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Abstract 
The nature of input materials is changed as long as the product reaches the consumer in many types of 

manufacturing processes. In designing and improving multi-stage systems, the study of the steps 
separately may not lead to the greatest possible improvement in the whole system, therefore the study 

of inputs and outputs of each stage can be effective in improving the output quality characteristics. In 

this study, the double sampling method is applied for inspection where decision variables are the sample 

size per sampling time and the maximum amount of defective items in the first and second samples in 
each stage. Furthermore, uncertainty in parameters such as production, inspection, and replacement 

costs are included in the objective function and handled by a Monte-Carlo based optimization method. 

In order to show the efficacies of the proposed method, a numerical example has been designed, and 
further analyses on solutions have been conducted. 
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1. Introduction 
 

The behavior of manufacturing companies in the market is changing due to the increasing 

dynamism, economic, social, political, and technological complexity. The products, processes 

and systems are challenged by external stimuli, including new regulations, new materials, 

technology, services, communications, cost pressures, and sustainability (Colledani et al., 

2014). 

The quality of products is considered as a major concern in the manufacturing system, 

therefore, implementation of optimal inspection policies is of great importance for reducing 

quality cost (Zhu et al., 2016). 

The study of quality control methods in multi-stage systems is essential to improve and control 

products and prevent the production of non-conforming items in the system. Products 
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and systems with more complexity are facing a larger set of defects. In these situations, 

companies are inspecting large amounts of investment in flexible inspection systems and 

management issues. 

For statistical modeling in multi-stage systems, the samples are randomly taken of each stage 

of the system, and according to the policy of the double sampling design, the sample is 

accepted, rejected or taken again. The advantage of double sampling designs over single 

sampling is that if the first sample size is less than single sampling designs, in cases where it is 

possible to make a decision by the first sample, less average total inspection is obtained 

(Montgomery, 2009). In real situations, estimating the cost elements have a significant degree 

of uncertainty due to the variety of error sources and the actions needed to remove their effects 

across the production line. Moreover, the inspection activities may include some error specially 

in detecting faulty items. 

Using double sampling designs reduces defective items in the system as a result of increased 

productivity and reduced costs. Therefore, this study was carried out to minimize the inspection 

costs using a double sampling method under uncertainties in cost elements such as inspection, 

production, and replacement. 

The model presented in this study is a stochastic nonlinear integer programming for which a 

Monte-Carlo based genetic algorithm is used to find a best possible solution in reasonable time.  

The rest of the paper is organized as follows. Review of major works in the literature is 

presented at Section 2, the process under study and its statistical relationships are described at 

Sections 3 and 4. Finally, a numerical example is presented in Section 5 to optimize the 

inspection costs by using the double sampling method and the concluding remarks are given at 

Section 6. 

 

2. Literature review 
Manufacturing systems generally consist of several stations or stages in which raw materials 

are passed through various operations and ultimately become final products. This type of 

system is called a multi-station (or multi-stage) manufacturing system (MMS) (Zhou et al., 

2003). In MMS, each processing station produces some defective items. The statistical process 

control techniques (SPCs) can be used as a simple idea to maintain the quality level of an 

inspection station after the last station, so that all non-conforming products can be eliminated 

using complete inspection and nonconforming items can be detected. This is generally referred  

as Output Inspection (Sarhangian et al., 2008). However, using output inspection, all 

investment efforts and costs are lost by generating defective items across previous stations. It 

is more reasonable that inspection stations after each major production process are considered 

to ensure that a certain quality level is maintained. Therefore, the inspection strategy indicates 

the number and location of inspection stations and inspection parameters (sample size, 

sampling distance, acceptance number, or control limitations) for each inspection station. 

Considering quality control in MMS, the main issue is that the output of operations at the lower 

stations can be achieved by operating at high stations. In addition, a product or a work-in-

process part in a multi-station process may introduce additional variations. This phenomenon 

is called the stream of variations. When quality features or process variables are quantitative, 

mathematical models can describe the quality state function. By building the model, we can 

find the factors affecting final quality features, which is also important for analyzing the root 

cause of whether deviation from the quality targets occurs. 

Statistical and engineering models are considered as two common approaches to build 

relationships between quality features and process variables. The regression based method 
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developed by Hawkins was introduced as a standard statistical method for describing the 

quality function. The relationship between input quality and output quality variables is 

identified by a regression model through the data gathered from monitoring the specific station 

(Hawkins, 1991). 

Yum and McDowellj (2007) used rework, repair and disposal to deal with defective products. 

They used an integer 0-1 program to solve optimal inspection settings.  

Zantek et al. (2002) have used a simultaneous equation model to show the statistical 

relationships between quality measurements from several stations in a process. As the methods 

are based on a statistical model, it is usually possible to explicitly describe the relationship 

without any requirements of special engineering knowledge. 

Zhou et al. (2003) discussed a sample of a two-dimensional car panel manufacturing process 

that includes multiple operation stations and product inspection for surface finish, common 

quality and dimensional nonconformities. Also, the authors presented another example 

involving hundreds of stations, and more than 30 stations are only needed for engine 

machining.  

Xiang and Tsung (2008) introduced an exponential moving average (EMA) design as a 

monitoring method for multi-station processes described by an engineering space state. 

Shi and Zhou (2009) examined quality control and improvement for multi-station systems. In 

some conditions, the defective ratio of each station is not considered, but the relationship 

between the quality characteristics of the two adjacent stations can be described due to the 

regression models or engineering models. The only relationship between manufacturing 

stations is the quality level of product delivery from the former station to the latter one. In 

addition, the nature and defects ratio is such that the number of non-conforming items can be 

algebraically added from one station to another. For example, the ratio of non-conforming 

station 2 is equal to the failure rate of station 1 plus the failure rate generated at station 2. 

Attribute control charts (ACCs) are helpful for addressing this problem.  

Heredia-Langner et al. (2002) formulated a very limited multi-stage inspection problem in 

which all inspection stations were to be partially corrected, and solved it using the Genetic 

Algorithm (GA). In this model, type I and II of the inspection errors are considered, but only 

the defective rate is considered in the control state. 

Kaya and Engin (2007b) presented an ACC optimization model based on the sampling method 

to accept multi-stage processes. They solved a model using the binary genetic algorithm coding 

structure. They provided an application for a piston manufacturing process. Also, the sample 

size, n, was suggested by GA to determine the ACCs.  

Engin et al. (2008) have provided a similar model based on a fuzzy method for ACC in multi-

station processes. They assumed that some of the parameters in the model are fuzzy. The model 

design was based on acceptance sampling and was solved by GA. The proposed method is used 

in an engine poppet valve manufacturing company. In the Kaya model as shown above, the 

defective rate for each station remains unchanged. It is assumed that MMS is always running 

under controlled conditions without changing the quality. Out-of-control conditions would 

cause ignoring the increase in nonconforming product prices. 

Williams and Peters (1989) presented a model for the economic design of an integrated np 

control system within a sequential production process of several stations. A combination of 

dynamic programming and direct search techniques has been used to determine the set of 

sample policies leading to minimum expected total cost. The disadvantage of dynamic 

programming is that when the number of process stations increases, the complexity of the 

calculations will dramatically increase. In addition, optimal decisions for each station were 

separately made by the same station, rather than considering the whole multi-station system.  

Azadeh et al. (2012) developed the particle swarm optimization (PSO) to find an optimal 

inspection policy in a multi-stage production process. This policy includes three decision 
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variables. First: the inspection stages which are carried out. Second: inspection tolerance. 

Third: inspection sample size. Also, multiple ACCs in multi-station manufacturing systems can 

be categorized as an optimization problem in the inspection strategy. The comprehensive 

inspection policy will be complex for multi-stage processes due to all the simultaneous 

inspection parameters in the joint optimization problem. 

Sarhangian et al. (2008) have introduced the Particle Swarm Optimization (PSO) algorithm to 

find an optimal inspection policy in the sequential multi-stage station manufacturing process. 

This policy consists of three decision variables for optimization including stations in which the 

inspection is carried out, the inspection tolerance and the sample size. Also, they used 

simulation optimization in order to determine the optimal inspection strategy for multi-station 

production systems. The optimal inspection strategy leads to minimized total inspection cost 

ensuring the required quality of the output is achieved. Hence, simulation was used for the 

complexity of the problem in the multi-stage process model and used to calculate inspection 

costs. 

Van Volsem et al. (2007) have used a simulation model to study the multistage inspection 

problem and find an optimal inspection strategy by an evolutionary algorithm. Their method 

made possible determination of the inspection type (0%, 100% or sampling), which must be 

considered at each station. 

Zhu et al. (2016) concluded that the MMS inspection policy not only affects the production of 

defective products, but the detection of an out-of-control state could lead to considerable costs 

due to quality changes. The calculation of the MMS state becomes very complex and the cost 

analysis becomes hard when each station is in the out-of-control or control state. All products 

are sent from the beginning to the end in the MMS system, and non-conforming ones are 

discarded when they are sampled by sampling. 

This study has focused on design optimization of the inspection strategy including quality 

changes for MMS, in which multiple ACCs are generally used for quality control. All products 

are transmitted through MMS, and nonconforming ones are discarded if they are found by the 

sampling inspection method. The station may remain in the out-of-control or control state. The 

MMS cost structure is analyzed based on Steady-State Probability Distribution (SSPD). 

The ACC optimization model is then implemented, in which the goal of optimization is to 

minimize costs, and the parameters of the decision-making variables of the control graph are 

shown by m, n, and c. The ACCs optimization model is facing problems of large solution space. 

Therefore, an integrated algorithm which combines some metaheuristic algorithms has been 

suggested. Fig. 1 shows a kind of MMS in which raw materials are transmitted with non-

conforming rates through assembly stations, and will be finally converted to the final products. 

Each station can be in out-of-control or control state according to the conditions and equipment 

and environmental factors. In (Colledani and Tolio, 2012), it is expected that the variable cost 

(EVC) of each product includes two parts when entering the MMS. One of them is the expected 

production cost (EPC) and the other is the loss of expected success (ESC), due to non-

conformities among the finished products. 

For mass production, it can be assumed that MMS operations are in a stable condition, and 

EVC selection in this situation is a cost effective criterion for the evaluation. Parameters mi, 

1n and 1c  should be considered to minimize EVC. 

Rau et al. (2011b) examined sampling design for optimal allocation of inspection in multi-stage 

systems considering reworks. The defective components detected in the sampling plan are 

returned to the related workstations for rework. This study minimizes the total cost of sampling 

design at each workstation.  

A comparative study of major works mentioned in this section has been provided in Table 1.
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Table 1. Comparison of major works in the literature 

Real 

application 

Solution 

approach 

Objectives and 

features  

Decision variables  Work 

Cell phone 

body 

production 

Markov chain 

Tabu search 

Total cost Sampling interval 

Sample size 

Control limit 

Zhu et al. (2016) 

- Genetic 

algorithm 

Total cost Sample sizes Rau et al. (2011a) 

Engine piston 

production 

Genetic 

algorithm 

Inspection cost 

Probability of 
acceptance 

Sample size 

Acceptance number 

kaya (2009) 

Engine piston 

production 

Genetic 

algorithm 

Total cost 

Probability of 

acceptance 

Sample size 

Acceptance number 

Kaya and Engin 

(2007a) 

- Particle swarm 

optimization 

algorithm 

Cost of quality Number of inspections 

Tolerance of inspection 

Inspection sample size 

Azadeh and Shamekhi 

Amiri (2012) 

- Simulation Costs of rework 

and inspection 

Number of inspections 

Inspection interval 

Level of preventive 

maintenance 
Production quantity 

Wang and Chenxu 

(2014) 

- Monte Carlo 

simulation 

Genetic 

algorithm 

Total cost Number of repairs 

Inspection interval 

Lindsay and Bishop 

(1964) 

- Genetic 

algorithm 

Inspection cost Sample size 

Defective number limit 

Heredia-Langner et al. 

(2002) 

 

- Stochastic 

Genetic 

algorithm with 

risk measures 
 

 Cost of 

sampling, 

inspection, and 

replacement 

Sample size of first sample 

Sample size of second sample 

Defective number limits at each 

sample 

This study 

 

We can conclude from the above table that quality inspection in multistage systems is an 

important task to ensure the final product satisfaction. Therefore, this paper tries to consider 

several aspects of this problem which have not been taken into account together. Among them, 

the main focus would be on inspection error, uncertainty in cost elements in designing an 

optimal double sampling scheme for inspection in multistage systems. Also, a new hybrid 

genetic algorithm has been introduced to handle the uncertainties. 

 

3. Process description and mathematical modeling 
Since, the number of items ( N ) is relatively large, two samples with 1n  and 2n  sizes are 

randomly selected to specify the quality level.  

If the number of defective items in the first sample ( 1d ) is less than or equal to a predetermined 

value ( 1c ), the sample will be accepted and all items will go to the next step of production. But 

if 1d > 2c , the sample is rejected, and all items will be inspected in order to repair all defective 

items or replace them by healthy ones. However, when 1d > 1c and 1d < 2c , it is not possible to 

decide on the rejection or acceptance of the items, so the second sample (of size 2n ) must be 

taken. 

N is considered much larger than 1n  and 2n , and the probability of accepting the first sample 

is calculated by the binomial distribution as follows: 
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1

1 1 1

1

d1
1 1

d 0 1 1 1

!
(d ) (1 )

d !( d )!

c
n d

a

n
p p c p p

n





   


                                       (1) 

 

Here, p is the percentage of defective items produced.  

The acceptance probability of the second sample is as follows: 

1 2 2 1 1 2( )ap p d d c c d c                                                                                     (2) 

 

The average outgoing quality in the double sampling design and for the described process is 

equal to: 

1 1 2[ ( ) ( )]pa aP N n P N n n
AOQ

N

    
                                          (3) 

and the average total inspection (ATI) is: 

1 1 2( ) (1 )a a aATI n p n n p N p                         

(4)            

where, a a ap p p   . 

 

The average sample number (ASN) can also be computed by the following equations in case of 

curtailment in the second sample (Montgomery, 2009). 
2

1

2
1 1 2 2 2 2 2

1

1
( , )[ ( , ) ( 1, 2)]

c

M L M

j c

c j
ASN n p n j n p n c j p n c j

p 

 
                              (5)

  

where, is the probability of observing exactly j defectives in a sample of size , 

and  is the cumulative probability function for defectives. 

In this study, the quality policy for the process requires product inspection after each major 

production stage. 

 

3.1. Modeling assumptions 

Before the model is introduced, some assumptions are considered in modeling and analysis 

phases are expressed. 

 

1. The lot size ( ), the sizes of the first and second samples ( 1 2,i in n ), and the percentage 

of production defective items in stage have valid values for using a binomial 

distribution (for all stages of the process). 

2. The only relationship between the stages of production is the quality level of production 

delivery from one stage to the next. For example, if the percentage of defective items 

from stage 2 has two components: AOQ1 and the percentage of defective products only 

in the second stage.  

3. When examining a product, the inspector may encounter two types of errors: rejecting 

the healthy items (type I error) and accepting the unhealthy ones (type II error). These 

errors are constant for the inspector. The inspection cost at each stage is directly 

proportional to the total number of inspection. 

4. The following conditions illustrate how to decide on 1 2,i in n and 1 2,i ic c at each step. 

a. The inspection cost is minimized. 

b. The items under inspection are accepted with high probability, if the percentage of 

defects in the current stage is small. 

( , )MP n j j n

 ,LP n j j

iN

i
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c. All constraints, for example, the level of quality or sample size under inspection to 

be met at different stages. 

5. In order to achieve an optimal design of sampling procedure, two levels of quality

 have been assumed with corresponding errors ,  , so that the following 

criteria are met: 

a. The acceptance probability of a lot with  quality level is greater than 1  . 

b. The acceptance probability of a lot with  quality level is less than . 

 

3.2. Notations 

: The ratio of defective items at stage i  

: The lot size at step i 

 : The size of the first sample inspected at stage i 

: The size of the second sample inspected at stage i 

: The parameter of acceptance of the first sample in stage i 

: The parameter of acceptance of the second sample in stage i  

: Number of defective items in the first sample in stage i 

: Number of defective items in the second sample at stage i  

: Type I error of the first sample at stage i (healthy but rejected) 

: Type II error of the sample at stage i (defective but accepted) 

: The probability of acceptance by the first sample in stage i 

: The probability of acceptance by the second sample in stage i  

: The probability of the items being rejected in stage i 

 : Nondeterministic sampling cost at stage i 

: Nondeterministic inspection cost at stage i 

: Nondeterministic replacement cost at stage i 

Where,  is calculated as follows: 

(1 ) (1 )i i i i iR p p A                                                                                                                   (6) 

1

1 1 1

1

d1
1 1

d 1 1 1

!
(d ) (1 )

d !( d )!

i

i i i

i

c
n di

i i i i i

i i i

n
pa p c R R

n

    


                                                                  (7) 

1 2 2 1 1 2( )i i i i i i ipa p d d c c d c                                                                                                 (8)  

Where, ,i ipa pa 
follow the binomial distribution. 

Also, is as follows:  

Where,
0

1i i ip p AOQ   , and 0 0AOQ  . 

 The average output quality at stage i if , 0i iA  , is calculated according to the following 

formula,  
0

1 1 1 2( )[ ( ) ( )]i i i i i i i i i
i

i

p AOQ Pa N n Pa N n n
AOQ

N

 

    
                      

                                         

(9) 

0 1( , )i ip p

0

ip

1

ip 

ip

iN

1in

2in

1ic

2ic

1id

2id

iA

iB

ipa 

II

ipa

iR

ia

ib

ix

iR

ip
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and also if the average output quality in step i if , 0i iA  , is calculated as given below. 

1 2 1

1 2 1

1 2

( )

( ) ( )(1 )

( )(1 )

(1 )

i i i i i i i

i i i i i i i i i

i i i i i

i

i i

n n Pa N n

p Pa N n n N n Pa

N n n Pa
AOQ

N R

 







 



    
 

      
 

   


 

(10) 

 

The average total of inspections in stage i was calculated as follows: 

1 1 2( ) (1 )

1

i i i i i i i
i

i

n pa n n pa N pa
ATI

R

    



                                          (11) 

Finally, the proposed optimization model can be written with respect to the mentioned 

equations. 

1 0 1 1min (a (1 ) )i i i i i i i iTC ASN b ATI x N pa p     
 

         (12) 

           (13) 

           (14) 

           (15) 

           (16) 

           (17) 

           (18) 

           (19) 

 

In the above equation, 1 2,i in n and 1 2,i ic c are integers and the values of *

iAOQ , *

iATI  are 

predetermined. It should be noted that the superscripts correspond to the assumed level of 

quality for the lots. 

The objective function (12) includes the total cost of sampling, inspection, and replacement in 

each stage. Constraints (13) and (14) limit the average output quality and average total 

inspection at each stage. Constraints (15) and (16) are related to the probability of acceptance 

for the two assumed quality levels. 

Constraint (17) implies that the maximum defective number allowed at the second stage must 

be greater than the one at the first stage. Constraint (18) guarantees that the maximum allowed 

value for defective items cannot exceed the sample size. 

 

4. Uncertainty analysis and solution methods 
As mentioned before, the objective function (12) that denotes total costs in such systems 

consists of some parameters with nondeterministic value. These parameters with a bar symbol 

( , ,i i ia b x ) are related to the cost structure of the assumed system. There are many research 

studies that support this assumption for cost values (Zhang et al., 2016, Hong et al., 2016, Gao 

et al., 2016). Due to the existing variability in elements of production, inspection, and 

replacement activities, uncertainty analysis can be a realistic way to handle the related costs.  

In this study, we apply a Monte-Carlo simulation based approach embedded in GA to cope 

with the uncertainty in parameters. Uniform distribution has been assumed to be followed by 

1 *

i iAOQ AOQ 1,2,...mi 

1 *

i iATI ATI 1,2,...mi 

0 1ipa   1,2,...mi 

1

ipa  1,2,...mi 

2 1 0i ic c  1,2,...mi 

1 2 1i in c  1,2,...mi 

1 2 1 20, 0, 0, 0i i i in n c c    1,2,...mi 
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all nondeterministic parameters for which the lower and upper bounds must be estimated based 

on historical data or expert judgment. 

The Monte-Carlo technique iteratively evaluates functions of random variables considering one 

single value of each of them. Then, by some measures such as mean and variance of observed 

function values, the behavior of random outputs can be studied (Hubbard, 2014). 

 

4.1. Monte-Carlo based GA 

GA has been used to find the optimal solution for the problem in this study, because this 

algorithm always finds a fairly good solution (near optimal) in a reasonable time. Since the 

cost parameters in this model are considered to be nondeterministic, the Monte-Carlo 

simulation technique is applied to evaluate the objective function defined for GA calculation. 

Standard GA is a recognized method of non-classic/metaheuristic optimization and has been 

used in variety of research projects (Lin et al., 2015, Saghaei et al., 2014, Liu et al., 2015, 

Moura et al., 2015, Kim and Kim, 2017), so for the details of this method, one can refer to the 

mentioned works. It is worthy to note that modified versions of GA or hybrid editions of it and 

other metaheuristics algorithms have also been recently applied by researchers to improve GA 

performance in many more applications (2015, Shi et al., 2017, Kuo and Han, 2011, Soleimani 

and Kannan, 2015). As we used the Global optimization toolbox of MATLAB 2015, only the 

required entries for running GA in MATLAB will be provided next. Figure 1 includes a sub-

procedure of the proposed method embedded in GA. 

 

 
Figure 1. Sub procedure of Monte-Carlo technique embedded in GA to calculate the objective function 

 

4.2. Equivalent deterministic functions 

Mean and variance of a random variable are two main measures frequently used for 

simplification in analysis. Several ideas have also been suggested by researchers to combine 

these measures into a single aggregative function (Hejazi et al., 2014, Hejazi et al., 2012, Díaz-

García et al., 2005, Díaz-García and Bashiri, 2014, Hejazi et al., 2013). In this work, we address 

three main ideas to tackle the uncertainty. 

Standard Monte-Carlo method with the mean measure 

1

1 n
ii

ii

TC tc
n 

    (20) 

 

This measure is very simple to calculate and used for variables with usual behavior. Further, 

it fails to consider variability/dispersion of the distribution. 

Mean-variance measure 
2

1

( )

1

iin

ii

tc ATC
TC ATC z

n





 


   (21) 
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where ATC and  denote average iitc  and  percentile of a standard normal 

distribution function, respectively. In other words, Equation (21) calculates the upper bound of 

a one-sided  confidence interval. Since iitc is a summation of several random 

variables, we assume that the central limit theorem could provide a good approximation by 

using standard normal distribution for the cases that ,a b  and x have not been normally 

distributed. 

Since the sample variance term above is added, this measure is suitable for those experts who 

care about the dispersion around the mean value. 

 

c) Percentile measure 
[ , ]P N

TCTC y                       (22) 

 

where [ , ]P N

TCy  is an order statistic which estimates the th percentile of distribution 

function.  also rounds its argument to the nearest integer value.  

Where a degree of complexity increases or symmetry of the distribution is not assumed, it 

would be better to apply this measure. Of course, it needs more computational steps. 

In the next section, a numerical example is analyzed by the proposed method to illustrate the 

benefits gained from the developed model as well as to provide useful results and associated 

analyses. 

Again, it is worthy to note that the proposed method has the following main features that might 

be of interest for managers of intermediate level in inspection or quality assurance departments. 

 Optimal design of a double sampling method for multistage systems. 

 Finding optimal sample size and reject/accept limits in a double acceptance sampling. 

 Considering uncertainty in cost parameters by a probabilistic approach. 

 Applying measures beyond the mean value for analyzing the distribution of total cost 

functions. 

 Applying GA Toolbox in MATLAB to perform efficient computations. 

 Addressing inspection error in calculating the sampling performance measures. 

 

5. Numerical Example 
A numerical example is designed to be formulated by the proposed model and solved by GA. 

In order to evaluate effects of the stochastic parameters on the final value of the objective 

function, 25 iterations are run. This model has been implemented in the optimization toolbox 

of MATLAB 2015b software package. 

The parameters of a sequential three-stage process are shown in Table 2. Also,

.

z 
(1 )%

(1 )%

p TC

 .

   , 0.005,0.05  
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Table 2. Parameters used to design the numerical example 

Parameters Stages 1 Stages 2 Stages 3 

 10000 10000 10000 

 0.002 0.0005 0.0001 

 0.05 0.1 0.08 

 0.001 0.001 0.001 

 0.005 0.001 0.002 

 0.01 0.01 0.01 

 9000 9000 9000 

Inspection cost 25 30 40 

Replacement cost 33 40 70 

Sampling cost 10 20 30 

 

5.1. Deterministic GA for Double Sampling Design 
 

Table 3 shows the settings of the operators used in the GA toolbox of MATLAB in the 

numerical example. 
 

Table 3. Choice of GA setting for the numerical example 

Setting* Choice 

Mutation Constraint dependent 

Selection Uniform 

Cross-over Scattered 

Population size 80 

* Default settings have been chosen for the other ones.  

 

To get a better performance of GA, we also set bounds for the decision variables as:

1 2 1 25 100,0 500,1 10,1 50n n c c        . 

GA is used for the double sampling inspection problem and the value of the final objective 

function reached 1,434,444. Figure 2 shows how it converges during the optimization process. 

 

 
Figure 2. Convergence of the GA for the numerical example

N
0p

1p

A

B

*AOQ

*ATI
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Table 4. Design characterstics and their final values 

Variable Stage1 Stage 2 Stage 3 

 (0.002, 0.0028) (0.0025, 0.0058) (0.0026, 0.0048) 

 (102.96,10017) (59.61,10603) (55.84, 10405) 

 (1, 0.0496) (1, 0.05) (1, 0.0499) 

 (92,1),(339,8) (59,2),(344, 25) (53,1),(142,5) 

TC 1,434,444 

 

As it is observed in Table 4, it is meaningful to take more samples from the beginning stages, 

since the cost components are at lower levels. 

In order to make a comparison with the existing works, the GA has also been run for a single-

sampling design with inspection error for multi-stage systems (Heredia-Langner et al., 2002). 

If the single sampling design is used instead of double sampling designs, then the total cost is 

1,439,500 greater than double sampling output: 

1 1 2 2 3 3(( , ),( , ), ( , ) (151,3),(59,2),(88,3))n c n c n c  . 

As mentioned before, the proposed approach considers the interrelation (dependency) across 

the stages. If we find an optimal design individually for each of the stages independent from 

each other, we will see that total cost increases due to the higher cost components at the last 

stage, which is probably the most important stage. Table 5 includes a detailed cost comparison 

between these two approaches. 

 
Table 5. Cost-based comparison between the proposed and locally designed optimization approaches 

 Replacement cost Inspection cost Sampling cost 

 Stage 1 

Dependent 329182.19 2574.10 922.34 

Independent 329175.50 2541.93 964.44 

 Stage 2 

Dependent 397944.33 1788.45 1200.95 

Independent 398193.15 1419.81 930.73 

 Stage 3 

Dependent 697005.28 2233.57 1592.69 

Independent 697841.76 3104.04 2280.05 

 Total Cost 

Dependent 1434443.90 

Independent 1436451.40 

* Underlined values indicate the better approach. 

  

Monte-Carlo based GA for uncertainty analysis 

As mentioned before, the cost structure in the objective function is not easy to estimate 

precisely, so one might be interested to know how the uncertainties in cost parameters affect 

the results of optimization. For this purpose, three above-defined functions (Equations 20-22) 

are considered instead of Equation (12) and GA is run based on the procedure given before 

(see Figure 1). Also, a ±10% deviation, which is uniformly distributed around the point 

estimated values, is assumed for each cost component. Table 6 includes the optimal plan of 

acceptance sampling procedures for the three cases. 

0 1( , )AOQ AOQ
0 1( , )ATI ATI

 0 1,a ap p

 1 1 2 2,c ), ( ,cn n
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Table 6. Optimal sampling design corresponding to the three objective functions 

,  
Stages 

First Second Third 

Measures Mean (92,1),(339,8) (59,2),(344,25) (53,1),(134,5) 

Mean-variance (92,1),(330,8) (59,2),(344,25) (53,1),(135,5) 

Percentile (92,1),(446,10) (73,3),(346,26) (54,1),(251,14) 

 

We observed that the solutions from the percentile measure are more conservative than the 

others, as it takes more sample items, especially in the secondary sampling.  

 

 
Figure 3. Total cost average and its 3rd quartile at optimal values from each measure 

 
Table 7. Total ATI and ASN values of all stages of operations for each measure 

MEASURE Sum of ATI0 Sum of ATI1 Sum of ASN1 

Mean 218.210 31022.327 205.426 

Mean-variance 217.958 31021.740 205.493 

Percentile 237.833 31037.104 221.560 

 
Table 8. Final value of AOQs corresponded to the differenct quality levels 

MEASURE STAGES AOQ0 AOQ1 

MEAN 

1 1.986e-03 2.837e-03 

2 2.479e-03 5.802e-03 

3 2.574e-03 4.851e-03 

MEAN-

VARIANCE 

1 1.986e-03 2.841e-03 

2 2.479e-03 5.801e-03 

3 2.574e-03 4.849e-03 

PERCENTILE 

1 1.985e-03 2.826e-03 

2 2.475e-03 5.704e-03 

3 2.570e-03 4.806e-03 

 

As it is observed from the results shown in Figure 3, Table 7, and Table 8, while the percentile 

based approach has higher ATIs and ASNs at all stages, better outgoing quality levels are 

ensured either at assumed value (𝑝0) or at the shifted one (𝑝1).  

Accordingly, we can conclude some managerial insights from this study as follows. 

Systems with experienced quality engineering departments are recommended to apply the 

double sampling method instead of single sampling to reduce total cost of sampling.

 1 1,ci in  2 2,ci in

0

200000

400000
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800000

1000000

1200000

1400000

Mean Mean-variance Percentile
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1237400 1237400 1238300

Average cost Cost Q3
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An integrated sampling plan for all system stages is expected to lead to cost reduction in 

inspection operations as well as an improvement in outgoing quality levels. 

The proposed decision making model is capable and flexible enough to consider different 

situations and conditions on quality levels associated with type I and type II errors. 

Individual design of the acceptance sampling plan would result in combined errors or faulty 

items at the last stage of the operations. 

Uncertainty in costs is allowed in the proposed approach and handled by a Monte-Carlo 

simulation technique to analyze gains and losses related to each solution. 

 

6. Conclusion 
The relationships between stages and the impact of variables should be considered in order to 

achieve global improvement in today's complex systems. In order to improve and control 

products and prevent the production of non-conforming items in the system, it is essential to 

study quality control methods in multi-stage systems. More complex products and systems are 

faced a larger set of failures. In such conditions, large amounts of investment would be required 

to establish flexible inspection systems. Applying double sampling designs reduces defective 

items in the system as a result of increased productivity and reduced costs. Therefore, this study 

aimed to find a plan for sampling and inspection operations so that the sampling, inspection, 

and replacement costs are minimized while the outgoing quality levels are satisfied in a 

multistage system. 

Due to some avoidable sources of uncertainty especially in the cost component estimation, we 

tried to develop a GA with an embedded Monte-Carlo method to reach the optimal solution of 

the proposed integer nonlinear programming model. 

The results showed that integrated modeling of such a system would result in a better design 

than local modeling of each stage. Further, the optimal double sampling plan will reduce total 

cost of the system. For further studies, the application of other meta-heuristic algorithms is 

suggested to reduce CPU time of the optimization. A more complex probability pattern for cost 

components can also be considered in the future to show the efficiency of the risk measure 

versus mean value optimization. Modeling systems with different flow materials including 

rework area would also be an interesting extension of the current study. 

 

Funding 
This work was supported by the Iran's National Elites Foundation [15/96595]; 

 

References 
Azadeh, A., Sangari, M. S., and Amiri, A. S., (2012). "A Particle Swarm Algorithm for Inspection 

Optimization in Serial Multi-Stage Processes", Applied Mathematical Modelling, Vol. 36, pp. 1455-
1464. 
 

Azadeh, A., and Shamekhi Amiri, A., (2012). "A Particle Swarm Algorithm for Inspection Optimization 

in Serial Multi-Stage Processes", Applied Mathematical Modelling, Vol. 36, pp. 1455-1464. 
 

Colledani, M., and Tolio, T., (2012). "Integrated Quality, Production Logistics and Maintenance 

Analysis of Multi-Stage Asynchronous Manufacturing Systems with Degrading Machines", Cirp 

Annals - Manufacturing Technology, Vol. 61, pp. 4. 
 

Colledani, M., Tolio, T., Fischer, A., Iung, B., Lanza, G., Schmitt, R., and Váncza, J., (2014). "Design 

and Management of Manufacturing Systems for Production Quality", Cirp Annals, Vol. 63, pp. 773-

796.



Partial inspection problem with double sampling designs in multi-stage systems … 

 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol.6, No.1  Page 15 

Díaz-García, J. A. and Bashiri, M., (2014). "Multiple Response Optimisation: An Approach from Multi-

Objective Stochastic Programming", Applied Mathematical Modelling, Vol. 38, pp. 2015-2027. 
 

Díaz-García, J. A., Ramos-Quiroga, R., and Cabrera-Vicencio, E., (2005). "Stochastic Programming 

Methods in the Response Surface Methodology", Computational Statistics and Data Analysis, Vol. 49, 

pp. 837-848. 
 

Engin, O., Çelik, A., and Kaya, İ., (2008). "A Fuzzy Approach to Define Sample Size for Attributes 

Control Chart in Multistage Processes: An Application in Engine Valve Manufacturing Process", 

Applied Soft Computing, Vol. 8, pp. 1654-1663. 
 

Gao, Y., Yang, L., and Li, S., (2016). "Uncertain Models on Railway Transportation Planning Problem", 

Applied Mathematical Modelling, Vol. 40, pp. 4921-4934. 
 

Hawkins, D. M., (1991). "Multivariate Quality Control Based On Regression-Adjusted Variables", 
Technometrics, Vol. 33, pp. 61-75. 
 

Hejazi, T. H., Bashiri, M., Díaz-García, J. A., and Noghondarian, K., (2012). "Optimization of 

Probabilistic Multiple Response Surfaces", Applied Mathematical Modelling, Vol. 36, pp. 1275-1285. 
 

Hejazi, T. H., Seyyed-Esfahani, M. and Badri, H., (2014). "Two-Stage Stochastic Programming Based 

on the Desirability Function to Optimize the Performance of an Internal-Combustion Engine", 

Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 
Vol. 228, pp. 104-114. 
 

Hejazi, T. H., Seyyed-Esfahani, M., and Mahootchi, M., (2013). "Quality Chain Design and 

Optimization by Multiple Response Surface Methodology", The International Journal of Advanced 
Manufacturing Technology, Vol. 68, pp. 881-893. 
 

Hejazi, T. H., Seyyed-Esfahani, M., and Mahootchi, M., (2015). "Optimization of Degree of 

Conformance in Multiresponse-Multistage Systems with a Simulation-Based Metaheuristic", Quality 
and Reliability Engineering International, Vol. 31, pp. 645-658. 
 

Heredia-Langner, A., Montgomery, D. C., and Carlyle, W. M., (2002). "Solving a Multistage Partial 

Inspection Problem Using Genetic Algorithms", International Journal Of Production Research, Vol. 

40, pp. 1923-1940. 
 

Hong, S., Wernz, C., and Stillinger, J. D., (2016). "Optimizing Maintenance Service Contracts Through 

Mechanism Design Theory", Applied Mathematical Modelling, Vol. 40, pp. 8849-8861. 
 

Hubbard, D. W., (2014). How To Measure Anything: Finding The Value Of Intangibles In Business, 

John Wiley and Sons. 
 

Kaya, (2009). "A Genetic Algorithm Approach to Determine the Sample Size for Attribute Control 
Chart", Information Sciences, Vol. 179, pp. 1552-1566. 
 

Kaya, and Engin, (2007). "A New Approach To Define Sample Size Attributes Control Chart In 

Multistage Processes: An Application In Engine Piston Manufacturing Process", Journal of Materials 
Processing Technology, Vol. 183, pp. 38-48. 
 

Kaya, İ. and Engin, O. 2007b. A New Approach To Define Sample Size At Attributes Control Chart In 

Multistage Processes: An Application In Engine Piston Manufacturing Process. Journal Of Materials 

Processing Technology, 183, 38-48. 
 



Partial inspection problem with double sampling designs in multi-stage systems … 

 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol.6, No.1  Page 16 

Kim, H., and Kim, P., (2017). "Reliability–Redundancy Allocation Problem Considering Optimal 

Redundancy Strategy Using Parallel Genetic Algorithm", Reliability Engineering and System Safety, 
Vol. 159, pp. 153-160. 
 

Kuo, R. J., and Han, Y. S., (2011). "A Hybrid of Genetic Algorithm and Particle Swarm Optimization 

for Solving Bi-Level Linear Programming Problem – A Case Study On Supply Chain Model", Applied 
Mathematical Modelling, Vol. 35, pp. 3905-3917. 

 

Lin, C. D., Anderson-Cook, C. M., Hamada, M. S., Moore, L. M., and Sitter, R. R., (2015). "Using 

Genetic Algorithms to Design Experiments: A Review", Quality And Reliability Engineering 
International, Vol. 31, pp. 155-167. 
 

Lindsay, and Bishop, (1964). "Allocation of Screening Inspection Effort-Adynamic-Programming 

Approach", Management Science, Vol. 10, pp. 342-352. 
 

Liu, X., Zheng, S., Feng, J., and Chen, T., (2015). "Reliability Reallocation for Fuel Cell Vehicles Based 

On Genetic Algorithm", Quality and Reliability Engineering International, Vol. 31, pp. 1495-1502. 
 

Montgomery, D. C., (2009). Statistical Quality Control, Wiley New York. 
 

Moura, M. D. C., Lins, I. D., Droguett, E. L., Soares, R. F., and Pascual, R., (2015). "A Multi-Objective 

Genetic Algorithm for Determining Efficient Risk-Based Inspection Programs", Reliability 

Engineering and System Safety, Vol. 133, pp. 253-265. 
 

Rau, H., Cho, K., and Wang, Y., (2011). "Optimal Inspection Allocation for Workstations of Attribute 

Data with Multi-Characteristics in Multi-Station Systems", Engineering Materials, Vol. 450, pp. 397-

400. 
 

Rau, H., Cho, K. H., and Wang, Y. H., (2011). "Optimal Inspection Allocation for Workstations of 

Attribute Data with Multi-Characteristics in Multi-Station Systems", Key Engineering Materials, Vol. 

450, pp. 397-400. 
 

Aghaie, A., Fatemi Ghomi, S. M. T., and Jabari, S., (2014). "Economic Design of Exponentially 

Weighted Moving Average Control Chart Based On Measurement Error Using Genetic Algorithm", 

Quality and Reliability Engineering International, Vol. 30, pp. 1153-1163. 
 

Sarhangian, V., Vaghefi, A., Eskandari, H., and Ardakani, M. K., (2008). "Optimizing Inspection 

Strategies for Multi-Stage Manufacturing Processes Using Simulation Optimization", 2008 Winter 

Simulation Conference, 7-10 Dec. 2008, pp. 1974-1980. 
 

Shi, J., Liu, Z., Tang, L., and Xiong, J., (2017). "Multi-Objective Optimization For A Closed-Loop 

Network Design Problem Using An Improved Genetic Algorithm", Applied Mathematical Modelling, 

Vol. 45, pp. 14-30. 
 

Shi, J., and Zhou, S., (2009). "Quality Control and Improvement for Multistage Systems: A Survey", 

Iie Transactions (Institute Of Industrial Engineers), Vol. 41, pp. 744-753. 
 

Soleimani, H. and Kannan, G., (2015). "A Hybrid Particle Swarm Optimization and Genetic Algorithm 
for Closed-Loop Supply Chain Network Design In Large-Scale Networks", Applied Mathematical 

Modelling, Vol. 39, pp. 3990-4012. 
 

Van Volsem, S., Dullaert, W., and Van Landeghem, H., (2007). "An Evolutionary Algorithm And 
Discrete Event Simulation For Optimizing Inspection Strategies For Multi-Stage Processes", European 

Journal of Operational Research, Vol. 179, pp. 621-633. 



T. H. Hejazi, P. Roozkhosh 

 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol.6, No.1  Page 17 

Wang, K., and Chenxu, D., (2014). "A Mixed-Effect Model for Analyzing Experiments with Multistage 

Processes", Quality Technology and Quantitative Management, Vol. 11, pp. 491-511. 
 

Williams, W. W., and Peters, M. H., (1989). "Economic Design of an Attributes Control System for a 

Multistage Serial Production Process", International Journal of Production Research, Vol. 27, pp. 

1269-1286. 
 

Xiang, L., and Tsung, F., (2008). "Statistical Monitoring Of Multi-Stage Processes Based On 

Engineering Models", Iie Transactions (Institute Of Industrial Engineers), Vol. 40, pp. 957-970. 
 

Yum, B. J., and Mcdowellj, E. D., (2007). "Optimal Inspection Policies in A Serial Production System 
Including Scrap Rework And Repair: An MILP Approach", International Journal of Production 

Research, Vol. 25, pp. 1451-1464. 
 

Zantek, P. F., Wright, G. P., and Plante, R. D., (2002). "Process and Product Improvement in 
Manufacturing Systems with Correlated Stages", Management Science, Vol. 48, pp. 591-606. 
 

Zhang, X., Huang, S., and Wan, Z., (2016). "Optimal Pricing and Ordering In Global Supply Chain 

Management With Constraints Under Random Demand", Applied Mathematical Modelling, Vol. 40, 
pp. 10105-10130. 
 

Zhou, S., Huang, Q., and Shi, J., (2003). "State Space Modeling Of Dimensional Variation Propagation 

in Multistage Machining Process Using Differential Motion Vectors", IEEE Transactions On Robotics 
And Automation, Vol. 19, pp. 296-309. 
 

Zhu, H., Zhang, C., and Deng, Y., (2016). "Optimisation Design of Attribute Control Charts For Multi-

Station Manufacturing System Subjected To Quality Shifts", International Journal of Production 
Research, Vol. 54, pp. 1804-1821. 

 

 

This article can be cited: Hejazi T.H., and Roozkhosh, P., (2019). "Partial inspection 

problem with double sampling designs in multi-stage systems considering cost 

uncertainty", Journal of Industrial Engineering and Management Studies, Vol. 6, No. 1, 

pp. 1-17. 

 

  Copyright: Creative Commons Attribution 4.0 International License. 

 
 

 

 
 


