinese manufacturers 

with the lead-time of approximately three months, but there is significant uncertainty around 

this (Wang and Tomlin, 2009). So, if US wholesalers intend to sell the product in fall, they 

should place order at least three months before fall, so they will face a type of newsvendor 

problem with uncertain lead-time. The following reports by The Economist and Boston 

Consulting Group (BCG) show that lead-time uncertainty is such a big managerial concern: 

“Last autumn some 80m items of clothing were impounded at European ports and borders 

because they exceeded the annual import limits that the European Union and China had agreed 

on only months earlier. Retailers had ordered their autumn stock well before that agreement 

was signed, and many were left scrambling to find alternative suppliers” (Economist, 2006). 

Studying the related literature on the effect of lead-time uncertainty on supply chain shows that 

Lead-time (LT) variance affects the overall performance of supply chain through inventory and 

ordering system, and it has significant effect on coordination among SC members (Ryu and 

Lee, 2003). Lead-time variance increases costs in supply chain by increasing Bullwhip rate, 

inventory, and stock out. In many studies, lead-time reduction has been viewed as an 

investment strategy (Bookbinder and Cakanyildirim, 1999). Ben-Ammar, Dolgui and Wu 

(2017) determined planned lead-time in multi-level assembly systems with stochastic lead-time 

of different partners of supply chains. Diabat, Dehghani and Jabbarzadeh (2018) presented a 

joint location-inventory model for network design of a supply chain with multiple Distribution 

Centers (DCs) and retailers to determine the quantity and location of DCs under stochastic 

demand and replenishment time. Díaz-Madroñero, Mula, Jiménez and Peidro (2017) proposed 

a fuzzy multi-objective integer linear programming (FMOILP) approach to model a material 

requirement planning (MRP) problem with fuzzy lead-times. Christensen et al. (2007) 

conducted a survey on a list for manufacturers, consisting of 1,264 individuals of the Institute 

of Supply Management, and they concluded that lead-time variance has more effect on 

financial performance of supply chain in comparison with lead-time mean. They also 

concluded that average supply chain lead-time has no direct impact on financial performance. 

He et al. (2011) resulted that lead-time variability affect supply chain costs and ordering policy 

more than lead-time mean. 

Swenseth and Buffa (1991) studied the effect of lead-time variability on JIT cost and they 

concluded that lead-time variability, associated with uncertain transit time in JIT, is critical in 

the determination of order cycle time, order point, safety stock and holding cost. Heydari et al. 

(2009) studied the effect of lead-time variation on supply chain performance, and they resulted 

that by increasing lead-time variance, order variances increases. Furthermore, these results 

show that increasing in lead-time variance will lead to high inventory fluctuations. Fisher and 

Raman (1996) reported that lead-time between ordering and delivery of fashion goods can be 

as long as 12 months, while in toy industries it lasts for 18 months. Chopra et al. (2004) studied 

the effect of lead-time uncertainty on safety stock and they resulted that for cycle service levels 

above 50%, reducing lead-time variability reduces reorder point and safety stock, and for cycle 

service levels above 50%, reducing lead-time variability is more effective than reducing lead-

times because it decreases safety stock by a larger amount. 

In this paper, we consider a newsvendor who is going to make an investment decision between 

flexible and dedicated capacity to maximize his profit in the presence of stochastic demand and 

lead-time; the main contribution of this paper is: 

(1) From the viewpoint of modeling, we model a Newsboy problem under capacity constraints 

and stochastic demand and lead-time, which has an extensive application in supply chain 

capacity and production planning. To our best knowledge, it is first research on the capacitated 

Newsboy problem with uncertainty in both stochastic demand and lead-time.
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(2) From the viewpoint of solution method, we derive a closed-form solution for optimal 

production and capacity under dedicated and flexible policy when demand and lead-time 

follow uniform and normal distribution. (3) From the viewpoint of managerial insights,  we 

prove that the flexible capacity cost threshold to invest in flexible capacity is always between 

dedicated capacity cost of two products 
1 2.c c   

The rest of this paper is organized as follows: In Section 2, we give a review of previous 

literature; in Section 3, we introduce problem formulation and modeling; in Section 4, we 

investigate optimality conditions and derive optimal solution; in Section 5, numerical examples 

are performed, and in Section 6, conclusion and future studies are investigated. 

 

2. Literature Review 
Capacity flexibility is used as an effective way to hedge against demand variability in short-

term (Bish et al., 2005). Higher demand uncertainty motivates newsvendor to invest more on 

flexibility (Goyal and Netessine, 2007). Simchi-Levi, Wang and Wei (2017) proposed a two-

stage robust optimization problem to choose flexibility decision strategy under uncertain 

demand. Chatzikontidou, Longinidis, Tsiakis and Georgiadis (2017) proposed a flexible supply 

chain network design (SCND) model that uses generalized production/warehousing nodes 

under demand uncertainty, and they used a scenario-based approach to solve it. Fan, Schwartz 

and Voß (2017) investigated the application of diverse transportation modes for flexible global 

supply chain (SC) in stochastic environments. Goyal and Netessine (2007) studied the effect 

of demand uncertainty and competitive pressures on newsvendor’s decision of technology 

investment. They insisted that demand uncertainty is the most important driver of technology 

choice in flexible manufacturing decision. Rodriguez et al. (2014) developed a non-linear 

programming with stochastic demand to find optimal inventory level in supply chain. Kulkarni 

and Francas (2017) investigated on capacity investment strategies and the optimal value of 

flexibility in food and chemical industry in the presence of uncertainty of input materials. 

Yongheng et al. (2013) developed Lagrangian decomposition algorithm to decide the optimal 

capacity in electric motor industry under stochastic demand and constant lead-time. Kaya et al. 

(2013) developed a robust optimization method for optimal capacity planning under stochastic 

demand and return in a closed loop supply chain. Ho and Fang (2013) studied the capacity 

allocation of multiple products under uncertain demand, they resulted that inventory holding 

cost, shortage cost, loss of excess production, and market demands should be considered in an 

effort to discover the optimal capacity allocation, concerning multiple products. The review of 

literature reveals that many capacity optimization models ignore stochastic characteristics of 

production time and just focus on stochastic demand in order to hedge against variability 

(Dangl, 1999; Bish et al., 2005; Birge and Louveaux, 2011; Rodriguez et al., 2014; Sting and 

Huchzermeier, 2014). Moreover, literature in capacity investment strategies take c1, c2 < cf < 

c1 + c2 into notice. They believe that the problem becomes trivial, and the newsvendor never 

invests in the flexible resource if this assumption does not hold (Bish et al., 2005; Fine and 

Freund, 1990; Van Mieghem, 1998; Biller et al., 2006; Goyal and Netessine, 2007; Cattani et 

al., 2008; Bassamboo et al., 2010; Chod and Zhou, 2013). Yang and Ng (2014) studied flexible 

capacity strategy model under stochastic demand uncertainty and investment constraints, and 

they concluded that there are two thresholds for unit capacity cost. They found that when the 

unit capacity cost is low, optimal capacity is determined by its constraint; whereas when the 

capacity cost is high, optimal capacity is equal to safety production level. Equally important, 

when the cost is between the above two thresholds, optimal capacity is determined by capacity 

cost. In this paper, we show that when capacity cost is very high, although flexible capacity 

profit is more than dedicated capacity, but total profit is negative. Demand uncertainty is a 

common source of variability, which puts decision makers in a dilemma. In one hand, they like
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to maintain the high level of capacity to satisfy the demand of all customers; on the other hand, 

they want to reduce supply chain costs to increase profit. Demand variability, accompanied by 

lead-time uncertainty, makes it more difficult and complex for decision makers to manage 

inventory (Chandra and Grabis, 2008; Pan et al., 2009; Hsieh, 2011). Lukas, Spengler, Kupfer 

and Kieckhäfer (2017) studied the effect of uncertain technological life cycle on the decision 

to invest in new product introduction, taking into account the combined effects of flexible 

investment timing and optimal capacity choice. Dolgui et al. (2013) have done extensive 

literature review on supply chain planning under uncertain lead-time, and they suggested that 

future studies in supply chain should consider both demand and lead-time as uncertain 

parameters. 

Most literature considering stochastic lead-time with constant demand (see more: Zipkin 

(1986); Bookbinder and Cakanyildirim (1999); Sajadieh et al. (2009); Hoque (2013)). Sajadieh 

et al. (2009) studied the inventory model of supply chain with constant demand rate and 

stochastic exponential lead-time, while they suggested inventory model with stochastic lead-

time in their future research topics. Hoque (2013) developed a manufacturer-buyer inventory 

model with stochastic normal lead-time and constant lead-time, and they focused that the 

normal distribution of lead-time provides a better fit. Kim et al. (2004) developed a simple 

approximate optimal solution for (s, Q) inventory model with Erlang lead-time and 

deterministic demand. They insisted that their solution is as easy as the EOQ's, with an accuracy 

rate of 99.41% when prior information on lead-time distribution is available and 97.54 - 

99.09% when only computer-generated sample information is available. Silver and Zufferey 

(2005) considered an inventory model with uncertain and seasonal lead-time and constant 

demand rate. They proposed heuristic methods to minimize expected cost. Chaharsooghi and 

Heydari (2010) investigated the effect of lead-time mean and variance on supply chain 

performance metrics, and they resulted that the effect of lead-time (LT) variance on SC 

performance measures is greater than the effect of the LT mean. 

Although exist literature with stochastic lead-time with constant demand, there are a limited 

number of researches which consider both stochastic demand and lead-time simultaneously. 

Ben-Ammar and Dolgui (2018) examined an optimization problem for component 

replenishment in two-level assembly systems under stochastic lead-times. Sun and Guo (2017) 

proposed an inventory optimization model with fuzzy random demand in order to maximize 

revenue.  Van Kampen et al. (2010) studied the effect of safety stock and safety lead-time on 

the delivery performance of a multi-product newsvendor. They resulted that safety lead-time 

leads to higher delivery performance when supply is variable. Zhao and Simchi-Levi (2006) 

studied the multi-product and multicomponent assemble-to-order (ATO) systems where 

replenishment lead-time of the components are stochastic and demand of the product follows 

poison process. They developed a numerical method to analyze performance based on Monte 

Carlo simulation. Movahed and Zhang (2013) developed robust optimization model under 

stochastic demand and lead-time to decide optimal inventory parameters using MILP pro-

gramming. Das and Hanaoka (2014) developed a humanitarian disaster relief inventory model. 

They assumed that demand and lead-time are uniformly distributed.  

According to above-mentioned literature survey, we can conclude that it is not applicable to 

ignore the important role of lead-time uncertainty in supply chain decisions, based on the 

mentioned we intend to expand our research into supply chain management under stochastic 

demand and lead-time. 

 

3. Problem statement and formulation 
The following notations are used thorough the paper:
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Sets: 

P  : Set of products 1,2P   

D  : Set of decisions 1,2,D f  

  

Parameters: 

id   : Stochastic demand for the product i, assumed to be uniform, di ~ U(ai, bi) 

il   : Newsvendor’s stochastic lead-time for the product i, assumed to be uniform, 

~ ( , )i i il U y z  

Di   : Mean of stochastic demand for the product i, under normal distribution 

li   : Mean of stochastic lead-time for the product i, under normal distribution 

2

Di   : Variance of stochastic demand for the product i, under normal distribution 

2

li   : Variance of stochastic lead-time for the product i, under normal distribution 

   : Threshold for investment 

ip   : Selling price per unit of product 

ci : Dedicated capacity investment cost per unit of product i 

cf : Flexible capacity investment cost per unit of product i 

ri : Holding cost of excessive production per unit of product i 

vi : Penalty cost per unit shortage of product i 

Decision variables: 

ki : Total capacity of product i under dedicated strategy 

kf : Total capacity of product i under flexible strategy 

K   : The vector of capacity ,i fk k   

d

iq   : Production quantity of product i under dedicated capacity 

f

iq   : Production quantity of product i under flexible capacity 

|f d

iq   : Production quantity of product i under flexible or dedicated capacity 

A lot literature in capacity investment strategies such as Bish et al. (2005); Fine and Freund 

(1990); Van Mieghem (1998); Bassamboo et al. (2010); Chod and Zhou (2013) pointed that

,i f i

i P

c c c i P


    . They believed that the problem becomes trivial, and the newsvendor 

never invests in the flexible resource if this assumption does not hold. Unlike previous literature 

in this paper, we show that there exists a threshold , 3i ic c   , which is optimal for the 

newsvendor to invest in flexible capacity when 
fc  . So, we have no assumption for cf in 

this paper. 

We consider a newsvendor, who produces two products which are indexed by i = 1,2. He 

decides to invest in two dedicated resources that enables him to satisfy the demand of only one 

product, or one flexible and more expensive resource, which enables him to satisfy the demand 

of both products. The newsvendor seeks the best investment portfolio to maximize his expected 

profit. Two kinds of demands and lead-time distributions are considered in this paper, which 

are uniform and normal distribution. 

We model the problem as a two-stage stochastic program. In the first stage, the newsvendor 

identifies his resource policy (dedicated or flexible) investment to maximize the expected 

profit. He makes capacity investment decision in this stage, 1 2( , , )fK k k k  where K  is 

decision variable, the vector of dedicated capacity k1, k2 and flexible capacity kf. In the second 

stage, the newsvendor finds optimal production quantity qi to maximize his revenue before the
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realization of demand and lead-time. After the realization of the demand and lead-time if 

demand during the lead-time exceeds production quantity, a shortage cost v; is incurred. 

Otherwise, excessive production results holding cost of ri. Figure below depicts the proposed 

problem and the timeline associated with it: 

 
Figure 1. The proposed model of the newsvendor decision-making process 

 

The capacity decision problem can be formulated as the following two stage stochastic 

program: 

 

Stage 1: 

   * max   , i i
K

i D

V K E K D c k


   (1) 

Subject to:

0, ik i D  
  (2) 

Stage 2: 

       
|

||

* | | |

0
( ( ),  max   , )

f d
i

f df d
ii

q
f d f d f d

i i i i i i i i i i
qq

i P i P

K D K D p x r q x f x dx p q v x q f x dx 


 

               (3) 

Subject to: 
d

i iq k    (4) 
f

f

i P

iq k


   (5) 

0,iq i P     (6) 

 

The objective of the second stage problem (3) is to maximize the summation of total revenue 

minus holding and shortage cost. Constraint (4) is production quantity under dedicated capacity 

constraint; constraint (5) is production quantity under flexible capacity constraint. Also, 

constraint (6) is the non-negativity constraint for production quantity under dedicated and 

flexible capacity. 

Using Leibniz rule the second stage objective function (3) can be written as follows: 

 

      
|2

|

0
1

, .( )
f d

i

i

i

q
f d

i i i i DL i i i DL

i

K D p v q v p r v F x dx 


 
 
  


 


    (7) 

 

From (7),  ,K D  is concave in |f d

iq , the Hessian | |

1 2( , )f d f dH q q  matrix can be written as: 

 

   

   

 

   

2

1

2

2

2 2

|| ||
1 1 1 11 2| |

1 2 |2 2
2 2 2 2

| ]| |

2

1

1 2

, ,

0
,

0, ,

( )f df d f df d
DL

f d f d

f d

DL

f d d f d

K D K D

p r v f qq qq
H q q

p r v f qK D K D

q q q

 

 

  
 

     
   
       

 
    

 
(8) 
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Since 
   

2 2

2 2

| |

1 2

, ,
0, 0

f d f d

K D K D

q q

  
 

 
 and  | |

1 2, 0,f d f ddetH q q   then  ,K D  is concave in 

|

1

f dq  and |

2

f dq . 

 

In this section, we assume that the demand and lead-time for each product are stochastic and 

follow uniform distribution with ~ ( , ), ~ ( , )i i i i i il U y z d U a b  (The normal distribution 

coefficients are also approximated at the end of this section). We can obtain PDF of demand 

during the lead-time as follows (Glen et al., 2004): 

   

  
 

  

  

) )

 ln   ln 
 min  , 

 ln   ln 
min ( ,   max ( , 

 ln   ln 
max( , , )

l i i

i i
i i i i i i

i i i i

i i
DL i i iy i i iy

i i i i

i i
i i i i i i

i i i i

x y a
y a x a z b y

b a z y

z y
f x a z b x a z b

b a z y

z b x
a z b y x b z

b a z y

 
 

 
 

  
 

 
 

 

 

(8a) 

 

(8b) 

 

(8c) 

 

And, CDF of the demand during the lead-time can be obtained: 

  

 

 

  
 

   

  

   

  

) )

 ln   ln  1
 min  , 

 ln   ln 
min ( ,   max ( , 

 ln   ln  1
max( , , )

l i i

i i i i

i i i i i i

i i i i

i i i i i

DL i i iy i i iy

i i i i

i i i i i i i

i i i i i i

i i i i

y a x x y a
y a x a z b y

b a z y

x z y a z y
f x a z b x a z b

b a z y

x z b x a z y b y
a z b y x b z

b a z y

   
 

 
   

  
 

     
  

 

 

(9a) 

 

(9b) 

 

(9c) 

 

Figure 2 shows pdf and CDF function of product of the demand and lead-time, based on 

different values of lead-time variation (CV). 

 

 
Figure 2. Example: PDF and CDF function of product of two uniform distribution 
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Areeratchakul and Abdel-Malek (2006) introduced a method to approximate 
0

( )
t

F x dx   for 

triangle shape cumulative distribution functions. They proved that uniform, normal and 

exponential distributions can be approximated using this method. We are going to use this 

method to estimate CDF function of the demand during lead-time, introduced in (9a), (9b) and 

(9c). In the above CDF, the lower bound is 
i iy a  so we need to approximate: 

     21
( )

2i i
i

t

i DL i i i
y a

S t F x dx t y a       (10) 

 

Where 
i  is the slope of the approximated line and can be obtained as follow (Areeratchakul 

and Abdel-Malek, 2006): 

 
   1 1

0.9 0.001

0.9 0.001
i i

i

DL DLF F 


 


    (11) 

 

In addition, the approximation error can be found as follows: 

Figure 3, shows the real (solid line) and the corresponding approximated distribution functions 

(dashed line) based on an example data in Section 5. 

 

 
Figure 3. Estimated vs. cumulative distribution function 

 

Using the triangular approximation, approximation error of the area under the curve is 

estimated as follow: 

  
   

 

s

s

t

DL
ya

t

a
DL

y

U t F x dx
e t

F x dx







     (12) 

 

Figure 4 shows the approximation error using Equation (12) when t = bz. We can find that the 

approximated distribution function can match the real function accurately. 

When cumulative distribution of the demand during lead-time is triangular based, as estimated 

in (10), we can approximate the integration of cumulative function using triangular approach 

introduced by (Areeratchakul and Abdel- Malek, 2006)). In figure 3, we have shown that the 

estimation error is too low, then by using equation (10) with |f d

it q  and 

  
4l

l l l l

DL

a b y z


 
 the objective function of (7) can be written in the following quadratic 

form:
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Figure 4. The approximation error of the area under the curve  ,DLF x CV



  

 

Table 1. Summary of the coefficients of the objective function under uniform and normal distributions 

Distribution 

Function  Ai  Bi Ci 

Uniform 
Distribution 

 
2

l l l lp r v   
    i i i i i i i ip v a y p r v          2 2

2 4

l l l l l l l l ll la y p r v v a b y z    
   

Normal 
Distribution 

 
2

l l l lp r v   
  i ip v  i Di liv    

 

  
2| |( ,  ) ,f d f d

i i i i i

i P

K D Aq B q C i P


           (13) 

Where A, B, and C, are defined in Table 1, and A is the slope of approximated line based on 

(11) using the method introduced in section 3. From the table, it can be noted that A and C, are 

always negative, while B is always positive. We use these notations for the future analysis. 

 

4. Optimal production quantity and investment under dedicated and flexible 

capacities 
 

If the newsvendor invests in flexible capacity, the objective function in (13) can then be written 

in the following Lagrangian form: 

  
2

,  ,  ( ) ( )f f f f

i f f i i i i i f i f

i P i P

L q k Aq B q C q k 
 

             (14) 

Under dedicated investment, we can write: 

    
2

,  , ( ) d d d d

i i i i i i i i i ii

i P i P

L q k Aq CB q q k 
 

             (15) 

 

Proposition 4.1. Optimal production quantity under flexible capacity f

iq  and dedicated 

capacity d

iq  for the problem introduced in section 3 can be obtained as follow: 

For flexible capacity:
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(16a) 

 

(16b) 

 

(16c) 

 

And, for dedicated capacity: 

 
* 2 2

,

2

i i
i

i id

i

i
i i

i

B B
k

A A
q i P

B
k k

A


  


  
  
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(17a) 

 

(17b) 

 

Proof: see Appendix A. 

 

We can get some insights from this proposition: 

First, the optimal production quantity under flexible capacity is equal to zero when 

3 ,
2

i i
f

i

B B
k

A


   and based on (13) the optimal second stage profit is negative; it means the 

manufacturer should never invest on flexible technology when 3 .
2

i i
f

i

B B
k

A


  

Also, the optimal production quantity under flexible and dedicated capacity is equal to: 
2

i

i

B

A
  

when 
2

1 2

i
f

i i

B
k

A

   and .
2

i
i

i

B
k

A
    

Figure 5 shows the relationship between capacity and optimal production quantity in dedicated 

and flexible investment. 

By substituting optimal production quantity from the above-mentioned equations into the 

second stage objective function (3), we can obtain the following results. 

Under flexible investment, 
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(18a) 

 

(18b) 

 

(18c) 

 

And, under dedicated investment,
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(19a) 

 

(19b) 

 

 
Figure 5. Example: The relationship between capacity and optimal production quantity under dedicated 

and flexible investment 

 

Consequently, by substituting values of equation (18a), (18b) and (18c) into (1), we can obtain 

the first stage objective function under flexible capacity as follows: 
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(20a) 

 

(20b) 

 

(20c) 

Then, the first stage objective function under dedicated policy can be written as: 

           
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(21a) 

 

(21b) 

Proposition 4.2. If 
2

f

i P

i

i

B
k

A

   and 
2

i
i

i

B
k

A
  ; it is optimal for the newsvendor to invest in 

flexible technology only when 

          f f i i

i P

c k c k


     (22) 

 

Proof: By comparing (20a) and (21a), we can obtain the above proposition. Based on 

Proposition 4.2, we can conclude that under these conditions, 
2

f

i P

i

i

B
k

A

   and 
2

i
i

i

B
k

A
  , if 

the total investment cost of flexible capacity is lower than the total investment cost of two 

dedicated capacity, it is optimal for the newsvendor to invest in flexible capacity. 

We have shown in Appendix B. that ( )f fV k  is concave in (20b) and its optimal value is in 

(20b). Figure 6 shows ( )f fV k  versus kf. Based on the figure we can see that ( )f fV k  is concave. 
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In Appendix D. also we have indicated that 
1 2( , )dV k k  is concave in (21b) and its optimal value 

is in (21b). 

 
Figure 6. The first stage objective function under flexible policy vs. flexible capacity 

 

Proposition 4.3. Under flexible policy investment, it is always optimal for the newsvendor to 

invest in flexible capacity as below: 

          

 3
*

2

f

i P

i

f

i

i

i

P

c B A

k
A











     

(23) 

 

Proof: see Appendix B. 

 

Proposition 4.3 shows the analytical solution for optimal flexible capacity to maximize the 

optimal expected profit. Based on this proposition, we can conclude that the optimal flexible 

capacity is increasing in selling price pi, decreasing in cf. This result is shown in Figure 7. 

 

 

Figure 7. The effect of capacity cost cf and price pi on the optimal flexible capacity 
*

fk  

Based on (23) and this fact that Ai is always negative, we can conclude that 
*

fk  is decreasing 

on cf. More, 
*

fk  should always be positive, so we can write the following proposition. 

Proposition 4.4. The newsvendor never invests in flexible capacity when 

          
3

i P
f

i

i

i

P

iA B

c
A









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(24) 

 

Proof: see Appendix C. 

 

Using the objective function obtained in (21a) and (21b), now we are able to find the optimal 

capacity under dedicated policy. In (Appendix D), we have proved the concavity of 1 2( , ),dV k k  

based on k1 and k2.
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Proposition 4.5. Under dedicated policy investment, optimal capacity can be obtained as 

follow: 

          * ,
2

i i
i

i

c B
k i P

A


          (25) 

 

Proof: see Appendix D. 

 

Proposition 4.5 shows the analytical solution for optimal dedicated capacity to maximize the 

optimal expected profit. Based on this proposition, we can conclude that the optimal dedicated 

capacity is increasing in selling price pi, decreasing in capacity cost ci. From (25), *

ik  should 

always be positive, we can write the next proposition. 

 

Proposition 4.6. The newsvendor never invests in dedicated technology when ci > Bi. 

 

By substituting 
*

fk   from (23) into Vf (kf) and *

ik  from (25) into the first stage objective function, 

we can obtain the final objective function under flexible and dedicated policy as follows: 
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   (26a) 

 

(26b) 

 

Proof is given in Appendix F. By comparing the above functions (26a), (26b), we would be 

able to obtain the threshold for flexible capacity cost cf, to figure out the conditions under which 

flexible policy is preferred. 

 

Proposition 4.7. There exists a threshold , which is always optimal for the newsvendor to 

invest in flexible capacity when ,fc   and: 

 2 2
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 (27) 

Proof: see Appendix F. 

 

Proposition 4.7. shows the analytical threshold for the newsvendor to invest on flexible or 

dedicated capacity. Based on this proposition, the threshold is decreasing in capacity ci, 

increasing in pi, and increasing in vi and ri. 
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Table 2. Example Data 

Product i di li pi ci ri ci cf 

1 uniform(50,200) uniform(200,300) 900 $ 200 $ 100 $ 150 $ 220 $ 

2 uniform(100,300) uniform(300,400) 1000 $ 250 $ 200 $ 100 $  

 
Table 3. Result Data 

Product i *d

iq   
*f

iq   
*

ik   
*

fk   
* *

1 2( , )dV k k   
*( )f fV k      

1 70,370.4 68,261.1 70,370.4 82,732.6 45,635,307.94$ 43,007,132.48$ 208.5$ 

2 14,419.5 14,471.5 14,419.5     

 

Proposition 4.8. The value of threshold   in (27) is always between the unit cost of two 

dedicated capacity: 

3 ,i ic c i P       (28) 

Proof: see Appendix G. 

 

An example of this proposition is illustrated in Figure 7. 

 

5. Numerical Examples 
Validity of the approximation is shown in Table 5. 

To illustrate the validity of the proposed model and the usefulness of the proposed estimation 

method, several numerical experiments are performed, and the related results are reported. We 

have done numerical experiments based on uniform and normal distribution, and 

approximation validity has been performed for two distributions. 

 

5.1. Uniform Distribution 

In this section, two products are considered and their parameters are shown in Table 2. We 

assumed that both demand and lead-time are stochastic and follow uniform distribution. Then, 

we obtained the optimal capacity and profit under dedicated and flexible policy. We have 

shown the result data in Table 3. Based on the result, we can conclude that flexibility policy is 

not always profitable for the newsvendor. In fact, it depends on the flexible capacity cost. In 

this example, if flexible capacity cost is less than the threshold 208.5,   it is optimal for the 

newsvendor to invest in flexible capacity; otherwise, dedicated capacity is preferred. Moreover, 

we can conclude that the value of threshold   is always between the dedicated capacity cost 

of two products 3 .i ic c    Unlike previous literature which assumed 
i f i

i P

c c c


  , based 

on this result, we show that this assumption is not always necessary. 

Figure 8 shows the effect of flexible capacity cost cf on the optimal profit 
*( )f fV k  under flexible 

policy. Based on the chart, we can realize that when cf is less than threshold 208.5,   flexible 

policy is preferred; otherwise, it is optimal for the newsvendor to invest on dedicated capacity.
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Figure 8. The effect of flexible capacity cost on the optimal profit under flexible policy 

 

To illustrate the performance of approximation method presented in section 3, numerical 

simulation is performed. To do this, first we need to obtain the optimal value of the objective 

function numerically and then compare numerical results with the analytical approximated 

result. Numerically obtaining the optimal value of the objective function introduced in (1) is a 

very time-consuming task, so we utilized the Particle swarm optimization (PSO) method to 

overcome difficulties.  

 

5.2. Particle swarm optimization 

Particle swarm optimization (PSO) Kennedy (2010) is a computational method, which 

optimizes a problem by iteratively trying to improve a candidate solution with regard to a given 

measure of quality. It solves a problem by having a population of candidate solutions. 

A basic variant of the PSO algorithm works by having a population (called a swarm) 

of candidate solutions (called particles). These particles are moved around in the search-space 

according to a few simple formulae. The movements of the particles are guided by their own 

best known position in the search-space as well as the entire swarm's best known position. 

When improved positions are being discovered these will then come to guide the movements 

of the swarm. The process is repeated and by doing so it is hoped, but not guaranteed, that a 

satisfactory solution will eventually be discovered. 

Formally, let ( )L A  be the cost function as defined in 14, which must be minimized, where 

( ,  ,  )f

i f fA q k   is the vector of decision variables. The function takes a candidate solution as 

an argument in the form of a vector of real numbers and produces a real number as output 

which indicates the objective function value of the given candidate solution. The gradient of  L  

is not known. The goal is to find a solution A  for which ( ) ( )L A L B  for all B  in the search-

space, which would mean A  is the global minimum. 

Let S  be the number of particles in the swarm, each having a position n

ix R   in the search-

space and a velocity n

iv R . Let ip  be the best known position of particle i and let g  be the 

best known position of the entire swarm. A basic PSO algorithm is then: 

for each particle 1,...,i S  do 

   Initialize the particle's position with a uniformly distributed random vector: ( , )i l ux U b b  

   Initialize the particle's best known position to its initial position: i ip x  

   if ( ) ( )iL p L g  then 

       update the swarm's best known position: ig p  

   Initialize the particle's velocity: ( , )i u l u lv U b b b b    

while a termination criterion is not met do: 

   for each particle 1,...,i S  do

https://en.wikipedia.org/wiki/Candidate_solution
https://en.wikipedia.org/wiki/Row_vector
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
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         Pick random numbers: , (0,1)p gr r U  

         Update the particle's velocity: 
,. . ( ) . ( )i i p p i d i g g d iv v r p x r g x        

      Update the particle's position: 
i i ix x v   

      if ( ) ( )i iL x L p  then 

         Update the particle's best known position: 
i ip x  

         if ( ) ( )iL p L g then 

            Update the swarm's best known position: 
ig p  

 

The values lb  and ub  are respectively the lower and upper boundaries of the search-space. The 

termination criterion can be the number of iterations performed, or a solution where the 

adequate objective function value is found. The parameters  , 
p , and 

g  are selected to 

control the behavior and efficacy of the PSO method. 

For numerical studies the particle size was set to 500S  , and the number of iterations was set 

to 10,000 iterations. 0.2, 0.1, 0.1p g     . 

 Table 4 shows input data for numerical studies based on different values of CV. 

 
Table 4. Input data for numerical studies 

CV a1 b1 y1 z1 a2 b2 y2 z2 

0.02 145 155 40 60 290 310 40 70 

0.06 135 165 40 60 270 330 40 70 

0.1 125 175 40 60 250 350 40 70 

0.13 115 185 40 60 230 370 40 70 

0.17 105 195 40 60 210 390 40 70 

0.21 95 205 40 60 190 410 40 70 

0.25 85 215 40 60 170 430 40 70 

0.29 75 225 40 60 150 450 40 70 

0.33 65 235 40 60 130 470 40 70 

0.37 55 245 40 60 110 490 40 70 

0.4 45 255 40 60 90 510 40 70 

0.44 35 265 40 60 70 530 40 70 

0.48 25 275 40 60 50 550 40 70 

0.54 10 290 40 60 20 580 40 70 

 

Table 5 shows optimal values based on numerical study and approximation. Based on this table, 

we realize that the performance of the approximation method is high when CV coefficient of 

variation is low.  
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Table 5. The comparison between approximated and real result (Approximated values are signed by a 

and real values signed by *) 

CV 
1

faq  
2

faq  a

fk  aV  
*

1

fq  
*

2

fq  
*

fk  *V  Objective error %(E) 

0.02 7933.04 18315.19 26248.22 4926961.72 8184 18966 27150 4962116.65 0.71 

0.06 7942.75 18332.18 26274.93 4958974.3 7934.31 18288.21 26222.53 4959039.56 0 

0.1 8030.74 18573.83 26604.57 4873053.85 7913.03 18167.84 26080.87 4877922.81 0.1 

0.13 8147.27 18897.58 27044.85 4757635.82 7974.68 18252.83 26227.51 4767482.23 0.21 

0.17 8278.62 19264.12 27542.73 4628051.82 8082.46 18452.3 26534.76 4641225.65 0.28 

0.21 8418.8 19656.28 28075.08 4489939.07 8219.11 18721.98 26941.09 4505059.23 0.34 

0.25 8564.62 20064.89 28629.51 4346049.48 8376.11 19039.44 27415.54 4362127.08 0.37 

0.29 8714.13 20484.37 29198.51 4197953.76 8546.11 19393.12 27939.22 4214307.22 0.39 

0.33 8866.02 20911 29777.03 4046642.64 8553.7 19771.96 28325.67 4049804.69 0.08 

0.37 9019.32 21342.02 30361.34 3887822.65 8713.38 20171.43 28884.81 3892786.76 0.13 

0.4 9173.21 21775.13 30948.34 3722839.72 8858.04 20587.08 29445.12 3736865.26 0.38 

0.44 9326.88 22208.11 31535 3555524.66 8991.52 21015.85 30007.37 3579236.59 0.66 

0.48 9479.34 22638.24 32117.58 3386354.34 9115.29 21455.43 30570.72 3420183.59 0.99 

0.8 9631.79 23068.37 32700.16 3217184.01 9233.33 21895.01 31128.34 3261130.59 1.35 

1 9784.24 23498.5 33282.74 3048013.68 9350.43 22334.58 31685.02 3102077.59 1.741 

 

We have also calculated the effect of lead-time variation on the optimal production quantity, 

optimal flexible capacity, and optimal profit. Subsequently, the result is shown in Figure 9. 

Figure 10 also shows the profit error caused by approximation. According to this figure, the 

error is low when the CV is low. Based on these figures, we can realize that lead-time variation 

increases the optimal production quantity and capacity, while it increases the optimal profit. 

 

 
Figure 9. The effect of lead-time variation on the optimal production quantity, flexible capacity and profit 

using uniform distribution



Optimal flexible capacity in Newsboy problem under stochastic demand and lead-time 

 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol.6, No.1  Page 35 

 
Figure 10. The approximation error of the objective function based on CV under uniform distribution 

 

Table 6, shows the threshold value obtained by using approximation method and numerical 

studies. c1 = 300, c2 = 500, and cf = 100. Based on this table, the threshold   is always between 

the two dedicated capacity cost c1 and c2. On the other hand, this table shows the validity of 

the proposition according to Appendix G. It shows that maximum approximation error is 6%, 

and error increases with CV. Which means the higher CV is associated with the higher error. 

 
Table 6. The comparison between approximated and real threshold (Approximated values are signed by a 

and real values signed by *) 

CV a  *  Error %(E) 

0.02 367.07 357.26 2.74 

0.06 374.63 371.19 0.93 

0.1 380.22 381 -0.2 

0.13 385.95 389.03 -0.79 

0.17 390.48 395.86 -1.36 

0.21 395.27 401.86 -1.64 

0.25 417.08 407.19 2.43 

0.29 404.19 412 -1.9 

0.33 408.34 408.37 -0.01 

0.37 412.29 410.7 0.39 

0.4 416.05 420.8 -1.13 

0.44 419.63 430.91 -2.62 

0.48 423.03 441.02 -4.08 

0.8 426.43 451.12 -5.47 

1 429.82 461.23 -6.81 

 

 

5.3. Normal Distribution 

In this section, we used normal probability distribution instead of uniform distribution. Then, 

we obtained the product of two normal distributions numerically. To be able to achieve the 

optimal solution, we used PSO algorithm introduced in section 5.1 with MATLAB written 

objective function; the particle size was set to 10 together with the number of iteration to 100 
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times. The input data and results are shown in Table 7. The approximated flexible capacity 

( )a

fk  is also calculated.  

 
Table 7. The optimal solution under flexible capacity using normal distribution 

iCV   
1D   

1l   
1D   

1l   
2D   

2l   
2D   

2l   *

1

fq   
*

2

fq   *

fk   
a

fk   
*

fV   

0.1 100 30 30 3 200 20 40 2 3595.29 4194.26 7789.55 5909.9 1416316.18 

0.2 100 30 30 6 200 20 40 4 3633.07 4342.51 7975.57 6499.33 1344616.53 

0.3 100 30 30 9 200 20 40 6 3676.09 4367.19 8043.28 7088.77 1244995.16 

0.4 100 30 30 12 200 20 40 8 3492.07 4705.6 8197.68 7678.2 1147803.22 

0.5 100 30 30 15 200 20 40 10 3562.63 5009.16 8571.79 8267.63 1055923.13 

0.6 100 30 30 18 200 20 40 12 3865.51 5109.59 8975.1 8857.06 966052.5 

0.7 100 30 30 21 200 20 40 14 4004.21 5316.24 9320.45 9446.5 905129.82 

0.8 100 30 30 24 200 20 40 16 4051.23 5769.6 9820.83 10035.93 848813.07 

0.9 100 30 30 27 200 20 40 18 4262.36 5809.31 10071.67 10625.36 801996.09 

1 100 30 30 30 200 20 40 20 4755.92 6476.25 11232.17 11214.79 760381.49 

1.1 100 30 30 33 200 20 40 22 4906.06 6223.07 11129.13 11804.23 728097.5 

1.2 100 30 30 36 200 20 40 24 4939.33 6925.3 11864.63 12393.66 11864.63 

 

We have also figured out the results in Figure 11. Based on the figures, we can view similar 

trends as uniform distribution. Accordingly, the lead-time variation increases the optimal 

production quantity and capacity, while decreases the optimal profit. 

 

 
Figure 11. The effect of lead-time variation on the optimal production quantity, flexible capacity and 

profit under normal conditions. 

 

Based on the calculated approximation error in Figure 12, we can conclude that under normal 

distribution, the approximation is useful when the lead-time (CV) is high, while as shown in 

the previous section, under uniform distribution, the approximation is useful when the (CV) is 

low. 
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Figure 12. The approximation error of the objective function based on CV, under Normal distribution 

 

6. Conclusion 
In this paper, we found the optimal capacity and production quantity under dedicated and 

flexible capacity policy when both demand and lead-time are stochastic and follow uniform 

and normal distribution. We used the approximation method introduced by Areeratchakul and 

Abdel-Malek (2006) to simplify the objective function, and proved that under uniform 

distribution, this estimation is useful when variance of demand and lead-time is low, while 

under normal distribution the approximation is useful when variance of the demand and lead-

time is high. Next, we analytically derived the threshold for flexible capacity cost which offers 

a criterion for managers to be aware that under which conditions, it is optimal to invest in 

flexible capacity. Later, we proved that this threshold is always between dedicated capacity 

costs of two products, which is not considered in previous literature. For future studies, we 

wish to obtain the optimal dedicated and flexible capacity, considering the multi-product 

model. Obtaining the accurate approximation under normal distribution is also an interesting 

topic for future studies. 
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Appendix A. 
 

Proof of proposition 4.1 

By differentiating (14) with respect to 
f

iq  the optimum production quantity under flexible capacity qi can be 

found as follow: 

  *, ,
2 0  max  0,  ,

2

f

i f f i ff f

i i i f if

i i

L q k B
Aq B q i P

q A

 


   
        
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(A.1) 

 

Substituting 
*f

iq  into (5), we can obtain 
f  as follow: 
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1

2

i i

i
f

P

f

P ii

B
k

A

A
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
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
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(A.2) 

 

Subsequently, by differentiating (15) with respect to 
d

iq  optimal production quantity under dedicated capacity 

d

iq  can be found as follow: 

*  max  0,  , 2 ,
2

d i i
i i i i i

i

B
q Pk iA B

A




  
  







     
(A.3) 

 

On obtaining , 0i f    optimal production quantity can be obtained using equation (A.1), (A.2) and (A.3). The 

following situations may arise in computation of  , 
*f

iq  and 
*d

iq : 

When , 0,i f     constraints (4), (5) are not binding then 
*f

iq , 
*f

iq  can be obtained by setting ,i f   equal 

to zero in equations (A.1), (A.3) . If 
*f

iq  is less than zero then Abdel-Malek and Otegbeye (2013) suggested that, 

we can take the lower bound for the production quantity and remove that product from calculation of 
f  in (A.2) 

. Based on the above discussions we can obtain the optimal production quantity under flexible investment as given 

in preposition 4.1. 

 

Appendix B.  
 

Proof of proposition 4.3 

Proof by substituting values of equation (18a), (18b) and (18c) into the first stage objective function (1), we can 

obtain: 
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             (B.1a) 

 

(B.1b) 
 

(B.1c) 

 

From the above equations, (B.1a) is not concave but its decreasing on kf so under (B.1a) conditions, maximum of 

*( )f fV k  in (B.1a) can be obtained when 
2

1 2

i
f

i i

B
k

A

 . (B.1c) is always negative, and its optimal when: 
* 0fk   

(B.1b) is strictly concave in the given region the proof is provided in (Appendix H), and its optimal value can be 

obtained by using differentiation. 

Based on the previous discussions and by substituting optimal value of (B.1a) and (B.1b) into the objective 

function, we can get:
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(B.2b) 

 

(B.2c) 

 

In (Appendix I) we have shown that (B.2b) is the maximum of 
*( ),f fV k  and the optimal 

*

fk  associated with 

(B.2b) is given in (23), so we can conclude that under flexible policy it is always optimal for the newsvendor to 

invest on the amount of capacity as given in (23) and (4.3) is proved. 

 

Appendix C. 
Proof of proposition 4.4 

Proof Based on (23) and this fact that 
*

fk  should be positive 
* 0fk   we can obtain (24). 

 

Appendix D.  
 

Proof of proposition 4.5 

Proof by substituting values of equation (19a) and (19b) into the first stage objective function (1), we can obtain: 
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From the above equations (D.1a) is not concave but its decreasing in ki, so under (D.1a) conditions, maximum of 

1 2( , )dV k k  in (D.1a) can be obtained when .
2

i
i

i

B
k

A
   (D.1b) is strictly concave in ki and its maximum can be 

found by using its derivative equal to zero, which results to * .
2

i i
i

i

c B
k

A


  In (Appendix J) we have shown that 

1 2( , )dV k k  is concave and its maximum is equal to maximum of (D.1b). So under dedicated capacity investment 

it is always optimal for the manufacturer to invest as (25) so (4.5) is proved. 

 

Appendix F. 
 

Proof of proposition 4.7 

Proof in (Appendix I) we have shown that (B.1b) is strictly bigger than (B.1a) in optimal solution. So when the 

newsvendor invests in flexible capacity, (B.1b) is the corresponding optimal profit. At the other hand when the 

newsvendor invests in dedicated capacity in (Appendix J) we have shown that under dedicated technology 
maximum profit can be found through (D.1b). 

Based on the above discussion we can write optimal 
* * *

1 2( , , )fV k k k  as follow: 
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              (F.1a) 

 

(F.1b) 

Based on (F.1a),(F.1b) we can find the values of fc  in which profit of investment in flexible capacity is more 

than investment in dedicated capacity, by using equation: * * *

1 2( ) ( , ) 0.fV k V k k   Based on (F.1a) we can 

conclude that (F.1a) is a second order function of fc . So the mentioned equation has two solutions. 
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If 
fc  is bigger that the bigger root and smaller than smaller root, flexible capacity is always preferred. But from 

(24), 
fc  should be less than 

3

,
i i

i P

i

i P

A B

A










 which is always between the two mentioned roots. So the threshold 

value should be always less than the smaller root of the equation * * *

1 2( ) ( , ) 0,fV k V k k   which is given in 

(4.7). 

 

Appendix G. 

 
Proof of proposition 4.8 

Proof Based on (27) we can define: 
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Solving equation 1 2 2( , ) 0f c c c   results to 1 2.c c  So we can conclude that: 1 1 1( , )f c c c  and 

2 2 2( , ) .f c c c  . 

Now we assume that c2 > ci, so we can write: 2 1 , 0.c c      We should prove that 1 1 2 2( , ) ,c f c c c   

it can be seen that 1 1( , )f c c  is increasing in 1 2,c c : 

From proposition 4.6 we know that i ic B  and Ai is always negative, so: 
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Based on the above 1 2( , )f c c  is increasing in 1 2, ,c c  now we can obtain: 

   1 1 1 1 1, ,f c c f c c c    

   2 2 2 2 2, ,f c c f c c c     

 

Now we assume that 2 1,c c based on the above result we can conclude: 1 1 2 2( , ) ,c f c c c  we can prove the 

reverse also when 1 2c c  using the same procedure. So proposition 4.8 is proved. 
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(B.1b) is strictly concave and its optimal value is always inside the given region of (B.1b), let: 
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To find the optimal value of ( )ff k  we use: 
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Then, we have to show that its optimal value is 
*
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For the second part we have: 
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We suppose that B1 > B2 then: 
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First, we have to show that (B.2b) is bigger than (B.2a), we can write: 
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Second, we have to show that (B.2b) is bigger than (B.2c), we can write: 
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Based on the previous results we can conclude that maximum value of *( )f fV k  can be obtained through (B.2b). 
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(D.1a) is maximized when ,
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(D.1b) is maximized when ,
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Difference between (D.1b) and (D.1a) can be found as: 
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Based on the above result we can conclude than maximum of (D.1b) is strictly bigger than the maximum of (D.1a) 

, so 1 2( , )dV k k  is concave ((D.1b) is concave) and its maximum is equal to the maximum of (D.1b). 


