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Abstract 
Control charts are powerful tools to monitor quality characteristics of services or production processes. 
However, in some processes, the performance of process or product cannot be controlled by monitoring 

a characteristic; instead, they require to be controlled by a function that usually refers as a profile. This 

study suggests employing exponentially weighted moving average (EWMA) and range (R) control 

charts for profile monitoring, simultaneously. For this purpose, the parameters of these control charts 
should be determined in a way that the expected total cost is minimized. In order to evaluate the 

statistical performance of the proposed model, the in-control and out-of-control average run lengths are 

applied. Moreover, the existence of uncertain parameters in many processes is a barrier to attain the 
best design of control charts in practice. In this paper, the economic-statistical design of control charts 

for linear profile monitoring under uncertain conditions is investigated. A genetic algorithm is used for 

solving the proposed robust model, and the Taguchi experimental design is employed for tuning its 
parameters. Furthermore, the effectiveness of the developed model is illustrated through a numerical 

example. 
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1. Introduction 
Control charts as the most important tools in statistical process monitoring (SPM) are usually 

used to detect the occurred assignable cause in manufacturing processes. Sample size ( )n , 

sampling interval ( )h  and control limit coefficient ( )l  are three main decision variables 

associate with control charts which quality engineers must take some technical and behavioral 

decisions about them. The main approaches that have been presented in the literature to 

determine these decision variables are heuristic, economic design (ED) and economic-

statistical design (ESD). 
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Heuristic approach recommends sample size of 4 or 5, three sigma control limit coefficient and 

1-hour sampling interval. This method has attracted great attention due to its simplicity in 

industrial practice. ED approach minimizes the expected total cost of using control chart per 

time unit in a process. On the other hand, ESD approach searches a scheme that minimizes the 

expected total cost subject to statistical quality constraints. 

In the context of ED, Duncan (1956) proposed the first economic design scheme for control 

charts. He recommended replacing general guidelines for the design parameters of control 

charts with process-specific design to minimize the average cost of applying X  control chart. 

Montgomery and Klatt (1972) discussed an economic design of 2T  Hoteling control chart. 

Lorenzen and Vance (1986) proposed another general model for economic design of control 

charts. 

In order to improve statistical performance of ED models, Saniga (1989) proposed economic-

statistical design of X  and R charts. Chen (1995) used the model proposed by Montgomery 

and Klatt (1972) to develop economic-statistical design of 2T  Hoteling control chart. 

Montgomery et al. (1995) discussed economic-statistical design of exponentially weighted 

moving average (EWMA) control chart with considering the Lorenzen-Vance cost function. In 

conjunction with simultaneous monitoring of multiple quality characteristics, Linderman and 

Love (2000) employed the Lorenzen-Vance cost function to develop economic-statistical 

design of multivariate exponentially weighted moving average (MEWMA) control chart. Tolley 

and English (2001) investigated the impact of constraining the in-control average run length 

on the optimal cost performance of both economic design of EWMA and combined EWMA- X  

control schemes. In order to monitor both process mean and variability, Serel and Moskowitz 

(2008) presented economic-statistical design of EWMA control chart. Niaki et al. (2013) 

employed a genetic algorithm for economic-statistical design of variable sampling interval X  

chart for non-normal correlated samples. Faraz and Saniga (2013) used multi-objective genetic 

algorithm for economic-statistical design of X  and S2 charts. Amiri et al. (2014) developed 

economic-statistical design of MEWMA chart in an uncertain environment based on Markov 

chain. In many cases, the quality of a product or a process can be effectively monitored by a 

function or profile. Woodall (2007) reviewed the researches on the use of control charts to 

monitor process and product quality profiles. Amiri et al. (2010) presented a case study of 

profile application in the automotive industry. Saghaei et al. (2009) used a cumulative sum 

(CUSUM) control chart for simple linear profile monitoring. Lee and wang (2010) used EWMA 

control charts with variable sampling intervals to monitor linear profile. Noorosaana et al. 

(2014) developed economic and economic-statistical design of phase II linear profile 

monitoring. Khedmati and Niaki (2015) developed an approach for phase II linear profile 

monitoring in the presence of auto correlated profiles. Ershadi et al. (2015) presented 

economic-statistical design of a simple linear profile with variable sampling interval. Khedmati 

and Niaki (2016) presented a new control approach for phase II monitoring of a simple linear 

profile in multi-stage processes. In their proposed approach, a single max-EWMA-3 statistic is 

applied for simultaneous monitoring of the parameters of a simple linear profile. Although the 

effectiveness of a control chart design depends on the estimation accuracy of input parameters, 

data with high accuracy are rarely available in practice. In other words, some parameters 

usually deviate from their estimated values due to unanticipated disruptions. In such situations, 

the robust economic-statistical design of control charts is necessary in practical applications. 

Actually, the aim of the robust optimization approach is to find a solution that is robust to 

uncertainty of input data. Pignatiello and Tsai (1988) used the robust idea for the first time 

when accurate estimations for the cost parameters are not available in design of control charts. 

Linderman and Choo (2002) developed the concept of robust economic design of control charts 

where multiple economic and process scenarios are considered. Vommi and Seetala (2007) 
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designed X  control chart when the input parameters are unknown but bounded. Safaei et al. 

(2015) presented robust economic-statistical design of X  control chart. They developed a 

heuristic algorithm to obtain the robust scheme of X  control chart. Amiri et al. (2014) 

considered an interval robust optimization for the economic-statistical design of MEWMA 

control chart. Li et al. (2016) proposed a one-sided nonparametric monitoring procedure using 

the single sample sign statistic for detecting a shift in the location parameter of a continuous 

distribution. In Wu et al. (2017) an optimal design procedure for robust-likelihood cumulative 

sum control schemes is presented and several corresponding enhancements are considered. 

Considering descriptions mentioned in the last paragraphs, a model is presented in this paper 

consisting of the following properties: (1) According to the best of our knowledge, so far the 

problem of uncertain data has not been considered for profile monitoring procedures. In this 

paper, to fill the mentioned research gaps, the economic-statistical design of EWMA-R control 

charts to monitor profile characteristic is developed. (2) In this model, parameters of profile 

monitoring procedure are determined in a way that the expected total cost is minimized subject 

to the statistical constraints. (3) Then, in order to deal with uncertain input parameters, a robust 

counterpart model for the ESD profile monitoring approach that hereafter called RESD model 

is presented. This paper presents a new framework to deal with the uncertainty in chart 

parameters within the context of economic-statistical design of a simple linear profile. 

The rest of the paper is organized as follows: A brief discussion of liner profile is presented in 

Section 2. In Section 3, the total expected cost function is presented and the economic-

statistical model for profile monitoring procedure is given. A robust counterpart for economic-

statistical design is developed in Section 4. In Section 5, the genetic algorithm that is used for 

solving the proposed robust economic-statistical model is presented. In Section 6, to better 

clarify the proposed model, a numerical example is considered. Also, a Taguchi orthogonal 

array design is used for tuning the GA parameters. Our concluding remarks are assigned in the 

final section. 

 

2. Description of linear profiles 
Before designing the EWMA-R charts to monitor profile characteristics, the used notations to 

formulate the problem are introduced in Table1. As demonstrated in Table 1, notations are 

divided into three parts: indices, decision variables and parameters. After that, the concept of 

profile monitoring is defined briefly and eventually the mathematical formulation is presented.   

 
Table1. Notations 

Notation Description 

Indices  

i   Index of set points 

j  Index of samples 

s   Index of scenarios 

Decision variables  

h   The time between two successive samples 

l   Control limit coefficient 

n   Number of set points 

r   The weighting parameter in combined EWMA-R chart 

Parameters  

0A   Intercept parameter of profile function 

1A  Slope parameter of profile function 

0 ja  The least square estimation of 0A  at 
thj  profile 
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1 ja   The least square estimation of 
1A  at 

thj  profile 

a  Fix cost of sampling  

b  Variable cost of sampling 

0C  Quality loss cost in per time unit while the process is in the in-control state 

1C  Quality loss cost in per time unit while the process is in the out-of-control state 

2 3d and d  Constants related to control limits of range chart 

E  Expected time to sample and construct the profile 

F  Fix cost of each false alarm 

m   The number of parameters that may deviate from their nominal values 

jR  R  statistic for the
thj  profile 

i nS  Average number of samples taken while the process is in the in-control state 

0T  Expected time to search when a false alarm signal takes place 

1T  Expected time for detecting an assignable cause 

2T  Expected time to repair the process 

W  Cost of locating and repairing an assignable cause 

X   Independent Variable at profile function 

Y   Response variable at profile function 

Ŷ   Predicted value for Y  

jZ   EWMA  statistic for the 
thj  profile  

   The budget of uncertainty  

1  A binary variable that equals zero if the process is stopped during the search for an 

assignable cause and equals one if the process continues to operate 

2  A binary variable that equals zero if the process is stopped during the repair and equals 

one if the process continues to operate 

  Expected time between last sample in the in-control period and occurrence of an assignable 
cause 

  

  

 
2.1. Concept of profile 

To understand the concept of profile monitoring, an example from Kang and Albin (2000) is 

presented as follows: 

Suppose that an artificial sweetener (aspartame) is produced at a plant, and what is considered 

as a quality characteristic is the amount of sweetener that can be dissolved per liter of water at 

different temperatures. After analyzing several samples of aspartame, it was observed that there 

is a non-linear relationship between the water temperature and the amount of dissolved 

sweetener. So, in such processes, we should monitor a relationship (linear or non-linear), which 

is usually referred to as profile, instead of one or multiple quality characteristics. 

2.2. Linear profile formulation 

Assume that the quality of a process or product is characterized by a linear function between 

random variable Y  and independent variable X . In such situation, the performance of process 

or product can well modeled by the following linear relationship: 

(1) 0 1 , l hY A A X X X X     

 

Where 0A and 1A  are defined as the intercept and slope parameters while lX  and hX  specify 

the range of X . Moreover, it is assumed that the random variable   is independent and 

normally distributed with mean 0 and variance
2 . With the purpose of estimating 0A  and 1A  
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parameters, n  set points 
1 2 1, ,..., ,n nX X X X

 in the range  ,l hX X  are randomly selected. For 

the thj  profile, process outputs are
1 2 ( 1), ,..., ,j j n j n jY Y Y Y

. Since it is supposed that the 

relationship between the response variable and the independent variable is linear, the least 

square estimations for 
0A  and 

1A  are obtained as follows: 

(2) 
( )

1

x y j

j

xx

S
a

S
 

0 1j ja y a x      3  

Where 
1

1

n

ij

i

y n y



   and 
1

1

n

ij

i

x n x



   are the sample mean of the response  Y  and 

independent variable   X , respectively, also 
( )x y jS  and 

xxS  are defined as follows: 

(4) ( )

1

( )
n

x y j i j i

i

S y x x


  

2

1

( )
n

xx i

i

S x x


   (5)  

 

It is well known that statistics 
0 ja  and 

1 ja  are normally distributed with means 
0A  and 

1A  the 

following variances: 

 2 2 1 2 1

0 xxn x S      (6)  

2 2 1

1 xxS    (7)  

 

Furthermore, the covariance between 1 ja  and 0 ja  is defined as: 

2 2 1

01 xxS     (8)  

 

According to the independent variable X , the predicted value for dependent variable Y  

specified by ŷ  is: 

0 1
ˆ

j jy a a x   (9)  

Also the residual as the difference between the observed and predicted values of dependent 

variable that is given as:

0 1i j i j j j ie y a a x    (10)  

The independent random variables i je  are normally distributed with mean 0  and variance 
2  

where an unbiased estimator for 
2  is: 

1 2

1

( 2)
n

j i j

i

MSE n e



    (11)  

Since the estimators 1 ja  and 0 ja  are not independent from each other, we cannot control these 

characteristics with two separated control charts. With considering this issue, Kang and Albin 

(2000) presented the multivariate and the residual strategies to monitor a simple linear profile. 

In the multivariate approach, 
2T  Hoteling control chart is employed for monitoring the 

intercept and slope parameters while in the residual approach, EWMA and R charts are used for 

monitoring average residuals between the reference profile and sample profile. In this paper, 
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we apply the residual approach to develop a robust economic-statistical model that presented 

in the next subsection. 

 

2.3. The residual approach for monitoring the simple linear profile 

In this approach, EWMA chart is used for monitoring the residuals  i je . For sample j , we have 

n  residuals
i je , 1,2,...,i n  corresponding to the n  set points. The average of residuals for 

sample j  is obtained as follows: 

1

n

i j

i
j

e

e
n




 
(12)  

 

The thj  sample statistic for the EWMA chart,
jZ  is as Equation (13) in which 0 1r   is the 

weighting constant and
0 0Z  . 

1(1 )j j jZ r e r e     (13)  

 

The lower and upper control limits for the EWMA control chart are defined as: 

(2 )

r
LCL l

r n
 


 (14)  

(2 )

r
UCL l

r n



 (15)  

 

Where l  and n  are the control limit coefficient and the number of set points, respectively. The 

R chart is considered along with EWMA chart to monitor the residuals for two reasons: (1) To 

detect changes in the process standard deviation, and (2) To take care of the unusual situation 

where the absolute values of the residuals are large, but, canceling out caused by the signs of 

the residuals results in small values for the average of the residuals (Kangs and Albin, 2000). 

For the R chart, the sample statistic, the lower and upper control limits are given as: 

max ( ) min ( )j i ij i ijR e e   (16)  

2 3( )LCL d ld   (17)  

2 3( )UCL d ld   (18)  

 

Where 2d  and 3d  in Equations (17) and (18) are constants that relate the range and standard 

deviation, which are dependent on the number of set points. 

 

3. Economic-statistical model 
With respect to the mentioned explanations earlier, the objective function and constraints 

related to the model are described as follows: 

 

min ( , , , )c n h l r  (19)  

:Subject to   

0 lARL ARL  (19.1)  

1 uARL ARL  (19.2)  

n N   (19.3)  
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0 1r   (19.4)  

0h and l   (19.5)  

Where ( , , , )c n h l r  is the expected total cost per time unit that should be minimized. Also, 
lARL

and 
uARL  are the lower and upper bounds for ARL0 and ARL1, receptively. In order to decrease 

the number of false alarms, the in-control average run length 
0ARL must be bigger than a pre-

determined value of
lARL , as illustrated in Equation (19.1). On the other hand, the control chart 

should detect the occurrence of the assignable cause as soon as possible. This is possible when 

out-of-control average run length
1ARL is less than a pre-determined value of

uARL , as shown 

in Equation (19.2). In this paper, we use the Markov chain approach to calculate ARL0 and 

ARL1 as are explained in Appendix A. As previously mentioned, n  is the number of set points 

and Equation (19.3) clarify that n  must be a positive integer. Equation (19.4) ensures that the 

weighting constant parameter r  of EWMA chart is selected in the interval [0,1]. Moreover, the 

sampling interval and control limit coefficient must be real positive numbers as shown in 

Equation (19.5). 

 Also, the economic design (ED) model for profile monitoring is obtained by eliminating the 

constraints (19.1) and (19.2) from the model (19).  

 

3.1. The expected total cost  

In this study, the expected total cost per time unit is considered as ratio of the expected cycle 

cost to the expected cycle time while a quality cycle is defined as the time between the start of 

successive in-control periods as illustrated in Figure 1. In the next subsections, the expected 

cycle time and the expected cycle cost are introduced.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.1.1. The expected cycle time 

In this model, it is assumed that the process starts its operation in the in-control state, and after 

a period of time shifts to an out-of-control state due to the occurrence of an assignable cause. 

Hence, the expected cycle time is the sum of in-control and out-of-control periods. In this study, 

it is assumed that time to occur an assignable cause follows a negative exponential random 

variable with mean
1


. In this situation, if production process continues during the search for 

assignable cause, the expected in-control time is simply
1


. On the other hand, if production ceases 

Cycle starts in 

the in-control 

state 

The last sample 

taken before an 

assignable cause 

occurs 

An assignable 

cause occurs 

The first sample 

taken after an 

assignable cause 

occurs 

The assignable 

cause detect 
The assignable 

cause removed  

In-control sate 
Out-of- control state 

Figure 1. A quality cycle  
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during the search state, the expected in-control time is sum of 
1


 and the expected time spent for 

searching false alarms. Let 
0T be the expected search time when a false alarm signal issues. 

Then the expected time for searching the false alarms is 
0T  times the expected number of false 

alarms, which equals to
0

0

i nS T

ARL
, where 

i nS  is the expected number of taken samples while the 

process is in the in-control state. 

1

h

in h

e
S

e











 (20) 

 

Hence, the expected in-control time can be obtained as Equation (21). 

 1 0

0

11
( )

i n

in

S T
E T

ARL






   (21)  

 

The expected out-of-control time ( )outT  consists of five time periods as follows:   

The expected time between occurrence of an assignable cause and the first taken sample in the 

out-of-control period ( )h   in which   denotes the expected time between the last sample in 

the in-control period till the occurrence of an assignable cause.
 

   

 

1

( 1)

1 1

1

j h
h

h

jh

j h hh

jh

e t jh dt h e

ee dt
















 

  
 






 (22) 

 

2. The expected time until issuing a true alarm
1[ ( 1)]h ARL  . 

3. The expected time for constructing a profile ( )nE . 

4. The expected time to discover the occurred assignable cause
1( )T . 

5. The expected time to repair the process
2( )T . 

 

Therefore, the expected out-control period in a cycle is attained as follows: 

   1 1 2outE T nE h ARL T T       (23)  

 

According to the mentioned explanations, the expected cycle time is obtained as Equation 

(23)  

 
 1 0

1 1 2

0

11
[cyle time]

i nS T
E n E h ARL T T

ARL







        (24)  

3.1.2. The expected cycle cost 

The expected cycle cost consists of four parts: (1) expected quality loss cost in both in-control 

and out-control states, (2) expected false alarm cost, (3) expected cost of detection of the 

occurred assignable cause and repair process and (4) expected sampling cost. 

1. Expected quality loss cost: The quality loss cost is imposed to the manufacturer in both in-

control and out-of-control periods. However, it is an obvious fact that the quality loss cost 

extremely increments when the process goes to out-of-control state because the probability of 

producing non-conforming items increases. To calculate the quality loss cost when the process 

is in-control (out-of-control), the expected in-control (out-of-control) time must be multiplied 
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by the quality loss cost in per time unit. Consequently, the expected quality loss cost is 

formulated in Equation (25). 

  0
1 1 1 1 2 2[quality losscost]

C
E C nE h ARL T T  


        (25)  

2. The expected false alarm: This cost is obtained by multiplying the cost associated with each 

false alarm F  by the expected number of false alarms which depends on the average numbers 

of sampling in the in-control period and the probability of type I error. Equation (26) indicates 

the expected false alarm cost. 

0

[ falsealarmcost]
i nS F

E
ARL

  (26)  

 

3. Cost of repairing the process: In each cycle, process goes to out-of-control state and W  is 

the expected cost for locating and repairing the assignable cause.  

 

4. The expected sampling cost: The expected cost of each profile construction consists of the 

fixed and variable sampling costs and is defined as a linear function of the number of set points 

as a bn

To compute the profile construction cost in a given cycle, the expected cost of each profile 

construction must be multiplied by the number of sampling points, which can be obtained 

through dividing the expected cycle time by sampling interval. Hence, the expected cost for 

constructing the profile is obtained according to Equation (27). 

 1 1 1 2 2

1
[profile construction cost]

a bn
E nE h ARL T T

h
  



   
        
   

 (27)  

 

Combining four mentioned costs gives the expected cycle cost as follows: 

  

 

0
1 1 1 1 2 2

0

1 1 1 2 2

1

i nS FC
C nE h ARL T T W

ARL

a bn
nE h ARL T T

h

  


  


       

   
        
   

 (28)  

 

Finally, the expected total cost per time unit is obtained by dividing the expected cycle cost by 

the expected cycle time as follows: 

 

  

 
 

 

 
 

0
1 1 1 1 2 2

0

1 0

1 1 2

0

1 1 1 2 2

1 0

1 1 2

0

, , ,
11

1

1 S1

i n

i n

i n

S FC
C nE h ARL T T W

ARL
C n h L r

S T
nE h ARL T T

ARL

a bn
nE h ARL T T

h

T
nE h ARL T T

ARL

  







  







  
        

   
  

      
  

     
        

    

  
      

  

 (29)  

 

4. Robust economic-statistical model  
The effectiveness of the economic-statistical design of control charts depends on estimation 

accuracy of input parameters, but data with high accuracy are rarely available in practice. 
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Ignoring the uncertainty in the input data may leads to severely infeasible solution. In such 

situations, it seems to be a reasonable way to accept a suboptimal solution for the nominal 

values of the data to certify that the solution remains feasible and near optimal when the data 

varies. Therefore, formulation of robust counterpart for mathematical programming (19) is 

necessary to tackle the uncertain input data. The used robust optimization approach in this 

paper is based on heuristic approach developed by Safaei et al. (2015).  

 

4.1. The robust counterpart for ESD of linear profile monitoring  

In the suggested ESD model for profile monitoring, it is assumed that all parameters are 

deterministic. But as mentioned earlier, some parameters may deviate from their nominal 

values due to unanticipated disruptions. In this study, the set parameters  0 1, , , , , ,E F W C C a b  

are considered as uncertain parameters, while the other cost and process parameters are set on 

their nominal estimated values. 

To deal with the uncertainty in the input data of mathematical programming (19), it is supposed 

that the values of uncertain parameters are unknown but bounded, thereby one can specify a 

suitable uncertainty set U  for possible values of uncertain parameters. Moreover, to avoid 

having an infinite number of constraints, the set of uncertain values separated into a set of 

scenarios ( )S . Thus, the robust counterpart of the uncertain economic-statistical model is 

formulated as follows: 

 

min max ( )s

x X s S E C   (30)  

:Subject to   

0

s

LARL ARL s S    (30.1)  

1

s

UARL ARL s S    (30.2)  

n N   (30.5)  

0 1r   (30.4)  

0hand L   (30.5)  

 

Where ( )sE C  is the expected total cost for scenarios s  per each solution ( )x . Equations (30.1) 

till (30.5) are the same as the constraints described in the economic-statistical model. The 

descriptions of these constraints are explained in model (19). 

A concern with the proposed model is that it might be too conservative. In this regard, 

Bertsimas and Sim (2004) were introduced the concept of budget of uncertainty to deliver less 

conservative solutions. The budget of uncertainty gives to designer capability of trading off 

between robustness and performance entered into several different uncertainties set 

formulations. Interested readers are referred to Bertsimas et al. (2011) for details. The 

parameter , bounded below 0 and above by the number of parameters that can deviate from 

their nominal values, is called the budget of uncertainty. If 0  , all of the parameters are 

fixed on their nominal values, which is equivalent to solving the deterministic ESD model. In 

this situation, there is no protection against uncertainty and the obtained solution may be 

completely meaningless from a practical viewpoint. In contrast, if  takes the maximum 

possible value ( m  ), all uncertain parameters can deviate from their estimated values, 

simultaneously. In this situation, the problem is completely protected against uncertainty and 

a very conservatism solution is obtained. If (0, )m , the designer can makes a trade-off 

between the performance and the degree of conservative of the solution. Most of the robust 

optimization approaches in the literature has been developed for linear and quadratic models. 
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Hence, in the next section a heuristic algorithm for robust economic-statistical design of profile 

monitoring as a non-linear mathematical programing is explained. 

 

4.2. Heuristic algorithm for solving the RESD model 

In this algorithm, a set of scenarios are generated to avoid having an infinite number of 

constraints. Scenarios are classified into two groups: (1) random scenarios, and (2) extreme-

valued scenarios. To generate the random scenarios, one needs to consider all possible 

combinations of uncertain parameters. This will result in 
m 
 
 

combinations when the budget 

of uncertainty and the maximum number of uncertain parameters are   and m , respectively. 

For each possible combination, the values of  considered uncertain parameters are randomly 

generated within their 

bounds, while ( )m remained uncertain parameters are set on their nominal values. This 

procedure are repeated Sc  times, which leads to generation of 
m

Sc
 

 
 

random scenarios.  

In the extreme-valued scenarios, the parameters that can be deviate from their nominal values 

are set on extreme values of their bounds. This results in generating 2
m

  
 
 

 extreme-valued 

scenarios. Therefore, total number of generated scenarios is: 

 

2
m m

S Sc    
    

    
 (31)  

 

This procedure searches a solution that leads to minimization of maximum cost within all 

scenarios (i.e, min max ( )s

x X s S
E C

 
) and is feasible for all scenarios.  

 

5. A GA for optimizing ESD and RESD models 
Both the ESD and RESD models explained in the previous section are mixed integer non-linear 

mathematical models and have several complexities that prevent the model to be solved with 

exact methods. Three of these complexities are: (1) The mentioned models consists of both 

continuous and discrete decision variables; (2) the solution space is discontinuous and non-

convex; and (3) in the both objective function and constraints, some decision variables are in 

limits of an integral. There is a variety of solution procedures in the literature for solving such 

problems. Genetic algorithm is one of the most popular evolutionary algorithms that is applied 

to solve various problems. Molavi and Rezaee Nik (2016) and Fakhrzad and Alidoosti (2018) 

applied this algorithm to optimize a project scheduling and a location-inventory-routing 

problem, respectively. Also several studies in the control chart design literature such as Niaki 

et al. (2010), Noorossana et al. (2014), Faraz et al. (2016), and Ershadi et al. (2015) were 

employed genetic algorithm to solve their models. 

 

5.1. Solution representation 

Encoding (representation) of a given solution called chromosome is a key factor in developing 

genetic algorithm. For this purpose, four-dimensional strings are employed in which each 

dimension refers to a certain decision variable. In the presented model, the sample size (n) is 

an integer, while the sampling interval (h), control chart limit (l) and weight (r) are real 

numbers. Figure 2 depicts a given chromosome that is generated during the process solving. 
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0.645 2.6 1.5 12 Chromosome 

     

The forth gene: 

weight 

( )r 

The third gene: 

limit chart control 

( )l 

The second gene: 

sampling interval 

( )h 

The first gene: 

sample size 

(n)  

 

Figure 2. Chromosome representation 

5.2. Initial population 

The first step of GA is generation of initial population. In this regard, PS (population size) 

chromosomes are constructed by generating random values according to the defined intervals 

in Equation (32).  

(32) 0 1 ,0.5 10 ,0 4 ,0 1n h l r        

 

It is notable that to generate an initial value for discrete decision of sample size, a random value 

from a uniform distribution in the interval [0, 1] is generated as shown in equation (32). The 

discrete corresponding value of the sample size (n) is obtained according to Equation (33). 

(33)  1min((2 floor((15 2 1) )),15)n R      

 

In this situation, the generated sample size can vary between 2 and 15.  

 

5.3. Crossover 

In this study, the uniform crossover is used for combination of two parents. To do this, a 

uniformly distributed random vector in the interval [0,1] with the same size of a chromosome 

is generated and then, output chromosomes are generated with using linear combination of 

input chromosomes and random vector according to Equations (34) and (35). The process of 

uniform crossover is illustrated in Figure 3. 

 
Output chromosome 1= Random vector   Input chromosome 1+ (1- Random vector )  Input chromosome 2 (34)  

Output chromosome 2= Random vector   Input chromosome  2+ (1- Random vector )  Input chromosome 1 (35)  

 
Input chromosome 1 4 0.68 1.59 0.78 

 
Random vector 0.84 0.91 0.13 0.91 

 
Input chromosome 2 11 1.24 1.64 0.48 

 

 

Figure3. Two output chromosomes of the uniform crossover operation. 

 

5.4. Mutation 

In order to increase the diversification of genetic algorithm and to avoid trapping into local 

optimal, a Gaussian mutation operator is used with probability mP . For this purpose, firstly a 

discrete random variable between 1 and 4 is generated to select the gene that must be mutated. 

Next, a random value from a normal distribution with mean the current value of the selected 

gene and standard deviation SigV  is generated.  

 

(36) DV MaxV MinV  

(37) 0.1SigV DV  

Output chromosome 1 6 0.73 1.63 0.75 

Output chromosome 2 10 1.18 1.59 0.51 

Uniform crossover 
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Where MaxV and MinV are the vectors consisting of the maximum and minimum possible 

values of decision variables in the feasible space, respectively. Finally, output chromosome is 

obtained as illustrated in Figure 4. 

 

nput chromosome 8 0.68 1.59 0.78 

 

MaxV  1 10 4 1 

 
MinV  0 0.5 0 0 

 

DV  1 9.5 4 1 

 

SigV  0.1 0.95 0.4 0.1 

 

Figure 4. The output chromosome of the Gaussian mutation operation. 

 

6. Numerical example 
In order to understand the effectiveness of the proposed model, a numerical example is 

presented in this section. Suppose that an EWMA-R approach is used to monitor the quality 

characteristic y  that has a linear relationship with the characteristic x  as 2 1y x   in phase 

  . It is assumed that the slope and the intercept parameters have been specified during an in-

control process in phase I. In addition, we need to construct RESD model of the linear profile 

to detect a shift in the residual average of size 0.5, 0.75 and 1. Moreover, the parameters used 

in the expected total cost function are as Table 2. 

 
Table 2. The parameter values 

Parameter   E  0T  
1T  

2T  
1   

Value 0.1 0.05 0.0 2 2 1  

Parameter 2  0C  1C  F  W  a  b  

Value 2 10 100 50 25 0.5 0.01 

 

An upper bound for out-of-control average run length ( uARL ) and a lower bound for in-control 

average run length (
lARL ) are considered to improve the statistical performance of the 

proposed model. Selection of a greater value for lARL  results in the lower Type-I error 

probability of the designed profile monitoring. On the other hand, selection of a greater value 

for uARL  leads to the lower Type-II error probability. In this numerical example, lARL  and 

uARL  same as Linderman and Love (2000), Niaki and Ershadi (2012) and Noorosana et al. 

(2013) are set on 200 and 10, respectively. Therefore, the mathematical programming (19) can 

be rewritten as follows: 

 

Output chromosome  8 0.68 1.42 0.78 

Gaussian 

 Mutation 
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min ( , , , )c n h L r  (38)  

:Subject to   

0 200ARL   (38.1)  

1 10ARL   (38.2)  

n N   (38.3)  

0 1r   (38.4)  

0h and L  (38.5)  
 

 

 
6.1. Tuning of GA parameters 

Since the GA parameters have significant effects on the quality of the obtained solutions, the 

important parameters consisting of population size ( )PS , The probability of crossover 

operation ( )CP , The probability of mutation operation ( )mP  and the number of iterations ( )NG  

are tuned. To do this, three levels are considered for each parameter as shown in Table 2 and 

an orthogonal array experimental design including nine run experiments is employed. For each 

experiment, the algorithm is run three times, which are denoted by 
1C , 

2C  and 
3C  in Table 3. 

Next, the signal-to-noise (SN) ratio values are obtained as given in the last column of Table 3. 
3

2

1

1
10log

3
u

u

SN C


 
   

 
  (39)  

 

The values of SN  ratio for each experiment are listed in Table (4). Next, the sum of SN ratios 

of each parameter level is calculated and is given in Table (5). According to Table (5), the 

best combination of the GA parameters based the Taguchi design is 10Ps  , 0.7cP  , 

0.8mP  and 20NG  . 

 
Table 3. Levels of each parameter considered in orthogonal experiment 

Level 3 Level 2 Level 1 Range GA parameter 

12 10 8 8-12 Population size (PS) 

0.9 0.7 0.5 0.5-0.9 )CCrossover probability (P 

0.8 0.65 0.5 0.5-0.8 )mMutation Probability (P 

30 20 10 10-30 Number of generation (NG) 

 

orthogonal for GA parameters 9Experiment layout of L .4 Table 

SN 3C 2C 1C NG Pm PC PS Runs 

-35.524 60.531 58.093 60.531 10 0.5 0.5 8 1 

-34.468 52.97 52.743 52.97 20 0.65 0.7 8 2 

-34.388 52.3 52.3 53.624 30 0.8 0.9 8 3 

-34.402 52.562 52.36 52.745 30 0.65 0.5 10 4 

-34.605 53.884 54.345 52.962 10 0.8 0.7 10 5 

-34.568 54.68 52.669 53.144 20 0.5 0.9 10 6 

-34.463 52.864 52.864 52.864 20 0.8 0.5 12 7 

-34.835 56.554 56.554 52.313 30 0.5 0.7 12 8 

-36.179 61.72 61.72 69.478 10 0.65 0.9 12 9 
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Table 5. Sum of SN ratios at each level of GA parameters 

NG Pm PC PS  

-106.308 -104.927 -104.389 -104.38 Level 1 

axm103.499- -105.049 axm103.908- axm103.575- Level 2 

-103.625 axm103.456- -105.135 -105.477 Level 3 

Max specifies the largest sum of SN ratios for each parameter. 

 

6.2. Optimization of ESD model 

The GA with its tuned parameter values is employed to optimize economic and economic-

statistical designs. The results of the ESD model for profile monitoring are presented in Table 

6. The ED model is considered for comparison between the economic and the economic-

statistical designs of profile monitoring. As previously mentioned, the ED model is obtained 

from the ESD model by eliminating the statistical constraints in model (19).  

The results in Table 6 clarify that adding the statistical constraints to the optimization model 

improves significantly statistical measures while the difference between costs is negligible.  

 
Table 6. The comparison between the ED and ESD models for profile monitoring. 

Model cost n  h  r  l  0ARL  
1ARL  Cost   

Economic 

 
15 0.5 0.452 2.438 74.237 2.625 47.64 

Economic-statistical 

 
9 0.6 0.277 1.825 252.33 2.857 48.835 

Improvement of performance indicator 

 

 

  289.899% 8.838% -2.51% 

 
6.3. Robust optimization of the ESD model of profile monitoring  

In the previous subsection, it is assumed that parameters are deterministic and no uncertainty 

considered. However in this section to make the model more adapted to real manufacturing 

situation, it is considered that the parameters  0 1, , , , , ,E F W C C a b  can deviate from their 

nominal values while the other parameters are set on their estimated nominal values. For this 

purpose, two scenarios are investigated. In the first scenario, it is supposed that each uncertain 

parameter takes a random value from a uniform distribution with mean equal to its nominal 

value and interval size of 10% of the nominal value. In the second scenario, 20% deviation of 

the uncertain parameters from their corresponding nominal values is considered.  

The results of robust optimization for different values of budget uncertainty under shift size of 

0.5 in the mean residual are listed in Table 6. Results show that as the budget of uncertainty is 

increased from 0 to 2, the expected total cost increases significantly while increasing of the 

budget of uncertainty from 2 to 7 does not have tangible impact on the expected total cost and 

only a small increase in the expected total cost is visible. Table 7 presents similar results when 

the robust solutions are obtained under 20% shift scenario with this difference that increasing 

of the expected total cost is more evidence 10% shift scenario as the budget of uncertainty is 

increased. Comparing the robust solutions under 10% and 20% shift scenarios yields some 

interesting results. As expected, it can be seen that the total expected costs in 20% shift scenario 

are larger than their corresponding values in 10% shift scenario. Figure 5 shows the impact of 

the budget of uncertainty parameter on the expected total cost under both shift scenarios.
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Table 7. The robust solutions under 10% shift scenario with mean residual shift from   to 0.5  . 

  n  h  r  l  Cost  

0 9 0.6 0.277 1.85 48.835 

1 15 0.523 0.398 3.068 52.78 

2 15 0.511 0.4 2.849 53.031 

3 15 0.53 0.4 2.866 53.226 

4 15 0.5 0.392 3.052 53.329 

5 14 0.5 0.37 2.867 53.324 

6 15 0.52 0.285 2.913 53.4 

7 13 0.534 0.431 2.823 53.521 

 

 

Table 8. The robust solutions under 20% shift scenario with mean residual shift from   to 0.5  . 

  n  h  r  L  Cost  

0 9 0.6 0.277 1.85 48.835 

1 13 0.5 0.546 3.1 55.133 

2 13 0.5 0.344 3 56.969 

3 13 0.512 0.344 3.003 57.12 

4 14 1.96 0.359 3.223 57.275 

5 11 0.839 0.86 3.396 57.338 

6 11 0.5 0.344 3 57.67 

7 10 1.96 0.6 3.22 58.578 

 

Also, in order to investigate the impact of mean residual shift on the expected total cost, In 

Tables 8 and 9, we give the results of the expected total cost under 0.75  and 1 out-of-control step 

shifts in the 10% shift scenario, respectively. The results represent that increasing the shift size leads to 

smaller expected total cost. This issue is graphically confirmed by Figure 6. 

 
Table 9. The robust solutions under 10% shift scenario with mean residual shift from   to 0.75   

  n  h  r  l  Cost  

0 13 0.5 0.69 2.853 45.547 

1 12 0.89 0.569 3 48.13 

2 11 0.5 0.342 2.97 49.57 

3 11 0.5 0.448 3.44 49.62 

4 7 0.7 0.316 2.92 50.08 

5 11 0.51 0.4 3.22 51.19 

6 11 0.51 0.4 3.74 51.3 

7 11 0.52 0.745 3.286 51.78 
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Table 10. The robust solutions under 10% shift scenario with mean residual shift from   to 1  . 

  n  h  r  l  Cost  

0 12 0.5 0.573 3.04 44.435 

1 12 0.745 0.542 3.082 45.428 

2 8 0.503 0.607 3.01 47.994 

3 10 0.5 0.42 3.074 48.21 

4 6 0.5 0.419 2.92 48.54 

5 11 0.5 0.57 2.86 48.97 

6 11 0.5 0.427 2.86 49.239 

7 11 0.5 0.36 2.86 49.44 

 

 

 
 

Figure 5. Impact of   on the expected total cost under different scenarios (10% and 20%) 

 

 

 
 

Figure6. The expected total cost of RESD model under different shift values (0.5, 0.75 and 1) in the mean 

residual 
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7. Conclusions 
A small uncertainty in the input data can make the usual optimal solution completely infeasible 

from a practical viewpoint. In order to deal with the uncertainty in input data at profile 

monitoring, a robust economic-statistical design for profile monitoring in phase II was 

investigated. In order to improve the statistical performance of the proposed model, the in-

control and out-of-control average run lengths were used as two statistical measures. The 

suggested robust optimization approach provides alternative designs for the users to select the 

most preference design of EWMA and R charts based on superiority in cost and protection 

against uncertainty for profile monitoring. To solve both ESD and RESD models, a GA was 

employed and its parameters were tuned with using Taguchi L9 experimental design. The 

comparison between the ED and ESD models clarified that that adding the statistical constraints 

to the ED model improves significantly statistical measures while the difference between costs 

is negligible. Also, the results of solving the RESD model showed that a small increase in cost 

is visible as the budget of uncertainty becomes larger. In other words, the robust optimization 

for the ESD profile monitoring procedure can be used without incurring a significant increase 

in the expected total cost. Eventually, the impact of mean residual shift on the expected total 

cost in RESD model was investigated. The results showed that the scenarios with the bigger 

shift leads to less cost than the scenarios with smaller shift. 

As future research we suggest to extend the presented model in two directions: first, extension 

of the proposed model for monitoring non-linear profiles, and second, developing a RESD with 

variable parameters. 
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Appendix A. 
 
The in-control and out-of-control ARL of the EWMA control chart; 

In this study, 0ARL  and 1ARL  of EWMA chart are calculated based on the Markov chain introduced in the paper 

of Saccuci and Lucas (1990). In this approach, the interval between the UCL and LCL  of EWMA chart is divided 

into M  equally spaced subintervals, so that M is an odd integer, which are defined as follows: 
 

.1A 1 0 1 2 1 2 1 1[ , ], [ , ],..., [ , ],..., [ , ]K K K M M MR d d R d d R d d R d d     

 

Where K ewmad LCL K d    and ( ) /ewma ewmad LCL UCL M   . Each of these M  subintervals is 

considered as a transitional state in the Morkov chain method and  the transition probability from state K  to state 

L  is calculated by setting the EWMA statistic tZ  to the midpoint of the subinterval KR  when 1k t kd Z d    

. Therefore, 
,K Lp  is obtained as follows: 

 

.2A 
, 1

1 t 1 1

( | )

( | Z ( ) / 2)

K L t L t K

L t L K K

p P Z R Z R

P d Z d d d


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  

    
 

 

Note that 
( 1)/2 0Md   . Morais and Pacheco (2000) showed that the transition probabilities can be calculated 

iteratively as follows: 

 

.3A , , 1, , 1,...,k l k lk l f f k l mp    

 

.4A 
0.5 0.5

, {[2 ( (1 )( 0.5) 0.5 ] / ( [ (2 )] )}k lf L l r k r M M r r n        

 

where (.) is the cumulative distribution function for the standard normal probability distribution. Moreover, the 

control statistic is in the absorbing state if tZ  falls outside the control limits. According to the motioned 

definitions, process is in-control whenever the EWMA statistic tZ  falls in a transient state, while is out-of-control 

whenever tZ  moves to the absorbing state. The run length of the EWMA chart is obtained based on its initial 

probability vector inp  and the transition probability matrix P . The initial probability vector includes probabilities 

of Z  starting in each state of the Markov chain. In practice, the initial probability vector either consists of a 

single element equal to 1, or it will be a vector of steady state probabilities (Saccuci and Lucas, 1990). In this 

paper, it is assumed that the process starts its operations at state
1

2

M 
. The ARL  of the EWMA mean chart 

when the process mean shifts to 0   is given as follows: 

.5A 
1( ) 1T

ewma inARL p P    

 

Where ,[ ]k lP p  is the M M matrix of transition probabilities, inp  is the initial probability vector and 1  is 

a column vector of ones. For computing the in-control ARL  we set 0   in Equation .3A  and the out-of-

control ARL  can be obtained using the steady-state probability vector ( )sp  as the initial vector in Equation 

A.5. The sp is determined by solving 
T

in inp P p subject to1 1T

inp  . 


