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Abstract 

In this paper, a bi-objective mixed-integer mathematical model is presented for configuration of a 

dynamic cellular manufacturing system. In this model, dynamic changes and uncertainty in parts 

demand and machines reliability are considered. The first objective function minimizes total costs and 

the second one maximizes the machines reliability through minimizing machines failure. In addition, 

some routes are considered to produce each part based on operational requirements. An appropriate 

route is selected respect to the costs and operational time. Some parameters are considered under 

uncertainty in two categories. The first category such as demand is dependent on market condition and 

the uncontrolled competitive environment. The second one includes some parameters for production 

system and machines that are directly related to plans organized by production management. A robust 

optimization approach is used to deal with parameters uncertainty to produce feasible and optimal 

solutions. Furthermore, for validation and implementation of results in real world, a case study is 

investigated. Computational results show that the robust model reports better values for 

objective functions compared to the scenario-based model. In fact, Pareto-front which are resulted by 

robust model are dominated by scenario-based models’ Pareto front.  Sensitivity analyses on main 

parameters of the problem are performed to drive some managerial insights that help corresponding 

decision makers to provide suitable and homogenous decisions in a production system.   
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reliability; Robust optimization. 
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1. Introduction 
Cellular manufacturing system (CMS) is a well-known approach for improving 

a manufacturers’ productivity and competitiveness by providing low-cost, high-quality, 

customized products with small lot sizes within the shortest possible lead time. (Askin & 

Estrada, 1999; Wemmerlöv & Hyer, 1989; Wemmerlov & Johnson, 1997) identify advantages 

of CMS and explain how it can improve a manufacturing organization’s in overall system 

performance. While the benefits of CMS implementation are well documented, such systems 
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are not without drawbacks (Agarwal & Sarkis, 1998). The main problems are machine 

breakdown and reliability issues. Dedicating machines and part families to specific 

manufacturing cells in CMSs provides reductions in setup time. However, ultimately decreases 

planning flexibility – especially in the case of machine breakdowns (Seifoddini & Djassemi, 

2001). Machines are an essential component in a CMS and delays due to machine breakdowns 

affect the production rate and lead to scheduling problems and finally decrease in the 

manufacturing operation’s overall productivity. Hence, it is very critical to consider explicit of 

machine reliability when making cell formation decisions and during the operation allocation 

process. However, ignoring expenses is caused by these disturbances lead 

to increased production costs. Therefore, we should utilize an approach that considers both 

costs and reliability simultaneously. Machines are subjected to deterioration caused by usage 

and age in any dynamic manufacturing environment (H. Wang, 2002). Actually, machines 

reliability in dynamic manufacturing environments is changed in different production periods 

with regard to increase in age and running time. Also, with consideration of market condition 

and customer need within the different periods amount and type of parts demand are different. 

While organizations perform preventive maintenance to restrict or slow down machine 

deterioration, decreasing in machine reliability with increasing age and running time are 

inevitable. On the other hand, data related to one period is not useful for future periods. To 

achieve the expected performance levels for present and future periods, these dynamic changes 

must be considered for designing and formation of CMS. Another important point in 

designing the manufacturing environment and dynamic marketing is the fluctuation in part 

demand and part mixing. A manufacturing system that does not such considerations in design 

eventually needs a redesign and reconfiguration. On the other hand, relocating machines to 

adjust cells configuration is difficult and inefficient (Bedworth, Henderson, & Wolfe, 1991). 

Therefore, it is ideal to design a robust manufacturing cell for consideration of expected 

changes in parts demand in long periods. So, operational cost and costs result from installing 

machines is reached to at minimum level.  

Based on the above discussion, fluctuations consideration in parts demand and reliability and 

dynamic changes from each period to another period has a notable impact in total cost and 

appropriate performance of CMS. In this research, a mixed integer bi-objective model is 

represented for configuration of CMS which considers dynamic predictable changes in 

machines reliability and parts demand within different periods of time. The goals of problem 

include minimizing system overall costs and maximizing machines reliability through 

minimizing their failures. Also, for manufacturing of each part some routes are considered 

according to its operational requirement. Which based on cost and operation time, the 

appropriate rout is selected. 

One of the most important problems in manufacturing system design, is lack of capability to 

appropriate prediction of necessary parameters in manufacturing. These changes sometimes 

cause a lot of disruptions for managers and affect system efficiency. Therefore, using robust 

programming approach to deal with uncertainty leads the system has lowest risk in planning. 

To achieve this goal and proper planning by means of decision makers, in this study some of 

most effective manufacturing parameters are proposed under uncertainty conditions, and a 

robust optimization approach is used. 

The structure of this research is proposed in 7 sections. In section 2 previous studies are 

investigate in the form of literature review. In section 3 machines reliability calculation is 

presented. Problem definition and mathematical model formulation are presented in section 4. 

In section 5, robust programming approach is described. In section 6 computational results of 

PISHGAMAN PICH PARS Company are investigated as case study. Finally, the conclusion 

and the future suggestions are represented in section 7. 
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2. Literature review 
The majority of research done in cellular manufacturing systems in last two decades focus on 

configuration development of effective cell with consideration of improving productivity and 

competitiveness. Also, the number of studies that discuses the dynamic changes in machine 

reliability on cellular manufacturing system are limited. Some of the most important researches 

in these field are including (Vakharia & Kaku, 1993) that proposed a mixed integer 

mathematical model for designing CMS that consider parts reallocation problem with dynamic 

changes in parts demand and part mixing in multi period planning horizon. Moreover, (Wicks 

& Reasor, 1999) proposed a mixed integer programming model for designing CMS with 

consideration dynamic changes in parts demand and part mixing in multi period planning 

horizon. (Safaei, Saidi-Mehrabad, Tavakkoli-Moghaddam, & Sassani, 2008) proposed a new 

mathematical model which part demand and facility availability are considered as fuzzy 

parameters. They developed a new method based on fuzzy programming for solving extend 

mixed integer model to solve dynamic cell formation. (Safaei & Tavakkoli-Moghaddam, 2009) 

proposed an extended fuzzy parametric programming approach to solve dynamic cell formation 

with considering uncertainty in parts demand and machines capacity. (X. Wang, Tang, & Yung, 

2009) proposed a nonlinear multi objective mathematical model for dynamic cell formation 

through assigning weights into three conflicting goals which including minimizing moving 

costs in reconfiguration cells, maximizing machine capacity utilization rate and minimizing 

intracellular  movement within planning horizon. (Mahdavi, Aalaei, Paydar, & Solimanpur, 

2010) present an integer programming model for designing cellular manufacturing system in a 

dynamic environment. The advantage of their model is considering multi-period production 

planning, reconfiguration of dynamic system, duplicate machinery, machine capacity, labor 

availability time and assigning labor. (Reza Kia et al., 2012) investigate a non-linear mixed 

integer programming model for designing layout of dynamic CMS which product mix and parts 

demand are different within multi-period planning horizon. They considered three important 

decisions in designing cellular manufacturing system including: 1) Cell formation, 2) Group 

layout and 3) Group scheduling. Also, (R Kia, Khaksar-Haghani, Javadian, & Tavakkoli-

Moghaddam, 2014) introduce a mixed integer model for  layout designing for multiple classes 

of cellular manufacturing systems in a dynamic environment. Novelties of their model is 

determining cell configuration simultaneously and group layout as related decisions in CMS 

which their objective is to achieve optimal scheme in multi period planning horizon. (Erenay, 

Suer, Huang, & Maddisetty, 2015) proposed a mathematical programming method to design a 

multi-layered cellular system in environment with uncertain demand. Their research goal is to 

extend a mathematical model to minimize manufacturing cells cost.  (Renna & Ambrico, 2015) 

proposed a dynamic CMS with reconfiguration machines for controlling market disturb 

condition which present an approach including three mathematical model for designing, 

reconfiguration and manufacturing system scheduling. (Yılmaz & Erol, 2015) represented a 

programming model for reconfiguration of flexible manufacturing cells. They considered 

different factors such as demand changes, part mix, part diversity, existed routes and operation 

times. (Han, Zhang, Sun, & Xu, 2006) analysed reliability in flexible cellular manufacturing 

by using fuzzy error tree so that their basis is triangular membership function. (K Das, Lashkari, 

& Sengupta, 2007) introduced a preventive maintenance model for developing CMS 

performance with consideration of machines reliability and utilization of resource, the 

proposed model is based on combining cost and reliability approach. Also in the following 

(Das & Abdul-Kader, 2011) represented an integer multi objective programming model with 

the purpose of designing a cellular manufacturing system. So that within a multi - 

period planning horizon with consideration of dynamic changes in machine reliability and part 

demand remains optimal. (Ameli & Arkat, 2008) developed a pure linear integer programming 
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model for machine cells configuration with production amount and process scheduling of 

parts. Also, they considered In addition to alternative process routes for different 

parts, machine's reliability. In the following (Ameli, Arkat, & Barzinpour, 2008) presented a 

pure multi-objective linear programming model for cell formation problem with alternative 

process routes and machine reliability. Such that, their objectives are included simultaneously 

minimizing costs and maximizing reliability. (Arkat, Naseri, & Ahmadizar, 2011) represented 

a stochastic model for an extended cell formation problem with consideration of machine 

reliability. They investigated two main topics: 1) selecting best process plan for each part and 

assigning machines in cells. 2) Selecting the most reliable plan to minimizing moving costs. 

(Nodem, Kenné, & Gharbi, 2011) represented a method for diagnosing optimal manufacturing, 

repair/replace policies and also preventive maintenance for critical manufacturing systems. 

Some of formulation of robust and its application were introduced by (Ben-Tal & Nemirovski, 

1998, 1999, 2000; El Ghaoui & Lebret, 1997). They developed a robust framework in linear 

optimization. In the context of cellular manufacturing system, (Cao & Chen*, 2005) considered 

system configuration with commodity demand in number of stochastic scenarios. They 

developed an integrated cell formation optimization model and assigning part for creating 

robust system configuration with the objective of minimizing machine costs and material 

controlling costs between cells. (Pillai & Subbarao, 2008) proposed a robust approach in cells 

formation for parts and machines family, so that controlled demand changes and product mix 

without any movement.  (Ghezavati & Saidi-Mehrabad, 2011) represented integrated strategies 

and tactical decisions for designing robust CMS under uncertainty in processing time and 

demand in supply chain network. (Tavakkoli-Moghaddam, Sakhaii, & Vatani, 2014) develop 

a robust optimization method for a dynamic CMS combined with production planning, so that 

processing time of parts is under uncertainty. Their model is included concepts of cell 

formation, inter-cell layout and production planning in a dynamic environment. (Paydar, Saidi-

Mehrabad, & Teimoury, 2014) proposed a linear mixed integer model for integrating 

purchasing and production planning in supply chain and cell configuration simultaneously. 

Because of existent of uncertainty in some problem parameters like costumer demand and 

machines capacity they used the robust optimization approach for solving model. (Deep & 

Singh, 2015) represented a comprehensive mathematical model for robust designing of 

machine cells for manufacturing of dynamic part. Such that combines machine cell 

configuration design problem with assigning machine problem, the dynamic manufacturing 

problem and also part route problem. (Sakhaii, Tavakkoli-Moghaddam, Bagheri, & Vatani, 

2016) represent a robust optimization approach for dynamic integrate cellular manufacturing 

and also a production planning problem with unreliable machines. Their 

objectives include minimizing deterioration costs a movement cost, education and employing 

operators, parts circulation in cells, shortage and inventory costs. (Imran, Kang, Lee, Jahanzaib, 

& Aziz, 2017) presented a cell formation problem that would minimize the value-added work 

in process. To achieve the objective they formulated a mathematical model and solved it by 

using discrete event simulation and a hybrid genetic algorithm. (Hazarika & Laha, 2018) 

proposed a genetic algorithm heuristic for the cell formation problem with multiple process 

routes, sequence of processes and parts volume. The results demonstrate that the performance 

of the proposed approach in terms of total intracellular movements of parts and best route 

selection is either better or competitive with the well-known existing methods. (Kumar & 

Singh, 2019) proposed a novel modified simulated annealing approach to solving bi-objective 

robust stochastic cellular facility layout problem. The objectives include minimizing material 

handling cost and maximizing similarity score for multi-periods and provides a robust layout 

design considering stochastic demand for multi-periods. In the following a brief description of 

some researches in topics of cellular manufacturing systems are represented in Table 1. 
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Table 1. some researches in context of cellular manufacturing systems 

Ref. 

Problem conditions 
Objectives Alternative routing 

Machine 

reliability Deterministic 

Uncertainty 

Robust Fuzzy Stochastic SO MO 
Machine 

require 
Best rout 

(Cao & Chen*, 2005)          

(Yin, Yasuda, & Hu, 2005)          

(Nsakanda, Diaby, & Price, 

2006) 
         

(Tavakkoli-Moghaddam, 

Javadian, Javadi, & Safaei, 

2007) 

         

(K Das et al., 2007)          

(Ameli & Arkat, 2008)          

(Ameli et al., 2008)          

(Safaei et al., 2008)          

(Safaei & Tavakkoli-

Moghaddam, 2009) 
         

(Arıkan & Güngör, 2009)          

(Paydar, Mahdavi, Sharafuddin, 

& Solimanpur, 2010) 
         

(Solimanpur, Saeedi, & 

Mahdavi, 2010) 
         

(Chung, Wu, & Chang, 2011)          

(Das & Abdul-Kader, 2011)          

(Arkat et al., 2011)          

(Ghezavati & Saidi-Mehrabad, 

2011) 
         

(Tavakkoli-Moghaddam, 

Ranjbar-Bourani, Amin, & 

Siadat, 2012) 

         

(Tavakkoli-Moghaddam, 

Sakhaii, & Vatani, 2013) 
         

(Paydar et al., 2014)          

(Deep & Singh, 2015)          

(Farughi & Mostafayi, 2016)          

(Sakhaii et al., 2016)          

(Imran et al., 2017)         

(Hazarika & Laha, 2018)         

(Kumar & Singh, 2019)         

This paper          

Based on the investigated studies, design and reconfiguration of CMS under uncertainty 

conditions are presented by many researchers. This topic is important because appropriate 

forecasting of effective parameters in designing of manufacturing system is difficult and 

always has lack of enough accuracy. Also, with regard to nature of manufacturing systems and 

probability of occurring machines deterioration, designing of robust system to deal with 

changes in related parameters is an essential issue in manufacturing. Which yet did not have 

been investigated comprehensively. Actually, with regard to literature review, this paper design 

a robust multi objective model for planning of manufacturing parts for the first time with 

consideration of machines reliability that in is described completely section 1. 

3. Machines reliability analysis in cellular manufacturing systems 

3.1. Machines availability 

Each machine in a predefined time, is in one of two situations: failed (under repair) or in 

working mode. By utilizing Markovian approach in this system, the moment and time interval 

that machines are available calculated by following formula in research of (Das & Abdul-

Kader, 2011):
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j machine index 

t time period index 

 

(1) 𝐴𝑗(𝑇) =
𝑟𝑗𝑡

𝑟𝑗𝑡 + 𝜆𝑗𝑡
+

𝜆𝑗𝑡

𝑟𝑗𝑡 + 𝜆𝑗𝑡
𝑒−(𝑟𝑗𝑡+𝜆𝑗𝑡)𝑇 

(2) 𝐴𝑗(�̂�2 − �̂�1) =
𝑟𝑗𝑡

𝑟𝑗𝑡 + 𝜆𝑗𝑡
+

𝜆𝑗𝑡

(𝑟𝑗𝑡 + 𝜆𝑗𝑡)
2
(�̂�2 − �̂�1)

[𝑒−(𝑟𝑗𝑡+𝜆𝑗𝑡)�̂�1 − 𝑒−(𝑟𝑗𝑡+𝜆𝑗𝑡)�̂�2] 

(3) 𝑟𝑗𝑡 =
1

𝑀𝑇𝑇𝑅𝑗𝑡
, 𝜆𝑗𝑡 =

1

𝑀𝑇𝐵𝐹𝑗𝑡
 

Which T is the time that machine j in time t is available. 𝐴𝑗(𝑇) Means the probability that 

machine j in time T is working. 𝐴𝑗(�̂�2 − �̂�1) Is availability interval of machine j in interval time 

of �̂�2  ↔ �̂�1  in time period t. And  𝑟𝑗𝑡 , 𝜆𝑗𝑡 are repair rate and machine j deterioration rate 

within the interval time of t. The approach used in this article is such that machine effective 

capacity estimated by consideration of total capacity (total given time) within an interval and 

relate availability interval.  

3.2 machines reliability model in a cellular manufacturing system 
For explaining related problem in this article with regard to an example in research of (K Das 

et al., 2007) according table 2 information, manufacturing route for processing four part types 

on five machines are depicted. In this example, each part type may be manufactured by one of 

two possible process plans.  

Table 2. manufacturing routes based on machines 

Part types Process plan 
Operations 

1 2 3 

1 
1 M3, M2 M4, M5 M4 

2 M2, M4 M3 M1, M4 

2 
1 M2 M4, M5 M3 

2 M1, M3 M2 M5 

3 
1 M1, M4 M3, M2 M2 

2 M4, M5 M2, M4 M1, M3 

4 
1 M1, M3 M2, M4 M5 

2 M4, M5 M1 M4 

According to table 2 each operation could be done on multiple machines which shows that each 

part can be processed in multiple process or in multiple machine routes. For example, part type 

1, following process plan 1 has the options of performing operation 1 either on machine M3, 

or M2 and operation 2 either on M4 or M5. If we suppose one of the part type 1 process route 

in the form of rout1 {1, 2, 3} which that set {1, 2, 3} represents machines 1, 2, 3 in 

manufacturing route. The System reliability in this situation is as follows:   

(4) 𝑅𝑠(𝑇) = 𝑅1(𝑇) × 𝑅2(𝑇) × 𝑅3(𝑇) 

Here 𝑅𝑗(𝑇) is the reliability of machine j at time T, it means the probability that machine j is 

working within time t, or 𝑅𝑗(𝑇) = 𝑃𝑟(𝑇′ ≥ 𝑇). Where 𝑇′ is continuous random variable 

defined as time to failure? Although equations 1 and 2 defined machines availability in terms 

of failure and repair rate for machines that are repairable. In this research we consider 𝑅𝑗(𝑇) 

for non-repairable machines. In this step we consider 𝑅𝑗(𝑇) as a reliability performance metric 
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for selecting machines in cell configuration process. In next steps equation 4 convert to 

equation 5 to express system failure rate. Where is applicable to calculating reliability for 

repairable machines? We assume that machine failure time follow an exponential distribution. 

The reliability equality for machine j may be represented as: 

𝑅𝑗(𝑇) = 𝑒−𝜆𝑗𝑡𝑇 Where 𝜆𝑗𝑡 is the failure rate of machine j in time period t, when 𝑇 ≥ 0 

represents time period number as 1, 2, etc. and T is the time duration in hours for the period 

number t). Then the system reliability equation 4 becomes: 𝑅𝑟𝑜𝑢𝑡1{1,2,3}(𝑇) = 𝑒−∑ 𝜆𝑗𝑡𝑇𝑗∈1,2,3  . 

Since T is planned time period of time and is the same for all considered machines. Hence the 

equation will be below:  

(5) 
1

ln{𝑅𝑟𝑜𝑢𝑡1{1,2,3}(𝑇)}
×
1

𝑇
= ∑ 𝜆𝑗𝑡𝑇

𝑗∈1,2,3

= 𝐿𝐼𝑅𝑟𝑜𝑢𝑡1{1,2,3}𝑡 

Where 𝐿𝐼𝑅𝑟𝑜𝑢𝑡1{1,2,3}𝑡 is the system failure rate for machines {M1,M2,M3} along the part 

process route rout1{1, 2, 3} for a combined plan in {1, 2} at time period t. similarly 𝐿𝐼𝑅𝑖𝑝𝑡 

represent all combination of parts process plans in time period t. minimizing 𝐿𝐼𝑅𝑖𝑝𝑡 improved 

overall machines reliability in selected process plans for part types.  

4. Problem definition 
In this research a mixed integer programming bi-objective model represented for configuration 

of cellular manufacturing systems with alternative routes with consideration of machines 

reliability. The objectives of this model are included minimizing overall cost of system as first 

objective and minimizing the amount of machines failure as second objective. One of the 

notable points in this model is capable of dividing necessary operations for manufacturing one 

type part of various machines that can do it. Also, idle time of machines and cell is considered. 

It means that for assigning parts and machines to cells in order to we consider the costs related 

to movements and operations on parts, costs related to cells idle time with regard to reliability 

of machines are considered. This model chooses an appropriate machine in different process 

part routes and increase machine reliability and decrease system costs. Also, it is required new 

machines are purchased. More accurately we assume machines set 𝑗 = 1,2, … ,𝑚 for processing 

parts type   𝑖 = 1,2, … , 𝑛 or forecasting demand for periods 𝑡 = 1,2, …, is existed. 𝑇𝑡 Denotes 

time duration for period t. reliability parameters for machine j in period t are included:  𝑀𝑇𝐵𝐹𝑗𝑡 

and 𝑀𝑇𝑇𝑅𝑗𝑡. Current machines reliability parameters at period 𝑡 = 1 are according to available 

data in each machine maintenance file. Based on manufacturer’s data and the maintenance 

history of machines, the reliability parameters for the next period can be estimated. Part type   
𝑖  can be processed under any plans. A part-type process plan combination is denoted as (𝑖𝑝) 
and machines that can do operations 𝑂 related to (𝑖𝑝) represented by𝑗𝑖𝑝𝑜. Operation and 

readjust costs for operation  𝑂 of (𝑖𝑝) on machine j are denoted as  𝐶𝑂𝑜𝑗(𝑖𝑝) and 𝐶𝑅𝑜𝑗(𝑖𝑝) and 

readjusting time   is represented by 𝑇𝑂𝑜𝑗(𝑖𝑝) and  𝑇𝑅𝑜𝑗(𝑖𝑝) these costs and times within 

through planning horizon are known and constant. Based on available total capacity 𝑏𝑖𝑡 (in 

hours) and availability 𝐴𝑗(𝑇𝑡), effective capacity of each machine (in hours) designated in each 

period t. if the effective capacity of machine j at period it is not able to meet all operations 

assigned to it, then new machine is purchased with similar capacity and reliability rate. When 

a new capacity is purchased in each period, it becomes available for the next periods without 

any extra cost. The binary variable  𝑥𝑜𝑗𝑐(𝑖𝑝𝑡) equals 1 if at time period t operation 𝑜 related to 

(𝑖𝑝) have been done on machine j in cell c, otherwise it equals zero. The goal is grouping 

machine in some cells where number of parts assigned to one or more cells to minimize overall 



Bi-objective robust optimization model for configuring cellular manufacturing system … 

 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol.6, No.2  Page 127 

costs. While system reliability maximized within planning horizon. Since in real world 

manufacturing parameters are influenced by environmental factors. We can’t designate exact 

value for them. In this model for considering this issue, we use uncertain parameters. Actually, 

different parameters value with regard to scenarios with specified probability are available. For 

solving model, we use robust optimization approach. Also presented model is a bi-objective 

model that we use LP-metric approach to solve it (Farughi & Mostafayi, 2016).  

4.1. Mathematical model 

Indices 

𝑐 Cells indices 

𝑖 Parts indices 

𝑝 Process plan indices 

ip Alternative routing for part i in process plan p 

𝑚 Machines indices 

𝑗𝑖𝑝𝑜 Set of machines that can perform operation  𝑜 on 𝑖𝑝 route 

𝑜 Operation indices 

ℎ Time period indices 

𝑠 Scenarios indices 

 

Parameters 

𝐴(𝑇ℎ)𝑚𝑠 Availability of machine j at time T in the period number h under scenario s 

𝛼𝑚ℎ𝑠 Machine m holding cost at period h under scenario s 

𝐶𝑂(𝑖𝑝)𝑜𝑚𝑠 Operation𝑜 process cost of  𝑖𝑝 on machine m under scenario s 

𝐶𝑅(𝑖𝑝)𝑜𝑚𝑠 readjusting cost of process o of  𝑖𝑝 on machine m under scenario s 

𝛿𝑚ℎ𝑠 cost of installation and uninstallation machine m at period h under scenario s 

𝑇ℎ𝑠 Duration of period h under scenario s 

𝜗𝑚ℎ𝑠 Cell idle time cost for machine 𝑚 at period h under scenario 𝑠 

𝐶𝑃𝑚ℎ𝑠 cost of idle time of machine 𝑚 at period h under scenario𝑠  

𝑇𝑂(𝑖𝑝)𝑚𝑜ℎ𝑠 
Time needed to processing operation 𝑜 of 𝑖𝑝 by machine 𝑚 in period h under scenario 

s 

𝑇𝑅(𝑖𝑝)𝑚𝑜ℎ𝑠 
Time needed to adjusting operation 𝑜 of 𝑖𝑝 by machine 𝑚 in period h under scenario 

s 

𝐶𝑀𝑚ℎ𝑠 cost of purchasing new capacity for machine m in period h under scenario s 

𝜆𝑚ℎ𝑠 Failure coefficient for machine m in period h under scenario s 

𝐴𝑣𝑚ℎ𝑠 Number of available machines type m in period h under scenario s 

𝑈𝑀 Upper bound for cells capacity 

𝐿𝑀 Lower bound for cells capacity 

𝑟(𝑖𝑝)𝑜𝑚𝑠 equals 1 if operation 𝑜 needed machine m of 𝑖𝑝 under scenario s 

𝐷𝑖ℎ𝑠 Demand of part 𝑖 in period h under scenario s 

𝑏𝑚ℎ𝑠 
Available time for machine m in period h under scenario s 

Decision variables 

𝑀𝑚𝑐𝑠 
Binary variable will equal 1 if machine m assigned to cell c under scenario s 

otherwise will be equal zero 

𝑁𝑚𝑐ℎ𝑠 Number of machine type m assigned to cell c in period h under scenario s  

𝑍(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠 
Number of part type i manufactured under plan p by operation o on machine m in 

cell c at period h under scenario s 

𝐾𝑚𝑐ℎ𝑠
+  Number of added machine type m to cell c in period h under scenario s 
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𝐾𝑚𝑐ℎ𝑠
−  Number of removed machines type m from cell c in period h under scenario s 

𝑇𝑂𝑇𝑁𝑀𝑚𝑐ℎ𝑠 aggregated added capacities to machine m in cell c at period h under scenario s 

𝑋(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠 
Binary variable will be equal 1 if part type i under plan p by operation o on machine 

m in cell c at period h under scenario s manufactured. Otherwise will equal to zero 

 

𝑀𝑖𝑛𝑍1 =∑𝑍𝑖

7

𝑖=1

 
  

𝑆. 𝑇 

𝑍1 = ∑ ∑∑∑𝑁𝑚𝑐ℎ𝑠𝛼𝑚ℎ𝑠

𝑠=1

𝐻

ℎ=1

𝐶

𝑐=1

𝑀

𝑚=1

  (6) 

𝑍2

= ∑ ∑∑ ∑ ∑∑∑𝑍(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠𝑇𝑅(𝑖𝑝)𝑚ℎ𝑠{𝐶𝑂(𝑖𝑝)𝑜𝑚𝑠

𝑠=1

𝐻

ℎ=1

𝐶

𝑐=1

𝑀

𝑚𝜖𝑚(𝑖𝑝𝑜)

𝑃(𝑖)

𝑝=1

𝑛

𝑖=1

𝑂(𝑖𝑝)

𝑜=1

+ 𝐶𝑅(𝑖𝑝)𝑜𝑚} 

 (7) 

𝑍3 = (
1

2
)∑∑∑ ∑ ∑∑|∑ 𝑍(𝑖𝑝)(𝑜+1)𝑚𝑐ℎ𝑠 − 𝑍(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠

𝑀

𝑚=1

|

𝑃(𝑖)

𝑝=1𝑠=1

𝑂

𝑜=1
𝑜<𝑂𝑃

𝑛

𝑖=1

𝐶

𝑐=1

𝐻

ℎ=1

  (8) 

𝑍4 = ∑∑ ∑ ∑𝛿𝑚ℎ𝑠(𝐾𝑚𝑐ℎ𝑠
+ + 𝐾𝑚𝑐ℎ𝑠

− )

𝑆

𝑠=1

𝑀

𝑚=1

𝐶

𝑐=1

𝐻

ℎ=1

  (9) 

𝑍5 ≥ ∑ ∑ ∑((𝑇ℎ𝑠𝑁𝑚𝑐ℎ𝑠

𝑆

𝑠=1

𝑀

𝑚=1

𝐻

ℎ=1

−∑∑∑𝑍(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠𝑇𝑅(𝑖𝑝)𝑚ℎ𝑠

𝑛

𝑖=1

𝑂𝑃

𝑘=1

𝑝(𝑖)

𝑝=1

)𝜗𝑚ℎ𝑠) 

 (10) 

𝑍6 = ∑ ∑ 𝐶𝑃𝑚ℎ𝑠 (1 −𝑀𝑈𝑇𝑚ℎ𝑠 +∑𝑇𝑂𝑇𝑁𝑀𝑚𝑐ℎ𝑠

𝐶

𝑐=1

)

𝑀

𝑚=1

𝐻

ℎ=1

  (11) 

𝑀𝑈𝑇𝑚ℎ =∑∑ ∑ ∑{
𝑇𝑂(𝑖𝑝)𝑚ℎ𝑠 + 𝑇𝑅(𝑖𝑝)𝑚ℎ𝑠

𝐴𝑗(𝑇ℎ)𝑏𝑚ℎ𝑠
}

𝐶

𝑐=1

𝑂(𝑖𝑝)

𝑜=1

𝑃(𝑖)

𝑝=1

𝑛

𝑖=1

𝑍(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠 ∀𝑚, ℎ, 𝑠 (12) 

𝑍7 = ∑ ∑∑∑𝐶𝑀𝑚ℎ𝑠𝑁𝑚𝑐ℎ𝑠

𝑆

𝑠=1

𝐻

ℎ=1

𝐶

𝑐=1

𝑀

𝑚=1

  (13) 

𝑀𝑖𝑛𝑍2 = ∑∑∑ ∑ ∑ ∑∑𝐿𝐼𝑅𝑖𝑝ℎ𝑠𝑋(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠

𝑆

𝑠=1

𝐶

𝑐=1

𝑀

𝑚𝜖𝑚(𝑖𝑝𝑜)

𝑂(𝑖𝑝)

𝑜=1

𝑃(𝑖)

𝑝=1

𝑛

𝑖=1

𝐻

ℎ=1

  (14) 

𝑆. 𝑇   

𝐿𝐼𝑅𝑖𝑝ℎ = ∑ 𝜆𝑚ℎ𝑠

𝑀

𝑚𝜖𝑚(𝑖𝑝𝑜)

 ∀𝑖, 𝑝, ℎ, 𝑠 (15) 

∑ ∑𝑍(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠

𝑄

𝑖=1

𝑀

𝑚=1

𝑇𝑅(𝑖𝑝)𝑚ℎ𝑠𝑃𝑖ℎ𝑠 ≤ 𝑁𝑚𝑐ℎ𝑠𝑇ℎ𝑠 ∀𝑚, 𝑐, ℎ, 𝑠 (16) 
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∑𝑁𝑚𝑐ℎ𝑠

𝐶

𝑐=1

≤ 𝐴𝑣𝑚ℎ𝑠 ∀𝑚, ℎ, 𝑠 (17) 

∑ 𝑁𝑚𝑐ℎ𝑠

𝑀

𝑚=1

≤ 𝑈𝑀 ∀𝑐, ℎ, 𝑠 (18) 

∑ 𝑁𝑚𝑐ℎ𝑠 ≥ 𝐿𝑀

𝑀

𝑚=1

 ∀𝑐, ℎ, 𝑠 (19) 

∑𝑍(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠

𝐶

𝑐=1

≤ 𝑀. 𝑟(𝑖𝑝)𝑜𝑚𝑠 ∀𝑚, 𝑐, ℎ, 𝑠 (20) 

𝑁𝑚𝑐,ℎ−1,𝑠 + 𝐾𝑚𝑐ℎ𝑠
+ − 𝐾𝑚𝑐ℎ𝑠

− = 𝑁𝑚𝑐ℎ𝑠 ∀𝑚, 𝑐, ℎ, 𝑠 (21) 

∑ ∑ ∑∑𝑍(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠

𝑃

𝑝=1

= 𝐷𝑖ℎ𝑠

𝑂

𝑜=1

𝑀

𝑚=1

𝐶

𝑐=1

 ∀𝑖, ℎ, 𝑠 (22) 

𝑇𝑂𝑇𝑁𝑀𝑚𝑐ℎ𝑠 = 𝑇𝑂𝑇𝑁𝑀𝑚𝑐(ℎ−1)𝑠 +𝑁𝑚𝑐ℎ𝑠 ∀𝑚, 𝑐, ℎ, 𝑠 (23) 

∑∑ ∑ 𝑍(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠{𝑇𝑂(𝑖𝑝)𝑜𝑚𝑠 + 𝑇𝑅(𝑖𝑝)𝑜𝑚𝑠}

𝑂(𝑖𝑝)

𝑜=1

𝑃(𝑖)

𝑝=1

𝑛

𝑖=1

≤𝑏𝑚ℎ𝑠𝐴(𝑇ℎ)𝑗𝑠(𝑀𝑚𝑐𝑠 + 𝑇𝑂𝑇𝑁𝑀𝑚𝑐ℎ𝑠) 

∀𝑚, 𝑐, ℎ, 𝑠 (24) 

𝑋(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠 ≤ 𝑍(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠 ∀𝑖, 𝑝, 𝑜,𝑚, 𝑐, ℎ, 𝑠 (25) 

𝑍(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠 ≤ 𝑀.𝑋(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠 ∀𝑖, 𝑝, 𝑜,𝑚, 𝑐, ℎ, 𝑠 (26) 

𝐾𝑚,𝑐,1,𝑠
+ = 𝑁𝑚,𝑐,1,𝑠 ∀𝑚, 𝑐, 𝑠 (27) 

𝑁𝑚𝑐ℎ𝑠, 𝐾𝑚𝑐ℎ𝑠
+  , 𝐾𝑚𝑐ℎ𝑠

−  , 𝑍(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠 ∀𝑖, 𝑝, 𝑜,𝑚, 𝑐, ℎ, 𝑠 (28) 

The first objective function minimizes total system costs and have seven terms. The first term is 

calculated holding cost of the system with regard to number of machines. The second term 

calculates performing operation costs and readjusting cost of machine with regard to time 

elapsed to do them. The third term calculated parts movement costs. In fourth term extra costs 

and removing machine costs are calculated. In dynamic manufacturing model, the best design 

for cell formation for one period, maybe not optimal for all periods. With the redesign of 

industrial cells, cell formation can be converted to efficient performance even we have mix 

production and variable demands. However, there are some problems with innovation of 

manufacturing cells. Actually, machines movement between cells needs labor and costs which 

may cause damages to machines. Therefore, with changes in demand we have to change the 

machine between cells, which this movement resulted cost in the system. Fifth term calculates 

idle time of cells costs in the system and sixth terms calculates machines idle time costs, and 

finally seventh term calculates costs for purchasing new capacity for machines. The second 

objective minimizes failure rate of machines clearly this objective is activated when considered 

machine assigned to cells. Actually the second objective function optimizes system reliability 

index (SRI) over the set of entire part process plan (ip) combinations in time period h. equation 

(15) generates a combined term by summation of the system failure rate along all feasible 

processing routes in each period. Constraint (16) ensures that the total processing time of 

parts will not be more than maximum availability time of the machines. Constrain (17) also 

ensures that number of machines used type m in cell c not be more than maximum available 

machines.  Constraints (18) and (19) defines lower and upper bounds of allowable machines in 

each cell. Constraint (20) represents required operations for manufacturing each part is done 

by machines that are capable to do it. Constraint (21) calculates number of added or removed 

machine in each cell at each period. Constraint (22) ensures that number of manufactured parts 



H. Farughi, S. Mostafayi, A. Afrasiabi 

 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol.6, No.2  Page 130 

equal to total demands. Constraint (23) calculates the amount of added capacity to each 

machine. Constraint (24) ensures that number of operations assigned to each machine not be 

more than its maximum capacity. Constraints (25)-(28) define controlling constraints for 

decision variables of the model.  

5. Robust optimization model framework 
Robust optimization obtains a set of solutions that are robust against parameters (input data) 

fluctuations. The robust optimization approach represented by (Mulvey, Vanderbei, & Zenios, 

1995). Robust optimization approach has much applications in operation research studies 

(Noorossana, Niaki, & Ershadi, 2014), (Babaee Tirkolaee, Alinaghian, Bakhshi Sasi, & Seyyed 

Esfahani, 2016), (Hejazi & Soleimanmeigouni, 2014).  In this approach two types of robustness 

introduced. Solution robustness (near optimal solution in all scenarios) and model robustness 

(solution near to feasibility in all scenarios) the solution that obtain from the robust 

optimization model is called robust. If input data have changed so it remains near optimal, they 

called it solution robustness. A solution called robust if for little changes in input data it is 

almost feasible. This case is called model robustness. Robust optimization is included two 

specific constraints: 1) structural constraint, 2) controlling constraints. While Structural 

constraints are in the form of auxiliary constraints and formulated which influenced by 

uncertain data. In the following the framework of robust optimization explained briefly. At first 

𝑥𝜖𝑅𝑛1 are designing variables vector and 𝑦𝜖𝑅𝑛2 is control variables vector. Robust 

optimization model form is as follows: 

(29) 𝑀𝑖𝑛𝑐𝑇𝑥 + 𝑑𝑇𝑦 

(30) 𝐴𝑥 = 𝑏 

(31) 𝐵𝑥 + 𝐶𝑦 = 𝑒 

(32) 𝑥, 𝑦 ≥ 0 

Constraint (30) is a structural constraint and its coefficient is constant and determine. 

Constraint (31) is controlling constraint which its coefficient is influenced by scenario and is 

non-deterministic. Constraint (32) ensures variables are non-negative. The formulation of 

robust optimization model is included a set of scenariosτ = {1,2, … S}. Under each scenario 

τϵ𝑆 the coefficients relate to controlling constraints are equal to {𝑑𝑠, 𝐵𝑠, 𝐶𝑠, 𝑒𝑠} with a constant 

probability. Which  𝑃𝑠 represents the probability of occurring each scenario and ∑ 𝑃𝑠 = 1𝑠 . The 

optimal solution of this model is robust if for each specific scenario 𝑆ϵ𝜏 is still near optimal. 

This case is called model robustness. There are conditions that maybe the solutions that obtain 

for above model aren’t both feasible and optimal for all scenarios 𝑆ϵ𝜏. At this point the 

relationship between solution robustness and model robustness are determined by multi criteria 

decision making concepts. For measuring this relationship robust optimization model is 

formulated. First of all control variable 𝑌𝑠  that for each scenario 𝑆ϵ𝜏 and error vector 𝛿𝑠 
measured allowable infeasibility in control constraints under scenario s is introduced. Because 

of uncertain parameters the solution obtained by model maybe be infeasible for some scenarios 

therefore 𝛿𝑠 represents infeasibility of model under scenario s. if model be feasible 𝛿𝑠 will 

equal zero. Otherwise 𝛿𝑠 will equal to a positive value according to constraint (35). Actually, 

the robustness measures unsatisfied demand model for manufacturing part. The robust 

optimization model based on mathematical programming (29) to (32) formulated as follows: 

(33) 𝑀𝑖𝑛𝜎(𝑥, 𝑦1, … , 𝑦𝑠) + 𝜔𝜌(𝛿1, 𝛿2, … , 𝛿𝑠) 
(34) 𝐴𝑋 = 𝑏 

(35) 𝐵𝑠𝑥 + 𝐶𝑠𝑦𝑠 + 𝛿𝑠 = 𝑒𝑠 
(36) 𝑥 ≥ 0, 𝑦 ≥ 0 
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We must notice that because robust optimization model consider various scenarios, the first 

term in objective function is for selecting a unit for objective in previous objective function 

(33), ∆𝑠= 𝑐𝑇𝑥 + 𝑑𝑇𝑦 is a random variable with a random value equal to ∆𝑠= 𝑐𝑇𝑥 + 𝑑𝑠
𝑇𝑦𝑠 with 

probability of 𝑃𝑠   under scenario𝑆ϵ𝜏. In random linear programming formulation, we used 

average value of 𝜎(0) = ∑ ∆𝑠𝑃𝑠𝑠 and actually the first term represents solution robustness. 

The second term in objective function 𝜌(𝛿1, 𝛿2, … , 𝛿𝑠) is feasible penalty function which 

penalties violation of control constraints under some scenarios. Controlling constraint violation 

means infeasible solution obtained under some scenarios of problem. By using of weight 𝜔 

relationship between solution robustness which measured by first term 𝜎(0) and model 

robustness which measured by penalty function 𝜌(0) we can model that under multi criteria 

decision making. Since our goal is minimizing 𝜎(0), it may be the solution be infeasible. If 

𝜔increased enough, the term 𝜌(0) dominated and caused more cost. Studies about selecting 

appropriate 𝜌(0) and 𝜎(0) could find with checking (Mulvey et al., 1995; Yu & Li, 2000). The 

term σ(𝑥, 𝑦1, … , 𝑦𝑠) represented by (Mulvey et al., 1995) as follows: 

(37) σ(0) =∑∆𝑠𝑝𝑠 + 𝜆∑𝑝𝑠 (∆𝑠 −∑∆𝑠′𝑝𝑠′

𝑆

𝑠′

)

2𝑆

𝑠

𝑆

𝑠

 

To show the robustness of the solution, the variance of the equation (33) represents that 

decision has high risk. In other words, a little variation in parameters with uncertainty can cause 

huge changes in value of measurement function. 𝜆 Is assigned weight for solution variance. 

Viewed as a quadratic term exit in equation (34). (Yu & Li, 2000) used an absolute value 

instead of a quadratic term because of decreasing computational time which explained as 

follows: 

(38) σ(0) =∑∆𝑠𝑝𝑠 + 𝜆∑𝑝𝑠 |∆𝑠 −∑∆𝑠′𝑝𝑠′

𝑆

𝑠′

|

𝑆

𝑠

𝑆

𝑠

 

5.1 The proposed model for robust optimization 

In this study some parameters including cost of purchasing a machine, the variable cost of 

machine, cost of movement between cells in each category, cost of intra-cell movement, 

machine movement cost, holding cost of part and part demand parameter considered as 

uncertain and under scenarios. Based on the case study environment, production managers and 

some other experts cannot reach to an agreement for the exact amount of cost parameters. In 

fact, each expert presents cost parameters based on his calculations a experiences. Therefore, 

there are some different values for one parameter. In other word, there are some scenarios with 

certain probability for each value of parameters. Based on the nature of mentioned uncertainty 

of parameters, in this paper scenario based robust in used in order to handle the uncertainty of 

the parameters.       

Like robust optimization approach explained in section 5, the robust model is represented as 

follows:
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𝑇𝐶𝑠 =∑𝑍𝑖𝑠

7

𝑖=1

 

 
(39) 

𝑆. 𝑇   

𝑍1𝑠 = ∑ ∑∑𝑁𝑚𝑐ℎ𝑠𝛼𝑚ℎ𝑠

𝐻

ℎ=1

𝐶

𝑐=1

𝑀

𝑚=1

 

 
(40) 

𝑍2𝑠 = ∑ ∑∑ ∑ ∑∑𝑍(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠𝑡𝑜𝑖𝑚𝑠{𝐶𝑂(𝑖𝑝)𝑜𝑚𝑠

𝐻

ℎ=1

𝐶

𝑐=1

𝑀

𝑚𝜖𝑚(𝑖𝑝𝑜)

𝑃(𝑖)

𝑝=1

𝑛

𝑖=1

𝑂(𝑖𝑝)

𝑜=1

+ 𝐶𝑅(𝑖𝑝)𝑜𝑚𝑠} 

 

(41) 

𝑍3𝑠 = (
1

2
)∑∑∑ ∑ ∑|∑ 𝑍(𝑖𝑝)(𝑜+1)𝑚𝑐ℎ𝑠 − 𝑍(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠

𝑀

𝑚=1

|

𝑃(𝑖)

𝑝=1

𝑂

𝑜=1
𝑜<𝑂𝑃

𝑛

𝑖=1

𝐶

𝑐=1

𝐻

ℎ=1

 

 

(42) 

𝑍4𝑠 = ∑∑ ∑ 𝛿𝑚ℎ𝑠(𝐾𝑚𝑐ℎ𝑠
+ + 𝐾𝑚𝑐ℎ𝑠

− )

𝑀

𝑚=1

𝐶

𝑐=1

𝐻

ℎ=1

 

 
(43) 

𝑍5𝑠 ≥ ∑((𝑇𝑚𝑠𝑁𝑚𝑐ℎ𝑠 −∑∑∑𝑍(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠𝑡𝑜𝑖𝑚𝑠)𝜗𝑚ℎ𝑠)

𝑛

𝑖=1

𝑂𝑃

𝑘=1

𝑝(𝑖)

𝑝=1

𝑀

𝑚=1

 

 

(44) 

𝑍6𝑠 = ∑ ∑ 𝐶𝑃𝑚ℎ𝑠 (1 −𝑀𝑈𝑇𝑚ℎ𝑠 +∑𝑇𝑂𝑇𝑁𝑀𝑚𝑐ℎ𝑠

𝐶

𝑐=1

)

𝑀

𝑚=1

𝐻

ℎ=1

 
 

(45) 

𝑀𝑈𝑇𝑚ℎ𝑠 =∑∑ ∑ ∑{
𝑇𝑂(𝑖𝑝)𝑚ℎ𝑠 + 𝑇𝑅(𝑖𝑝)𝑚ℎ𝑠

𝐴𝑗𝑠(𝑇ℎ)𝑏𝑚ℎ𝑠
}

𝐶

𝑐=1

𝑂(𝑖𝑝)

𝑜=1

𝑃(𝑖)

𝑝=1

𝑛

𝑖=1

𝑍(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠 ∀𝑚, ℎ (46) 

𝑍7𝑠 = ∑ ∑∑𝐶𝑀𝑚ℎ𝑠𝑁𝑚𝑐ℎ𝑠

𝐻

ℎ=1

𝐶

𝑐=1

𝑀

𝑚=1

 

 
(47) 

𝑅2𝑠 = ∑∑∑ ∑ ∑ ∑𝐿𝐼𝑅𝑖𝑝ℎ𝑠𝑋(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠

𝐶

𝑐=1

𝑀

𝑚𝜖𝑚(𝑖𝑝𝑜)

𝑂(𝑖𝑝)

𝑜=1

𝑃(𝑖)

𝑝=1

𝑛

𝑖=1

𝐻

ℎ=1

 

 

(48) 

𝐿𝐼𝑅𝑖𝑝ℎ𝑠 = ∑ 𝜆𝑚ℎ𝑠

𝑀

𝑚𝜖𝑚(𝑖𝑝𝑜)

 

 

(49) 

Therefore, the robust optimization model for dynamic cell formation is depicted below, which 

in its only objective functions (50) and (51) an also constraint (52) has changed and other 

constraint are the same as pervious model. 

𝑀𝑖𝑛𝑊1 =∑𝑃𝑠𝑇𝐶𝑠 + 𝜆1∑𝑃𝑠 |𝑇𝐶𝑠 −∑𝑃𝑠′𝑇𝐶𝑠′
𝑠′

| + 𝜔∑∑∑𝑃𝑠𝛿𝑖ℎ𝑠
ℎ𝑖𝑠𝑠𝑠

 (50) 

𝑀𝑖𝑛𝑊2 =∑𝑃𝑠𝑅𝑠 + 𝜆1∑𝑃𝑠  |𝑅𝑠 −∑𝑃𝑠′𝑅𝑠′
𝑠′

| + 𝜔∑∑∑𝑃𝑠𝛿𝑖ℎ𝑠
ℎ𝑖𝑠𝑠𝑠

 (51) 

𝑠. 𝑡 



Bi-objective robust optimization model for configuring cellular manufacturing system … 

 

Journal of Industrial Engineering and Management Studies (JIEMS), Vol.6, No.2  Page 133 

(∑ ∑ 𝑍(𝑖𝑝)𝑜𝑚𝑐ℎ𝑠

𝑀

𝑚=1

𝐶

𝑐=1

) + 𝛿𝑖ℎ𝑠 = 𝐷𝑖ℎ𝑠 ∀𝑖, ℎ, 𝑠 (52) 

Constraints 15-28   

First and second term of first objective function are average and variance of total 

costs. Actually, these two terms measured the robustness of the solution. The third term of first 

objective measured model robustness with regard to control constraint infeasibility 

under scenario s.   

The first objective function is nonlinear because has absolute value. And the problem will 

convert to a linear problem by introducing two new variables 𝑞1𝑠, 𝑝1𝑠. The constraint 𝑞1𝑠 −
𝑝1𝑠 = 𝑇𝐶𝑠 − ∑ 𝑃𝑠′𝑇𝐶𝑠′𝑠′  added to main model. Also, the second objective function is 

nonlinear because having absolute value term. And problem converting to a linear 

programming model with introducing two new variables 𝑞2𝑠, 𝑝2𝑠. Constraint 𝑞2𝑠 −𝑝2𝑠 =
𝑅𝑠 − ∑ 𝑃𝑠′𝑅𝑠′𝑠′  added to main model therefor the objective function of robust optimization 

model retyping as follows: 

𝑀𝑖𝑛𝑊1 =∑𝑃𝑠𝑇𝐶𝑠 + 𝜆1∑𝑃𝑠(𝑞1𝑠 +𝑝1𝑠) + 𝜔∑∑∑𝑃𝑠𝛿𝑖ℎ𝑠
ℎ𝑖𝑠𝑠𝑠

  (53) 

𝑀𝑖𝑛𝑊2 =∑𝑃𝑠𝑅𝑠 + 𝜆1∑𝑃𝑠(𝑞2𝑠 +𝑝2𝑠) + 𝜔∑∑∑𝑃𝑠𝛿𝑖ℎ𝑠
ℎ𝑖𝑠𝑠𝑠

  (54) 

5.2 proposed process for solving model 

The robust model presented in the previous section is a bi-objective programming problem. 

First of all, we must convert the problem to a single objective problem. For this purpose, with 

using of LP-metric we can do that (Lee, 1980). And replace the bi-objective problem with a 

single objective problem. Because two objectives are not in same scale at first, we normalize 

them by using equation (55) which 𝑊𝑖
∗ is the optimal value for each objective. For the optimal 

model the two objectives are replaced by equation below and lead the problem to a single 

objective. In this study we assume that two objectives named by W1, W2 .Based on LP-metric 

method the robust optimization model for dynamic cell formation problem for each objective 

function solved separately. The objective function LP-metric model formulated as follows: 

(55) 𝑀𝑖𝑛𝑊3 = [𝑎 ×
𝑤1 −𝑤1

∗

𝑤1
∗ ] + [(1 − 𝑎) ×

𝑤2 −𝑤2
∗

𝑤2
∗ ] 

Where  0 ≤ 𝛼 ≤ 1 ,𝑤1
∗  is optimal value of first objective and 𝑤2

∗ is optima value of second 

objective. The coefficients are the weights for objective function in above equation. By using 

above equation, the bi-objective problem converts to a single objective problem and solved by 

CPLEX 12.1 solver in GAMS software.   

6. Case study: A department of PISHGAMAN PICH PARS Co. with regard 

to available data 
PISHGAMAN PICH PARS manufacturing unit has more than 10 years of experience in 

designing, supplying and manufacturing of different screw and bolts and sells bolts in oil 

industries like: gas and petrochemical, water and wastewater, building and construction, 

automobile, mines and metals and electrical, this Co by using of new technical knowledge has 

succeed and is one of the well-known supplier in Iran. The products of this Co are included: 
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different types of bolts and washers like hexagon screws, Ajax bolt, hexagon nuts, sealed nuts 

and different types of washers and specific bolts according to global standards. One of the 

problems exists in this Co production planning which production managers deal with is cells 

configuration and assigning machines and parts without regarding to probability of machine 

breakdown. Actually, the current production planning is based on experience and sometimes 

caused to manufacturing system be stopped for a while. Which this short time cause to a lot of 

cost in production system. On the other, hand with regard to some dynamic parameters in 

planning such as forecasting amount of demand and then cost related to it and parameters 

related to machines and manufacturing system, planning only based on experience is very 

difficult. Consequently, experts and production manager of Co with regard to experience and 

consulting with experts and successful factories decide to plan with mathematical model. For 

this purpose, in this research a department above Co considered as a case study. Since whole 

data is not available for ruining model, because of reasons such as lack of appropriate recording 

of data to increasing confidence in accuracy and efficiency of data with agreeing of experts and 

experienced supervisors of manufacturing sector we used some data that exist in research of  

(Das & Abdul-Kader, 2011). This system manufactured 4 types’ parts in 3 manufacturing cell 

by 4 types of machine. And performed for 2 time period with regard to condition of presented 

model in this article. With considering problems such as price fluctuations in market, customers 

demand and etc. which manufacturing system always deal with them. The manger decides to 

optimize such parameters (costs, demand amount and etc.) under some scenarios. 

Aforementioned parameters under 3 scenarios with occurring probability of 0.2, 0.5 and 0.3 

represented in table below: 

Table 3. input data related to 𝑴𝑻𝑻𝑹,𝑴𝑻𝑩𝑭, machines idle time cost and purchasing machines capacity 

 𝑀𝑇𝐵𝐹  (hour) 𝑀𝑇𝑇𝑅  (hour)  

 
Period1 Period2 Period3 Period4 Idle 

time 

cost 

Capacity 

cost 
scenario scenario scenario scenario 

machine 1 2 3 1 2 3 1 2 3 1 2 3 

1 279 247 240 264 261 250 143 150 160 106 113 122 1880 4125 

2 121 207 192 211 200 192 62 62 63 72 74 76 1304 4500 

3 326 316 310 389 370 358 135 140 144 135 137 140 1376 7450 

4 117 111 105 211 200 192 75 76 79 83 84 85 1604 7000 

With regard to information in table above, if factory planning horizon considered monthly, 

based on previous data in work, averagely in month 25 days and daily 10 hours the factory is 

active, where obviously we can consider the length of planning horizon equals to  (25 × 10) =
250 hours.  Actually 𝑇1 = (0 − 250) and  𝑇2 = (250 − 500) . Therefore, with the help of 

equation (2) that explained in introduction section we can calculate machines availability. For 

example, availability of machine 2 in period 1 under scenario 1 is as follows: 

(56) 

𝐴2(𝑇1) = 𝐴2(𝑇12 − 𝑇11) = 𝐴2(0 − 250) 

= 

1
62

(
1
62

+
1
212

)
+

1
212

(
1
62

+
1
212

)
2

× (250 − 0)

× {1 − 𝑒
−((

1
62

+
1
212

)×250)
} 
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Where in it for calculating 𝜆𝑗𝑡 and 𝑟𝑗𝑡 we use equations 𝑟𝑗𝑡 =
1

𝑀𝑇𝑇𝑅𝑗𝑡
 and 𝜆𝑗𝑡 =

1

𝑀𝑇𝐵𝐹𝑗𝑡
 for 

example in above formula 𝑟21 =
1

𝑀𝑇𝑇𝑅21
=

1

62
 and  𝜆21 =

1

𝑀𝑇𝐵𝐹21
=

1

212
 . As represented 

similarly for all machine we can calculate availability probability. Table below depicts 

operations on parts base on time, cost and machine type required, where actually is 

manufacturing route. For example, in manufacturing scheme 1 according to scenario 1, part 1 

can be manufactured by routes that machines 2 and 3 in it. For other parts also there is a similar 

explanation.  

Table 4. input data related to manufacturing cost and manufacturing time by machine in production plans 

part index 
(process) plan 1 Process plan 2 

Scenario1 Scenario2 Scenario3 Scenario1 Scenario2 Scenario3 

1 

machine 3 2 1 4 1 3 3 2 4 3 1 2 

time 6.5 6.5 7.4 5 6.4 4.8 5.7 4.9 6.9 5.7 5 4.1 

cost 1.09 1.06 0.82 0.63 0.87 1.02 0.76 0.73 1.08 0.78 0.98 0.95 

2 

machine 1 3 4 2 2 3 4 1 3 2 4 3 

time 5.4 7.3 4 6.1 5.5 7.5 4.5 4.6 5.6 7.3 7.3 6.3 

cost 0.66 0.97 0.76 0.7 0.63 0.65 1.13 1.11 0.93 0.65 1.08 0.82 

3 

machine 2 1 2 3 3 4 3 2 1 4 1 3 

time 7.9 5.2 5.9 6.7 6.5 5.3 6.9 6.7 7.9 5 4.5 7.8 

cost 0.63 1.16 0.74 0.9 1.14 0.9 0.64 0.76 0.78 0.84 0.74 1.16 

4 

machine 2 4 3 4 2 1 3 2 1 2 3 4 

time 4.5 7.4 6.3 6.3 5.3 6.4 7.3 4.9 4.4 5.6 4.8 7.4 

cost 1.10 1.11 0.98 0.93 0.78 0.66 0.98 0.85 0.88 0.79 0.94 0.91 

5 

machine 3 2 3 1 4 3 2 3 3 4 2 1 

time 4.6 4.5 5.3 8 7.2 5.8 6.5 6.3 6.9 7 7.7 5.7 

cost 1.08 0.79 1.11 1.01 0.83 0.8 0.89 1.16 0.73 1.06 1.13 0.64 

6 

machine 4 1 2 3 3 4 1 3 3 2 4 3 

time 5.3 3 7.8 5.8 7.1 5.6 7.3 4.8 4.8 7.9 6.2 6.3 

cost 0.73 0.89 0.61 0.76 1.12 0.98 0.82 0.84 0.68 1.08 1.13 1.03 

 

Table 5. input data related cost information and re-adjusting time in production plans 

part index 
Process plan 1 Process plan 2 

Scenario1 Scenario2 Scenario3 Scenario1 Scenario2 Scenario3 

1 

machine 3 2 1 4 1 3 3 2 4 3 1 2 

time 0.42 0.31 0.2 0.44 0.2 0.27 0.39 0.3 0.36 0.45 0.23 0.28 

cost 0.05 0.06 0.05 0.05 0.07 0.06 0.05 0.05 0.07 0.05 0.05 0.06 

2 

machine 1 3 4 2 2 3 4 1 3 2 4 3 

time 0.32 0.27 0.19 0.37 0.31 0.32 0.31 0.21 0.3 0.23 0.29 0.36 

cost 0.05 0.05 0.07 0.06 0.05 0.07 0.05 0.06 0.05 0.06 0.05 0.07 

3 

machine 2 1 2 3 3 4 3 2 1 4 1 3 

time 0.15 0.45 0.34 0.21 0.3 0.27 0.05 0.41 0.33 0.34 0.3 0.32 

cost 0.07 0.06 0.07 0.05 0.07 0.07 0.06 0.05 0.05 0.07 0.07 0.06 

4 

machine 2 4 3 4 2 1 3 2 1 2 3 4 

time 0.35 0.42 0.42 0.2 0.26 0.2 0.32 0.32 0.21 0.23 0.18 0.36 

cost 0.06 0.07 0.07 0.06 0.06 0.05 0.06 0.06 0.06 0.05 0.07 0.06 

5 

machine 3 2 3 1 4 3 2 3 3 4 2 1 

time 0.32 0.26 0.17 0.15 0.33 0.38 0.4 0.18 0.23 0.37 0.3 0.36 

cost 0.07 0.05 0.07 0.07 0.06 0.06 0.05 0.05 0.06 0.05 0.06 0.05 

6 

machine 4 1 2 3 3 4 1 3 3 2 4 3 

time 0.3 0.4 0.39 0.19 0.33 0.21 0.42 0.2 0.27 0.15 0.35 0.24 

cost 0.05 0.06 0.05 0.07 0.07 0.05 0.06 0.05 0.05 0.06 0.06 0.07 
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The amount of parts demand for manufacturing in planning horizon with regard to defines 

scenarios is according to table below. As observed the change in demand value sometime is 

significant. This change can be a result of importing external commodity or until seasonal 

changes and shutting down some construction project and etc. for example after shutting down 

of PADIDE Co construction projects, many of companies such as SAYBAN SAZEH TOOS 

which directly and semi-exclusively must manufacture required parts, and faced with serious 

problem to satisfying demands and orders.  

Table 6. input data related to amount of demands 

Period1 

 Scenario1  Scenario2  Scenario3 

part 
plan 

part 
plan 

part 
plan 

1 2 1 2 1 2 

1 738 763 1 859 950 1 995 885 

2 748 1220 2 860 1100 2 1000 958 

3 1095 1200 3 1060 1178 3 989 689 

4 1238 1035 4 1145 1155 4 1135 1148 

5 1018 1154 5 1150 1249 5 990 1000 

6 850 940 6 920 1100 6 1015 985 

Period2 

 Scenario1  Scenario2  Scenario3 

part 
plan 

part 
plan 

part 
plan 

1 2 1 2 1 2 

1 913 1197 1 1062 1208 1 1211 1250 

2 1106 760 2 962 880 2 742 855 

3 825 963 3 772 1011 3 1034 880 

4 986 850 4 1196 1188 4 1148 1026 

5 1108 895 5 1054 1170 5 1185 1114 

6 739 1211 6 1236 1160 6 800 855 

Other required information to solve problem also is as follows as table below with regard to 

scrutiny of previous data in factory planning system.
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Table 7.  information related to machines 

  𝛼𝑚ℎ𝑠  𝛿𝑚ℎ𝑠  𝜗𝑚ℎ𝑠  𝐶𝑃𝑚ℎ𝑠 

   scenario  scenario  scenario  scenario 

 
machine

s 

 1 2 3  1 2 3  1 2 3  1 2 3 

Period

1 

1  551

0 

520

0 

540

0 

 667

0 

630

0 

640

0 

 340

0 

360

0 

380

0 

 103

0 

105

0 

100

0 

2  534

0 

500

0 

520

0 

 610

0 

650

0 

635

0 

 360

0 

380

0 

370

0 

 105

0 

900 800 

3  560

0 

550

0 

510

0 

 650

0 

620

0 

610

0 

 370

0 

410

0 

350

0 

 900 107

0 

110

0 

4  515

0 

500

0 

525

0 

 635

0 

630

0 

660  340

0 

370

0 

400

0 

 100

0 

110

0 

900 

 

                 

Period

2 

1  540

0 

515

0 

540

0 

 640

0 

650

0 

630

0 

 400

0 

340

0 

360

0 

 850 950 100

0 

2  535

0 

525

0 

520

0 

 650

0 

610

0 

610

0 

 360

0 

380

0 

370

0 

 100

0 

110

0 

120

0 

3  510

0 

530

0 

530

0 

 630

0 

680

0 

620

0 

 360

0 

410

0 

350

0 

 110

0 

850 900 

4  505

0 

520

0 

515

0 

 640

0 

630

0 

630

0 

 370

0 

360

0 

370

0 

 100

0 

950 110

0 

         

  𝐶𝑀𝑚ℎ𝑠  𝐴𝑣𝑚ℎ𝑠  𝑏𝑚ℎ𝑠  
𝑇ℎ𝑠(𝐷𝑎𝑦 × 𝐻𝑜𝑢𝑟

× 𝑚𝑖𝑛) 

   scenario  scenario  scenario  scenario 

 machine  1 2 3  1 2 3  1 2 3  1 2 3 

Period

1 

1  250

0 

210

0 

230

0 

 7 8 9  160

0 

180

0 

150

0 
 

336

0 

 

480

0 

 

576

0 

 

2  270

0 

250

0 

205

0 

 10 12 15  200

0 

250

0 

270

0 
 

3  210

0 

200

0 

240

0 

 6 5 8  180

0 

170

0 

200

0 
 

4  270

0 

280

0 

240

0 

 10 10 10  140

0 

200

0 

180

0 
  

                 

Period

2 

1  270

0 

210

0 

250

0 

 7 8 9  160

0 

180

0 

150

0 
 

336

0 

480

0 

576

0 

2  205

0 

200

0 

210

0 

 10 12 15  200

0 

250

0 

270

0 
 

3  245

0 

250

0 

260

0 

 6 5 8  180

0 

170

0 

200

0 
 

4  270

0 

250

0 

260

0 

 10 10 10  140

0 

200

0 

180

0 
 

It is noteworthy that the probability of boom scenario is 0.45 medium scenario is 0.35 and low 

scenario: 0.2 

Because of important of two objective function: total costs objective and summation of failure 

rate of machines, simultaneously three model for sensitivity analysis is represented: 

Model W1: is including total system cost 

Model W2: is including summation of failure rates in different periods and under different 

scenarios and related constraints 

Model W3: LP-metric Model is a combined from models W1 and W2 with related constraints.  

Therefore, some solutions obtain by different value of  𝛼 . These solutions are recorded in set 

named Pareto-front. Actually, is a Pareto-front that a set of non-dominated solutions resulted 

from problem for different amount of   𝛼. Which caused mangers selected final solution with 

regard to significant of objectives. For this purpose, based on the expert's opinion number of 

60 different value of   𝛼  according table below is proposed. 
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These values obtained through interviewing with factory senior executives and with scrutiny 

past data (about amount of significance between manufacturing costs and production planning 

machine deterioration) which recorded periodically.  

Table 8. Different weights for parameter 𝒂 

0.43

1 

0.29

5 

0.36

4 

0.34

4 

0.29

6 

0.16

6 

0.42

9 

0.31

7 

0.16

4 

0.38

7 

0.41

8 

0.32

3 

0.26

3 

0.25

5 

0.43

7 

0.12

3 

0.39

6 

0.16

8 

0.25 0.24

4 

0.28

1 

0.30

2 

0.17

9 

0.17

2 

0.32

6 

0.25

4 

0.22

7 

0.20

5 

0.23

3 

0.34

1 

0.25

8 

0.17

8 

0.23

5 

0.19

2 

0.21

9 

0.30

4 

0.16

4 

0.14

3 

0.21

9 

0.33

6 

0.43

7 

0.41

4 

0.33

2 

0.31

7 

0.34

8 

0.15

9 

257 0.41

1 

0.42

4 

0.28

6 

0.39

4 

0.33

6 

0.36

9 

0.41

5 

0.20

1 

0.40

4 

0.15

4 

0.35

1 

0.36

7 

0.39

6 

After solving model with GAMS software, by a computer with configuration 4GBRAM, CPU 

3200 GHz – Core i5. The Pareto-front is according below: 

 
Figure 1. Pareto fronts of the Robust Model and General Model 

As observed the difference between solutions resulted from solving main problem and 

solution for solving robust model is absolutely tangible. Of course, we should mention that 

some solutions are dominated other solutions and don’t exist in any Pareto-front. Actually, 

above chart according to the definition of Pareto-front only represents non-dominated points. 

It is notable that in solving the problem we used𝜔 = 300, this value is calculated through 

checking robust problem represented in the next section.  

6.1 analysis of problem robustness 

In this section we investigate the relationship between model robustness and objective 

functions 𝑊1 and 𝑊2. Actually, in this scrutiny we specified model feasibility. If it isn’t feasible 

this amount of violation how impact on the objective function. As before mentioned, robustness 

means lack of sensitivity to changes in model input parameters. Also, we can cell a model is 

robust when for each scenario is almost feasible. According equations (53) and (54) model 

robustness is calculated by the third part of these equations. Actually variable 𝛿𝑖ℎ𝑠 is an error 

vector which represents amount of infeasibility of model. Since this variable is always non-

negative and sufficient ω is also positive, always the third part of the equations (53) and (54) 

is non-negative. Therefore, if for one specified value of ω (without changing other parameters) 

1.8

2

2.2

2.4

2.6

2.8

3

24 26 28 30 32 34 36 38 40 42 44

H
u
n
d

re
d

s

x 10000

Robust Model

General Model
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there is no change in objective functions, we can say the error vector of model has a value of 

zero (δihs = 0) and model is feasible for all scenarios. For a specific value of α which is 

selected based on proposed weights as the final solution for implementing in a factory. We 

solve the problem for different value of ω and changes in the objective function value is 

checked. This action continues until the difference between objective function values become 

zero. (The model becomes feasible for all scenarios) the table below showed solution resulted 

from solving problem for each objective function and for different value of ω . 

Table 9. robustness checking according to objective function 𝑾𝟏and 𝑾𝟐 

𝑊2  𝑊1  
ω 

𝑊3 𝑊2 𝑊1  𝑊3 𝑊2 𝑊1  

17.978 152 653845  0 0 13410  100 

18.109 162 710902  8.362 341 61055  200 

18.908 171 823975  9.084 358 71122  300 

19.659 181 865701  10.935 399 84133  400 

20.711 181 912587  11.202 412 87049  500 

21.108 181 987278  11.489 446 87097  600 

We observed that for the first objective function, for the value of ω = 600 the third part of the 

equation (53) is zero and model is feasible. Also, for second objective function the third part 

of the equation (54) in ω = 500 equals zero and model is feasible for all scenarios. This case 

can be seen in the figure 2. 

  
Model Robustness according to 𝑊2objective 

function 

Model Robustness according to  𝑊1 objective 

function 
Figure 2. Model robustness for objective functions 

In the following, for the purpose, analyzing problem the value of ω=300 considered and 

according to this value output result represented in table below. In this Table, we can see 

unsatisfied demands. As determined the value of error vector for part 1 under “high scenario’’ 

for the period 1 is a positive value. For this art demand is equal to 738 which optimal value of 

that is 579 units and the amount of unsatisfied demand is 159 units. For part 3 under ‘’high’’ 

scenario also observed in period 1 where the amount of demand is equal to 1059 units, the 

optimal manufactured is 951 and amount of unsatisfied demand is 108 units. In period 3 under 

“high” scenario some of parts has unsatisfied demands. This case showed that in value of ω =
300 some scenarios are infeasible model:
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 Table 10. Unsatisfied demands under different scenarios 

𝑃6 𝑃5 𝑃4 𝑃3 𝑃2 𝑃1 Scenarios 𝛿𝑝ℎ𝑠 

0 0 0 108 0 159 boom 

ℎ1 0 0 0 0 0 0 medium 

0 0 0 0 0 0 low 

351 0 298 0 102 0 boom 

ℎ2 0 0 0 0 0 0 medium 

0 0 0 0 0 0 low 

Total costs of system under different scenarios are as follows: 

Table 11. System costs under scenarios 

Total 

failure 

rates 

Total 

costs 

Cost of 

purchasing 

new 

capacity 

Machines 

idle time 

costs 

Cell 

idle 

time 

cost 

Purchasing 

and 

removing 

cost of 

machine 

Parts 

movement 

costs 

between 

cells 

Performing 

operations 

cost 

Machines 

holding 

cost 

Scenario 

227 390644 47143 72470 32896 61000 34051 59168 83916 Boom 

202 319766 35697 49201 28642 47500 28413 68145 62168 Middle 

194 221593 22593 28613 18726 31000 21176 49328 50157 Fair 

According to table above, we can observe system total cost from the scenario “high” to the 

scenario “low” is increased. The reason for this event is increasing trend of demand parameters 

and system cost. Of course, because of unsatisfied demand under scenario “high” for some 

parts, the performing operation cost doesn’t have increasing trend. The main 

structure of cell formation and also assigning machines to cells and also assigning parts to 

machines depicted in the table below: 

Table 12. Output data related to assigning machines to cells and parts to machines 

Period1 

 
Machine1 Machine2 

quantity P1 P2 P3 P4 P5 P6 quantity P1 P2 P3 P4 P5 P6 

Cell1 1       2       

Cell2 2       1       

Cell3 1       1       

 
Machine3 Machine4 

quantity P1 P2 P3 P4 P5 P6 quantity P1 P2 P3 P4 P5 P6 

Cell1 1       1       
Cell2 1       1       

Cell3 0       3       

Period2 

 
Machine1 Machine2 

quantity P1 P2 P3 P4 P5 P6 quantity P1 P2 P3 P4 P5 P6 

Cell1 2       1       

Cell2 1       1       

Cell3 1       2       

 
Machine3 Machine4 

quantity P1 P2 P3 P4 P5 P6 quantity P1 P2 P3 P4 P5 P6 

Cell1 1       1       

Cell2 3       1       

Cell3 1       1       

According to the table above, we observed that assigning machines to cells and also assigning 

parts to machines based on manufacturing routes is usable for performing the operation. 

For example, at period 1 in cell 3 we used only machines 2, 1 and 4. Also parts 4, 3,1and 6 for 

performing manufacturing operations transferred to this cell. Actually, with regard to possible 

manufacturing plan for each part, machines assigned to cell 3 which manufacturing cost and 

along with considering manufacturing time as a cost, manufacturing time is also 

minimized. Also, we can specify each part’s route according to the table. For example, part (1) 
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with regard to table (3) data according to scenario 1 used machines 2, 3 and based on scenario 

2 used machines 1and 4 and finally based on scenario 3 used machines 1, 3 and for 

manufacturing using plan 1, also for using manufacturing plan2 could use the machine 2, 3 

based on scenario 1, based on scenario 2 machines 3, 4 and finally based on scenario 3 

machines 1, 2. However, according to the result, part 1 is manufactured based on scenario 2 of 

plan1 in cell 1, for this reason machine 1, 4 is in this cell. For other parts and machines, we can 

analyze similarly. The table below represents the duration of manufacturing operation for each 

part with regard to problem data and probability of each scenario. 

Table 13. Output data related to assigning machines to cells and parts to machines 

P
er

io
d
1
 

 

Machine1 Machine2 

quantit

y 
P1 P2 P3 P4 P5 P6 

quantit

y 
P1 P2 P3 P4 P5 P6 

Cell

1 
1 

0.4

2 
  

0.2

7 
  2   

0.5

8 

0.6

2 
 0.53 

Cell

2 
2  

0.6

7 
  

0.3

7 
 1  

0.1

8 
   0.36 

Cell

3 
1    

0.2

1 
  1 

0.2

4 
  

0.4

7 
  

 

Machine3  

quantit

y 
P1 P2 P3 P4 P5 P6 

quantit

y 
P1 P2 P3 P4 P5 P6 

Cell

1 
1   

0.6

6 
  

0.2

3 
1 

0.3

7 
    0.51 

Cell

2 
1  

0.2

9 
  

0.4

2 
 1       

Cell

3 
0       3  

0.4

5 
 

0.6

8 

0.4

1 
 

P
er

io
d
2
 

 

Machine1  

quantit

y 
P1 P2 P3 P4 P5 P6 

quantit

y 
P1 P2 P3 P4 P5 P6 

Cell

1 
2  

0.6

2 

0.4

7 
 

0.2

8 
 1   

0.4

6 
   

Cell

2 
1 

0.2

8 
  

0.5

3 
  1  

0.5

3 
   

0.02

6 

Cell

3 
1    

0.7

1 
  2 

0.4

7 
  

0.4

9 

0.6

4 
 

 

Machine3  

quantit

y 
P1 P2 P3 P4 P5 P6 

quantit

y 
P1 P2 P3 P4 P5 P6 

Cell

1 
1     

0.2

2 
 1   

0.4

7 
 

0.3

9 
 

Cell

2 
3 

0.2

8 
 

0.3

7 

0.4

5 
 

0.8

4 
1 

0.2

7 
  

0.5

4 
  

Cell

3 
1    

0.6

1 
  1  

0.3

1 
   0.47 

6.2 Effective implications of the results and managerial insights 

In this section, the managerial implications are investigated as follows. 

Cellular manufacturing configuration is a technical planning because in factories, fluctuations 

in costs are so frequent and major. Therefore, optimization tools are helpful for making 

managerial decisions in practice and also their computational time in obtaining a good solution 

is an important issue.  To provide a good situation for managing the production system, we 

defined two objective functions including cost minimization and reliability maximizing 

through failure rate minimizing. In the case study and several problem instances, it is showed 

the derived cell formations from the presented robust and general models satisfied these main 

objectives. The proposed robust approach can be used as powerful managerial tools in a 

production system to provide better and more effective cellular manufacturing systems. 
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The computational results from the case study shows that the use of our proposed robust 

optimization approach led to minimize total cost and minimize the failure rate. Moreover, the 

solutions reduced the number of machines which are used in the system. 

This study presented a scenario based robust approach to hedge against the uncertainty for the 

costs and so it enables a decision maker to obtain robust cell configuration decisions. The robust 

solution showed in better values for the first and the second objective functions. 

7. Conclusion 
Cellular manufacturing system (CMS) reconfiguration is a well-known method for improving 

productivity and competitiveness among manufactures. CMS tries to improve the whole system 

output and shorten the lead time by grouping specific products in small batches to be produced 

in a low cost and high-quality manufacturing cell. Despite all advantages of CMS, the 

shortcomings of such systems cannot be ignored. One of the most important disadvantages is 

the pause in the manufacturing process resulted from machine breakdowns. This issue is one 

of the most important concerns of planning managers. In this research, a bi-objective mixed 

integer mathematical model is presented for the reconfiguration of cellular manufacturing 

systems with alternative routes based on machines reliability. The objectives of this model 

include the minimization of the overall cost and minimization of the machine fails. Usually due 

to changes in the recorded data, to determine the exact amount for parameter used is difficult. 

Thus, to achieve better result and stay close to real world condition, the parameters are 

considered with uncertainty. To deal with such uncertainties and achieve promising results, the 

Mulvey robust programming is employed. To the best of the authors’ knowledge, in this 

research the CMS configuration is performed for the first time considering simultaneously both 

of the objective functions, namely the minimization of the overall cost and the minimization 

of machine failure under uncertainty condition in parameters. One significant advantage of the 

presented model is the sharing of operations required for manufacturing a part of machines in 

different cells that are capable to do those operations and have idle time. It means for assigning 

parts to machine and cells in addition to considering costs related to movement and operations 

on parts, cost related to cells idle time with regard to calculating machine reliability are 

considered. Due to the existence of two conflicting objective function in presenting a model, 

to have a better choice in selecting the final solution, solutions are represented as a Pareto - 

front. Also, to show the impact of using robust planning, set of non-dominated solution resulted 

from main problem and robust problem are compared with each other. Finally, decisions are 

compared to the opinion of the production planning experts at the PISHGAMAN PARS PICH 

Company as a case study. The Pareto-front and results are reported in detail. According to the 

results, using a robust programming method leads to improvement in objective function's 

values. This research can be used as a base for future research to extend the current model and 

to use Meta-heuristic algorithms to solve such complex models. Furthermore, using a fuzzy 

robust optimization approach might make this model to become more efficient and more useful 

to implement in manufacturing environments. 
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